New Empirical Evidence on the Geographic Concentration of German Industries:

Do High-Tech Clusters Really Matter?

Björn Alecke GEFRA Gesellschaft für Finanz- und Regionalanalysen, Salzmannstr. 152, 48159 Münster, Germany,

> Christoph Alsleben¹ Graduiertenkolleg "Allokationstheorie", University of Dortmund, Germany

Frank Scharr Hegelstr. 36, 39104 Magdeburg, Germany

Gerhard Untiedt (corresponding author) GEFRA Gesellschaft für Finanz- und Regionalanalysen, Salzmannstr. 152, 48159 Münster, Germany, untiedt@gefra-muenster.de

May 15, 2003

¹We would like to thank Michael Roos and Christian Bayer for many helpful comments. We are also grateful for suggestions made by the participants of the Graduiertenkolleg Workshop and by Prof. Holländer and Prof. Leininger and for ...nancial support of the Deutsche Forschungsgemeinschaft.

Abstract

The agglomeration of industries has received much interest both in empirical and theoretical work in recent time. Especially in Germany politicians became inspired by the notion of high-technology industry clusters and German regional policy has seen a wave of initiatives aiming at the formation of such clusters. This papers explorers in a systematic way the geographic concentration of German manufacturing industries and relates it to industry characteristics and agglomeration forces proposed by theory. The main ...nding is that there is no general relationship between agglomeration and R&D or high-technology related business which suggests that hope put in the fast and e¤ective development of "high-tech" clusters might be disappointed.

1 Introduction

With the emergence of the New Economic Geography the issue of spatial concentration of economic activity has received much interest both in economic theory and empirical research. While the New Economic Geography—as well as longstanding concepts such as natural advantages in trade theory and external economies of scale already stressed by Marshall (1920)—has contributed much to our understanding of why ...rms may tend to cluster together there is still a lack of empirical evidence on the signi...cance and determinants of geographical concentration and its actual relevance for economic policy. Further evidence is needed particularly on how much and why industries are actually concentrated and whether there are di¤erences across industries. If there is indeed substantial concentration the question will be what forces drive agglomeration and what their relative impact is. Such an analysis may reveal important leverages for policy initiatives aiming at the promotion of business clusters for e¢ciency or equality reasons. If, on the other hand, no substantial concentration is found, then this would cast doubt on the e¤ectiveness of such policy initiatives.

In fact, there has been a fundamental reorientation in regional policy in Germany, presumably being much inspired by qualitative work such as Porter (1991). The explicit aim of German regional policy has now become to promote the formation of high-technology industry clusters and to complement traditional policy measures that support the most backward regions. For example, the BioRegio contest set up in 1995 was an initiative that gave ...nancial aid to the three most promising biotechnology clusters in Germany and the Inno Regio initiative launched in 1999 allocated funds to the least developed regions in East Germany in order to promote the emergence of business clusters.

In this paper we choose Ellison and Glaeser's (1997) index (EG index) to explore to what degree German manufacturing industries are agglomerated due to natural advantages or spillovers. Our work is di¤erent from previous research in so far as—to our knowledge—the EG index has not been applied to German industry data yet; in fact it has been applied to only a few countries comprising the US (Ellison/Glaeser, 1997), the UK (Devereux et al., 1999), France (Maurel/Sédillot, 1999), Spain (Callejón, 1997) and Austria (Mayerhofer/Palme, 2001). Lau (1996) and Keilbach (2002) have already investigated the geographic concentration of industries in Germany but have done so with a simpler measure; also, we have a more recent, more detailed and more comprehensive data set. In the following section we describe the agglomeration pat-

tern of German manufacturing industries and in section 3 we relate our ...ndings to theoretical agglomeration forces in a regression analysis.

2 Evidence on geographic concentration

2.1 The measures of concentration

Literature has established a variety of ways to measure concentration.¹ A measure that has been widely used is the spatial variant of the GINI coe¢cient introduced by Krugman. A severe disadvantage of the GINI coe¢cient is, however, that it measures concentration of economic activity both due to internal economies of scale, i.e. the "concentration" within a ...rm and due to natural advantages or external economies of scale, i.e. concentration stemming from the co-location of independent ...rms (or plants). In order to be able to distinguish between these two causes of concentration, we use two other measures instead. The ...rst, and the one we put the focus on in this paper, has been proposed by Ellison and Glaeser (1997) and is derived from an explicit location decision model. The point of departure is the "raw concentration" of an industry de...ned as $G_i := {\bf P}_i (s_{is \ i \ x_i})^2$ where s_{is} is the portion of industry i's employment located in region s and x_s is the percentage of total employment in that region. Thus, G_i measures the concentration pattern of aggregate employment it is not regarded as being concentrated.²

The advantage of de...ning concentration this way is that the overall distribution of employment (i.e. cities) and hence all location speci...c characteristics (population, commuting) are taken as given and that the benchmark is not an equal distribution of employment. EG show that—given their model of the ...rms' location decision— $E(G) = {}^{i}1_{i} {}^{P}_{i}x_{i}^{2}{}^{c}(\circ + (1_{i} \circ)H)$ where \circ is a combined measure of the strength of natural advantages and externalities between plants in a broad sense and H is the plant Her...ndahl index. Rearranging then yields \circ which is the measure of interest. A second advantage is that the model builds on a statistical distribution and allows one to test against the null of no concentration, i.e. plants choose their location in a pure random manner and independently from each other ("dartboard"). In this case, $\circ = 0$ and $E(G) = {}^{i}1_{i} {}^{P}_{i}x_{i}^{2}{}^{c}H =: G_{null}$.

Nevertheless, a weakness of this approach is that a world with natural advantages and

¹ For a survey see, for example, Devereux et al. (1999).

²Notice that there exists a range of suitable ways to de...ne concentration, for example relative to an equal distribution or relative to population or land size.

one with externalities between plants are observationally equivalent. We try to overcome this limitation in section 3 where we relate concentration to agglomeration forces in a regression analysis.

Finally, note that while ° may be used for a variety of aspects of "concentration" we will use it to measure the concentration of ...rms belonging to the same industry. Thus, this paper examines the existence and impact of localisation economies as opposed to urbanisation economies which occur across industries. When we use the term "cluster" we refer to the agglomeration of an industry.

As one might worry that the EG index does not depict the reality of a ...rm's location decision process we choose a similar but simpler measure for comparison, namely a modi...ed version of Devereux's et al. (1999) proposition. They de...ne a measure $\circledast_i = G_{i,j} M_i$ where $G_i = {}^{i} P_s s_s^{2} _{i,K_i^n} K_i^a = \min(N; K_i)$, $M_i = H_{i,j} \frac{1}{N_i}$, N_i is the number of plants in industry i and K is the number of geographic regions. G_i captures the geographic concentration of employment relative to the uniform share controlling for the maximum number of regions in which employment may be located given that there are (only) N_i plants. To be consistent with the EG index, which is relative to total employment, not to a uniform distribution, we use G_i instead of G_i. M measures the concentration of employment within ...rms (Her...ndahl index) but relative to a uniform distribution. Then for any given geographic raw concentration G, the "internal" concentration of employment is subtracted while controlling for industry size (N). (*) is positive (but 1) whenever the distribution of employment (relative to total employment) across regions "exceeds" that across plants, it is zero whenever these are identical and it is negative (but 1) otherwise.

2.2 The data

The database we use provides the 1998 distribution of employment at the plant level across the 116 manufacturing industries (including extractive industries) and geographical areas (Kreise). While in their seminal paper EG focus on 4-digit industries and on states as the geographic unit of observation we are only able to use 3-digit industry data but at a much ...ner geographic level (440 Kreise as opposed to 51 U.S. states).

Our employment data are not classi...ed (e.g. for con...dentiality reasons) but instead contain precise ...gures for each plant regardless of its size. Therefore, no further improvement in the data

Number of industries (NACE3)	116
Number of plants	216,545
Total employment	7,534,781
Employment per plant	34.8

Figure 1: Descriptive statistics for manufacturing employment, 1998

is necessary and we directly compute the Her...ndahl indices from it. However, the con...dentiality of the data means that we are not able to aggregate plants to ...rms, i.e. determine whether plants are under common ownership. But according to EG's model plants of a ...rm are assumed to choose their location independently, anyway.³ We are able to group total employment of a plant by education and by occupation (production, management, R&D etc.) which we will make use of when explaining concentration in section 3.

2.3 How much are industries concentrated?

In EG's simple dartboard model without any spillovers and natural advantages the plants of an industry choose their location randomly. In this case we would have $\circ = 0$ and $E(G) = G_{null}$. In a ...rst step we test whether E(G) is signi...cantly di¤erent from G_{null} and to our knowledge this is the ...rst formal test for the statistical signi...cance of the agglomeration of German industries. The mean values of G and G_{null} are 0.057 and 0.040, respectively, with their di¤erence being highly signi...cant.⁴ More precisely, 91 out of the 116 manufacturing industries are signi...cantly more (or less) geographically concentrated than what one would expect if location decisions were pure random.⁵ Accordingly, for 25 industries the hypothesis of a pure random location decision cannot be rejected. This is in line with the results of EG who ...nd that most but not all industries in the US are statistically concentrated in excess.

Figure 7 in the appendix shows the distribution of ° at the 3-digit industry level. It is skewed with mean 0.018 and median 0.006. A striking observation is the large number of industries (75%) that have a ° lower than 0.02 which—as argued in Ellison and Glaeser—can be interpreted as low concentration.⁶ We ...nd that only about 10% of all industries have a ° greater than 0.05

³Devereux et al. (1999) aggregate plants that are under common ownership and that are located in the same geographic region. If one assumes that the location of each plant is chosen independently and that a ...rm may well choose to locate its plants in di¤erent places then this procedure seems inconsistent.

⁴The di¤erence is nearly three times larger than the average standard deviation of G.

 $^{^5}$ For these industries the dimerence between G and G_{null} is larger than 1.96 times the standard deviation of G.

⁶See Ellison and Glaeser (1997), p. 903.

Range of ϕ	Manufacturing Industries	High-G Industries
0.00	7%	14%
0.25	28%	28%
0.50	30%	34%
0.75	24%	14%
1.00	11%	10%

Figure 2: Raw concentration attributable to spillovers and/or natural advantage

and these are highly signi...cant. We conclude that in Germany slight concentration (at the Kreis level) is widespread while strong concentration is found only in a small subset of industries.

Besides, one can interpret $A := \frac{G_i Gnull}{G}$ as the fraction of raw concentration attributable to some form of spillovers/natural advantage rather than randomness.⁷ In Germany, for more than 60% of all industries randomness is at least as important for raw concentration as actual agglomeration of plants (Figure 2); in the sub-sample of high-G industries (upper quartile consisting of 29 industries) this share amounts even 75%. Put di¤erently, for less than half of all industries—and for only few industries with a high raw concentration—natural advantages and/or spillovers play a dominant role in agglomeration. In total, randomness seems to have a bit stronger intuence on observed agglomeration than agglomeration forces themselves.

Figure 8 in the appendix shows the most and least concentrated industries. Note that the negative gamma of the 15 least concentrated industries is insigni...cant, i.e. it is presumably zero. What is striking is that "high-tech" and "medium-tech" industries are not among the top most concentrated.⁸ Rather, high- and medium technology industries lie in the middle ...eld or even at the lower end of the ranking as Figure 9 in the appendix demonstrates. This is much in line with the ...ndings of Devereux et al. (1999) for the UK.

Obviously, resource extractive industries dominate the top group and [®] produces fairly the same ranking as [°] with the notable exception of Kokerei and Uran- und Thoriumbergbau (NACE 231, 120).⁹ These two industries consist of only 6 and 2 plants, respectively, each of which is located in a di¤erent location so that there is no agglomeration of plants. Hence these industries must be underrepresented in the majority of the regions which leads to such a high raw concentration. While the [°] indicates that this particular concentration pattern may well

⁷Note that Ellison and Glaeser (1997), p. 909, use a slightly di¤erent expression.

⁸We use a common classi...cation developed by Grupp et al. (2000).

⁹ If the resource related industries are excluded three out of the nine high-tech industries jump up into the top 15 but one of them still has an insigni...cant °.

be the outcome of pure random, [®] is much more responsive to the high raw concentration and ranks them on position 4 and 1 despite their high internal concentration.

2.4 Industrial scope of agglomeration

As we ...nd concentration within industries an interesting question is if we can also identify concentration at a more aggregated industry level, i.e. at the NACE2 level. Is the concentration of industry groups due merely to the concentration of its (sub)industries which would imply that natural advantages and spillovers are industry-speci...c or is there a common exect on the industries of a NACE2 group? In order to explore this issue we calculate in a ...rst step the degree of concentration at the NACE2 level for the 25 industry groups that contain more than one sub-industry using EG's $^{\circ c.10}$ It retects how much the location decisions of ...rms that belong to an industry group are correlated; $^{\circ c} = 0$ would indicate that there is no correlation across industries and hence no more agglomeration in the industry group than simply that resulting from the concentration of its sub-industries. Figure 3 compares our measures at the two industry levels.

Figure 3: Concentration at the NACE2 level

	Н	G			γ			α	
		min av.	max	min	av.	max	min	av.	max
NACE2	0.040	0.001 0.050	0.648	-0.003	0.004	0.051	0.000	0.014	0.075
NACE3	0.040	0.001 0.057	0.648	-0.010	0.018	0.263	-0.001	0.029	0.493

When moving from the aggregate to the …ner industry de…nition raw concentration remains nearly unchanged while ° and ® more than double. Since the magnitude of the co-agglomeration index for industry groups can be interpreted in the same way as the index for industries we conclude that geographic concentration at the NACE2 level is weaker than at the NACE3 level. Figure 10 in the appendix presents the results for all NACE2 industry groups.

At the NACE2 level there is no concentration in traditional industry groups like automobiles, communication technology, furniture, machinery and rubber which is in line with EG's ...ndings for the US. Also similarly to the US, there is some co-agglomeration in the textile, metal,

¹⁰EG extend the model to the co-location of whole industries proposing a measure

Range	Freq	uency
-0.1	2	8%
0.0	2	16%
0.1	2	24%
0.2	4	40%
0.3	4	56%
0.4	4	72%
0.5	1	76%
0.6	3	88%
0.7	1	92%
0.8	1	96%
0.9	0	96%
1.0	0	96%
1.1	1	100.0%

Figure 4: Distribution of ,

lumber and paper industry. However, in absolute terms Germany's manufacturing industry groups exhibit only little concentration at the Kreis level if one takes 0.05 and 0.02 as an upper and lower benchmark, again.¹¹

In a second step we calculate $:= \mathbf{P}_{W_{j}\circ_{j}}^{\circ c}$ which expresses the agglomeration of the group as a fraction of the weighted average of its industries. It indicates that there is no agglomeration attributable to the group as a whole if it is zero and that natural advantages and spillovers are completely group-speci...c rather than (sub)industry-speci...c if it is greater than 1. Figure 7 shows the distribution of .

We observe that for nearly all industry-groups there is some degree of co-agglomeration but with about 70% of them having a _ smaller than 0.5. This means that for the majority group-concentration accounts for less than half of the weighted industry-concentration. In contrast, Recycling, Papers and Automobiles seem to share natural advantages or inter-industry spillovers to a high degree but they are not much (or even negatively) concentrated in absolute terms (see again Figure 10 in the appendix).

Another way to quantify the relative strength of industry-speci...c and group-speci...c agglomeration has been proposed by Maurel and Sédillot (1999). They remark that the concentration of a whole industry group measured by the "simple °" of the group can be written as the weighted average of the °'s of the group members ("intra-industry concentration") and some group-speci...c component ("inter-industry concentration"). Thus, in addition to comparing agglomerative (°_j) and co-agglomerative forces (°^c) one can also express intra-industry agglom-

¹¹Note, however, that a comparison of the EG index across countries is not possible because it is standardised neither with respect to the area covered by the geographic unit used nor to the number of regions under study.

eration ($^{\circ}_{j}$) as a fraction of the group's total concentration ($^{\circ}$ group). This ratio ranges from as low as -2% to 134% (see column 7 in Figure 10). A fraction of intra-industry concentration greater than 100% corresponds to a negative contribution of the inter-industry component. Communications engineering (NACE 32) on rank 22, for example, is a group whose industries themselves are signi...cantly concentrated but taken together they are rather dispersed.

In general, there seems to be no relationship between the degree of group-concentration (°^c) and its magnitude relative to the weighted average of its components ($_{j}$); the spearman rank correlation is 0.40 and the standard correlation is 0.07. An implication of this is that one may always want to look at absolute concentration and its source at the same time.

One might worry that the NACE classi...cation misrepresents plants which are di¢cult to be assigned a single and meaningful industry code. This is most problematic in the ...eld of high-technology related activities where traditional industry codes do not appropriately cover completely new ...elds of economic activity.¹² Therefore, we compile by hand a high-tech and medium-tech industry group which do not exist under the NACE2 classi...cation in order to examine if they—instead—are agglomerated (see Figure 5).¹³

Figure 5: Agglomeration of special industry groups

					Weighted	
Group	Industriescontained	G	Н	Ŷ	average γ	λ
High-tech	233, 242, 244, 296, 300, 321, 322, 333, 353	0.006	0.004	0.001	0.009	0.092
Medium-tech	241, 243, 246, 291, 293, 294, 295, 311, 314, 315, 316, 323, 331, 334, 341, 343, 352	0.002	0.003	-0.001	0.002	-0.646

The result is in contrast to what common wisdom about inter-...rm spillovers in the hightechnology area suggests. First, both groups have a ^{oc} close to zero and that of the mediumtech group is even negative. Secondly, they rank only very modestly compared to the standard NACE2 manufacturing groups.

We conclude, ...rst, that there is some inter-industry concentration in German manufacturing industries which implies that industries share the bene...ts of natural advantages and/or spillovers to some degree. But for the very majority agglomeration within industries is stronger than across industries. Secondly, in the high- and medium-tech area not only industries but also industry

¹²Especially Germany's "new economy" characterised by a wave of start-up activity and a boom of the information- and communication industry is a challenge for the traditional industry classi...cation system.

¹³Again, we use the classi...cation by Grupp et al. (2000).

groups are not agglomerated much in absolute and relative terms.

2.5 Geographic scope of agglomeration

The EG index has the property that its expected value is independent of the geographic level provided spillovers are of an all-or-nothing type and natural advantages are not correlated across regions.¹⁴ If spillovers decline with distance and thus work beyond regions, however, ° re‡ects the additional probability with which plants locate in the same location. In order to explore whether agglomeration forces exist at a higher geographic level and to account for the fact that administrative boundaries are not necessarily economically relevant we aggregate the 440 Kreis to 97 Raumordnungsregionen (ROR) which represent functional and self-contained regions with regard to commuting patterns.

A comparison of Figure 6 with Figure 3 shows that raw concentration and ° increase drastically on average while ® does not change much. The overall ranking, especially the top group, remains fairly unchanged with the notable exception that Coking (NACE 231), which was on rank 113 and had no statistically signi...cant concentration before, jumps on the very top of the ranking. But more industries than at the Kreis level are agglomerated only insigni...cantly. In fact, there is no rule about how agglomeration changes at a higher geographic level in general. Depending on the way the data are aggregated, the degree of concentration and the ranking can alter substantially.

	Н	0	6		γ			α	
		min av	/. max	min	av.	max	min	av.	max
Nace2	0.039	0.013 0.0	73 0.666	-0.286	0.033	0.182	-0.007	0.007	0.074
Nace3	0.040	0.002 0.0	72 0.667	-0.019	0.036	0.564	0.000	0.039	0.410

Figure 6: Concentration at the ROR level

Dividing the °'s at the Kreis level by that of the ROR level and taking the median gives us a value of 0.517. This means that about 50% of the excess concentration at the ROR level stems from the tendency of plants to locate in the same Kreis. First, since a ROR on average consists of more than 2 Kreise we conclude—as EG did for the US—that agglomeration forces within Kreise are stronger than between Kreise. Secondly, if we take 0.975 as a benchmark we ...nd

 $^{^{14}\}mbox{Spatial}$ correlation means that there is a tendency of neighbouring regions to have the same natural endowment.

that in only ...ve cases concentration at the Kreis level is equal to that at the ROR level. For all other industries concentration is higher at the ROR level which means that agglomeration forces operate beyond Kreise.

3 Explaining concentration

The EG index is an appropriate way to measure concentration with regard to many aspects but it cannot distinguish between the various forces that may drive agglomeration: as noted, any gamma is consistent with a world only with natural advantages, only with spillovers or both. Furthermore, the index captures spillovers in a very broad sense. In a ...nal step we want to determine what forces are actually at work. We do so by regressing the EG index on a variety of controls. While natural advantages can well be a reason for agglomeration they are clearly not of much intellectual interest. Rather, we are interested in the existence and magnitude of external e¤ects spurring agglomeration. Based on the considerations of Marshall (1920) literature has established three types of externalities: (1) a pooled market for specialised labour, (2) a pooled market for specialised input services (input sharing) and (3) knowledge spillovers (for empirical evidence see Ja¤e et al. 1993, Anselin et al. 1997, Harho¤ 1999).

3.1 Controls for Marshallian forces

Input sharing. In a world with ...xed costs specialisation of ...rms can lead to a cumulative process of concentration. The more customers an industry producing a non-tradable service has, the more it can specialise and exploit increasing returns to scale due to ...xed costs. This increases productivity and/or the variety of the products which in turn bene...ts the purchasing industry which is assumed to like variety à la Dixit/Stiglitz (1977). This mechanism may eventually lead to the formation of a cluster both of specialised input producers and specialised purchasing industries.¹⁵ We employ the portion of technical and industrial services and the portion of manufactured inputs in total shipments as an indicator of how specialised these are and hence how large gains from sharing inputs could be. All cost data are taken from the 1998 collection of the cost structure in German manufacturing industries carried out by the German census bureau. Services are likely to be very industry-speci...c with the largest potential for scale economies and manufactured inputs much less special so that we expect a positive sign for both

¹⁵ For a formal model of this mechanism see Abdel-Rahman and Fujita (1990).

but a much stronger impact of the former.¹⁶

Labour market pooling. If an industry needs workers with industry speci...c skills it bene...ts from locating in an area where the supply of such labour is high because this increases the probability of ...nding capable personnel. Conversely, specialised workers reduce the probability of being unemployed by moving where the demand for their skills is relatively high.¹⁷ With the assumption that low-skilled workers are relatively immobile and do not need to be much mobile because they ...nd a job everywhere, it becomes possible to reveal the exect of the need for speci...c skills.

We use three alternative measures for the speci...city of an industry's skills. The ...rst is an industry's share of employees with a highly specialised occupation. We follow the common de...nition of "secondary services" which includes management, supervision, teaching and R&D (as opposed to primary services: trading, security, o¢ce and general duties).¹⁸ The data are taken from our employment database. The second measure accounts for employees' education. We are able to split up total employment into three groups: no vocational training, vocational training and university degree. In terms of education the discriminatory power will be highest if we take the ...rst and the third because employees with no vocational training at all are very unlikely to have a high school degree while those with a university degree must have one. People with a vocational training in contrast, may have very diverse educational backgrounds in real life. We expect a positive coe¢cient for the university proxy and a zero for the no training proxy if labour market pooling of specialised skills drives agglomeration. Thirdly, we estimate an industry's labour speci...city by its deviation from the national average labour composition:

Skilldev_i =
$$(x_{i0}; x_0)^2$$

where x_{io} is the percentage of industry i's workforce with occupation o and x_o the national average percentage.¹⁹

The externality we are most interested in is knowledge spillovers. Knowledge spillovers imply the idea that when knowledge is created (i.e. research) a signi...cant fraction of it cannot be appropriated but leaks out of a ...rm. If this knowledge is tacit (which means it cannot be

¹⁶Note that Rosenthal and Strange (2003) argue that manufactured inputs are more specialised than services. ¹⁷For a formal model see Helsley and Strange (1990).

¹⁸ This classi...cation scheme of occupations is used by the Bundesanstalt für Arbeit.

¹⁹ This measure has been used already by Dumais et al. (1997).

codi...ed) it cannot spread over long distances but requires personal contact and spatial proximity to be transmitted. By their very nature knowledge spillovers are hard to measure directly. We assume that if spatially bounded knowledge spillovers exist between plants then they render a single plant and consequently the respective industry as a whole the more innovative the more concentrated it is. Accordingly, we can expect ...rms to optimise the location of their plants with respect to spillovers to the extent that innovative capacity is crucial for their industry. Unfortunately, reliable and consistent data are available neither for the number of patents nor innovations.²⁰ We proxy the importance of innovation in three other ways. First, we employ Peneder's (1999) dummies specifying whether in an industry is R&D intensive and whether it has a strong or only few competitive advantages. Secondly, we use a high-tech and mediumtech dummy according to the above de...nition of the special industry groups. Finally, we use an industry's R&D intensity de...ned as R&D personnel divided by total employment.²¹ If knowledge spillovers are an agglomeration force then they should have a positive impact on our concentration measures.

3.2 Other controls

Transportation costs. The more costly it is to transport a good the more likely a plant cannot exploit the idiosyncratic bene...ts of a particular location (including those from agglomeration externalities) but has to locate optimally between suppliers and customers to minimise transportation costs (Marshall, 1920). It is important to note that in principle the colocation of trade partners can render an industry agglomerated or dispersed. Since we are interested in localisation economies only we limit our analysis to industries with ...nal goods and ask whether they in fact tend to disperse the higher transportation costs are.²² Essentially, this is a test for the centrifugal force of transportation costs as modelled by the New Economic Geography (see, for example, Krugman 1991b). We proxy the average transportation cost of an industry by the inverse of its unit value. From trade data containing both the total weight (tons)

²⁰Patent data are not available for the NACE industry classi...cation system and data on innovations are available from panel surveys and only at a highly aggregated level.

²¹A problem is that it is correlated with the proxy vocational training + university degree (labour market pooling) which is plausible as R&D is usually carried out by highly educated employees while not all educated employees work in R&D. If one assumes instead that labour market pooling and knowledge spillovers should be independent and do not exhibit any correlation in reality, a regression including the two (somewhat correlated) proxies is subject to classical measurement error. However, employees' education and a ...rm's share of R&D personnel are a good proxy each and there are no appropriate instruments available for them.

²²Note that literature is often not precise on these distinct exects. Relatively higher transportation costs of inputs (shipments) induce plants to locate more close to their suppliers (customers). But this implies coagglomeration of trade partners and has to be distinguished from the agglomeration of a single industry.

and value of goods imported and exported we calculate an average reciprocal unit value as $\frac{1}{UV} = \frac{\text{weight imports} + \text{exports}}{\text{value imports} + \text{exports}}.^{23}$

In principle one needs to account for the possibility that industries are geographically concentrated just because they rely on natural resources such as water or energy sources that are distributed unevenly in space. However, compared to the U.S. for example, Germany is a small country with a relatively even distribution of regional and local power stations so that access to electricity and gas should be fairly the same in all regions. Furthermore, Germany is poor in natural resources and consequently extractive industries are small. In sum, natural advantages should be relevant for only very few industries and we control for them with the help of a resource extractive dummy which is assigned to the industries with NACE codes 101 - 145 and 152 (Fish processing).

For any given geographic space a larger but otherwise identical industry will ...nd it more di¢cult to agglomerate if there are congestion exects. We want to make sure that we capture this exect and consequently control for the size of an industry in terms of total employment.

Finally, traditional and therefore most presumably heavy industries may be located the way they are just because of historical (chance) events and/or because they are not footloose.²⁴ As an indicator of the importance of history and the degree of bondage we use the share of depreciation on assets in total shipments. First, traditional industries are very likely to be older and use relatively more ...xed assets which should be re‡ected by a higher share of capital depreciation in output. Secondly, if a new plant of such an industry chooses its location, idiosyncratic location preferences are likely to be stronger and more diverse than in other industries for the following reason. The higher the share of depreciation the more important are tangible assets for production, the higher is presumably the share of ...xed costs and hence the more receptive is a plant for site-related factors such as commercial rents, tax breaks or subsidies.²⁵ For these reasons we anticipate depreciation to have a negative impact on industry agglomeration.

²³ The portion of actual transportation cost in output (the importance of transportation cost) $\frac{c}{t}$ is then proportional to the reciprocal unit value with $\frac{c}{t}$ assumed to be a constant independent of the industry. ²⁴ Examples comprise Siemens AG, Munich, and Bayer AG, Leverkusen, each of which became the centre of an

^{2*} Examples comprise Siemens AG, Munich, and Bayer AG, Leverkusen, each of which became the centre of an industrial cluster. The location of their headquarter was determined by the Allied occupation authorities after World War II.

²⁵ Take, for example, BWM, DaimlerChrysler and VW all of which looked for a place for a new plant in recent time. In each case the investment involved and the number of jobs to be created were substantial and several places all over the world were shortlisted. Ultimately, all three companies went to East Germany (though di¤erent counties) after federal subsidies of more than Euro 490 mil. in total had been promised.

3.3 Regression results

Before we present our regression results there are two things to note. First, agglomeration theory predicts that plants sensitive to specialised labour, specialised inputs or innovation tend to agglomerate because this will reduce production costs. Especially where we proxy "sensitivity" by cost shares there raises the question of identi...cation. A high share of costs of— say—manufactured inputs indicates susceptibility to sharing inputs and thus a propensity to agglomerate. But this in turn should lower these costs and hence their portion in output. Consequently, what we observe is the equilibrium relationship between industry characteristics and agglomeration which tends to push the regression coeCcients towards zero. If we ...nd an insigni...cant relationship in equilibrium we cannot rule out the possibility that in fact there exists one. On the other hand, if we ...nd a signi...cant relationship we can expect it to be even stronger.²⁶

Secondly, an analysis of our data reveals that there are two extreme outliers that lead to a very poor ...t of the regression and a distribution of residuals that is almost certainly not normal. Therefore, we exclude Watches (NACE3 335) and Jewellery (362) with rank 3 and 4. Both industries are very small (0.08% and 0.23% of manufacturing employment) and are characterised by family-owned, small-scale handcrafts for which the location decision is presumably dominated by family tradition and history and for which our cost proxies do not take exect. After excluding all industries with missing data we are left with 98 observations.

We estimate the model gamma = $(e^+ X + ")$ where X is a vector of the industry characteristics. Since we use alternative proxies for knowledge spillovers and labour market pooling we run 9 regressions in total.

First of all, our control for industry size is highly signi...cant and has the anticipated negative sign in all regressions, that is, bigger industries are less geographically concentrated.²⁷ The resource dummy is positive and always highly signi...cant and in fact it contributes substantially to the goodness of the regression. Depreciation on assets is always signi...cantly negative indicating that age and history of an industry reduce industry agglomeration.

Transportation costs associated with ...nal good industries are unexpectedly positive but never signi...cant and the ...nal good dummy by itself has mostly a negative sign which is a rather inconsistent result. However, when we do not restrict transportation costs to ...nal good

²⁶See also Rosenthal and Strange (2003).

²⁷Size is not to be confused with average plant size which is already accounted for by °.

industries but instead include it for all industries, it becomes highly signi...cant with a negative coe¢cient in all regressions. Moreover, when we experiment with the speci...cation of the regression it turns out to be one of the most robust explanatory variables. We conclude that transportation costs tend to reduce agglomeration in general. This does not contradict Marshall's argument about the colocation of trade partners but is ultimately consistent with our previous ...ndings, namely that German industries exhibit only little concentration in general. Individual plants may well choose to locate close to suppliers and/or customers in order to minimise transportation costs but since industries as a whole are not much concentrated there must exist such a negative relationship. Using input/output data at the NACE2 level we con-...rm in an additional analysis omitted here that transportation costs increase the proximity to customers/suppliers and that proximity in turn has a signi...cant but slightly negative impact on industry concentration.

Technical and industrial services has the anticipated sign, is always highly signi...cant and is the most robust variable. Manufactured inputs is mostly signi...cant and—somewhat surprisingly even reduces agglomeration. We conclude that industries that use a higher share of input services tend to agglomerate as theory predicts while the usage of manufactured inputs reduces agglomeration.

The results for labour market pooling are less pronounced. Our proxy for specialised occupations is positive but not signi...cant while those for education (no vocational training, university degree) are almost always signi...cant both with a positive sign. As low-skilled workers prove to be very immobile we conclude that ...rms that need them relatively much locate where they are. Apart from that, we note that both workers with no vocational training and those with a university represent only a minority of total manufacturing employment (21% and 8%). Based on this one could argue that unemployment insurance is well an issue for the very low skilled, too. We can support this additional argument by replacing the two variables by the industry's share of workers with a medium education (vocational training). It is signi...cantly negative implying that those with an average level of education indeed do not need geographic concentration.

The deviation of the national labour mix has the anticipated sign but is only marginally signi...cant. In sum, we interpret this as weak evidence for labour market pooling whereby in the case of low skilled workers it is ...rms that locate where (immobile) labour supply resides.

Concerning knowledge spillovers our results are disillusioning. While we found in the previ-

ous section that "high-tech" industries belong to the least concentrated industries we now ...nd that even when controlling for other factors, all of the di¤erent measures of susceptibility to spillovers are insigni...cant, which is consistent with that result. In the majority of the regressions the measures are even associated with a negative sign. Especially in the case of our most reliable proxies, namely share of R&D employees and the technology dummies, this is striking.

Before concluding, we want to spend a few comments on agglomeration at the higher geographic level. We noted above that when moving to more aggregate geographic levels there is no rule for the changes in the concentration measure and for Germany we found a higher concentration at the ROR level for the majority of the industries. Unlike Rosenthal and Strange (2003) we ...nd that the concentration pattern at the higher level remains almost the same with the resource dummy explaining almost half of the variation. In particular, all measures of R&D/high-tech remain insigni...cant and nearly always have a negative sign.

4 Conclusion

This paper has explored the geographic concentration of German manufacturing industries with the help of Ellison and Glaeser's (1997) concentration index for the ...rst time. Thereby we add to previous empirical work dealing with the concentration in other European countries. The questions we ask is (i) how much plants of an industry are agglomerated and (ii) what factors determine concentration, i.e. we are interested in the pattern and magnitude of localisation economies. The focus is on high-technology related industries motivated by the observation that the idea of "high-tech clusters" is en vogue at the moment and has inspired many policy initiatives.

Concerning the ...rst question we ...nd that 80% of the 116 industries are statistically signi...cantly more concentrated than what would result if location decisions were pure random. However, the degree of concentration is rather low and randomness accounts for almost half of it; only resource related industries exhibit strong concentration and they dominate the group of the top 15. In particular, high-/medium-tech industries and industry groups are only little concentrated, partly even not signi...cantly so, and rank medium or even lowest. This result does not change when we use an alternative and simpler concentration measure or when we take a more aggregate geographic level.

To answer the second question, we have related concentration to a variety of industry mea-

sures that shall re‡ect theoretical agglomeration forces in a regression analysis. We ...nd that transportation costs associated with ...nal good industries have no signi...cant impact which is at odd with the new economic geography arguing for a centrifugal e¤ect. Rather they signi...cantly reduce agglomeration in all industries. The history/age of an industry has a strong negative and its size a slight negative impact on concentration indicating that congestion e¤ects exist.

Concerning Marshall's (1920) agglomeration forces we ...nd strong evidence for inputs sharing (specialised service inputs), weak evidence for labour market pooling and no evidence for knowledge spillovers. Neither of our alternative proxies for high-technology or research intensity produces a signi...cant and positive relationship. Either such spillovers are not limited to knowledge intensive activities but instead are much more general than has been assumed so far or they simply do not spur agglomeration. Shaver and Flyer (2000), for example, address the latter point and argue that heterogeneity among ...rms can lead to asymmetric contributions and bene...ts from agglomeration externalities and that ...rms' location choice becomes strategic then. They give empirical evidence that ...rms with superior technologies, human capital or suppliers have the incentive to locate distant from other ...rms, especially from ...rms within their industry, i.e. from direct rivals. Our systematic analysis of manufacturing industries gives some support to their ... rm-level study. Orlando (2002) ... nds that R&D spillovers between ... rms in the U.S. exist and that they are stronger within an industry than across industries but that unlike inter-industry spillovers intra-industry spillovers do not attenuate by distance. If this is true there is no need for an industry to agglomerate in order to bene...t from knowledge spillovers. As Germany is a relatively small country with every major city within one-day travel distance, spatial proximity might actually be a poor proxy for the importance of personal contact, trust etc. An additional caveat is that we do not include in our analysis the proximity to public research facilities.

We conclude that among German manufacturing industries there is no general relationship between agglomeration and R&D or high-technology related business which means that these characteristics do not make industries agglomerate naturally. This suggests that German regional policy in which much hope is currently put in the fast and exective development of high-tech clusters might see some disappointments.

5 References

- Abdel-Rahman, H., Fujita, M. (1990) "Product Variety, Marshallian Externalities, and City Sizes", Journal of Regional Science, 30, 165-183
- Anselin, L., Varga, A., Acs, Z. (1997) "Local Geographic Spillovers between University Research and High Technology Innovations", Journal of Urban Economics, 42, 422-448
- Callejón, M. (1997) "Concentración geográ...ca de la industria y economías de aglomeración", Economia Industrial, 317, 61-68
- Devereux, M. P., Gri⊄th, R., Simpson, H. (1999) "The Geographic Distribution of Production Activity in the UK", The Institute for Fiscal Studies, Working Paper 26/99
- Dumais, G., Ellison, G., Glaeser, E. (1997) "Geographic Concentration as a Dynamic Process" NBER Working Paper
- Ellison, G., Glaeser, E. L. (1997) "Geographic Concentration in U.S. Manufacturing Industries: A Dartboard Approach", Journal of Political Economy, 105 (5), 879-927
- Grupp, H., Legler, H., Jungmittag, A., Schmoch, U. (2000) "Hochtechnologie 2000 Neude...nition der Hochtechnologie für die Berichterstattung zur technologischen Leistungsfähigkeit Deutschlands", Bericht des FhG-ISI und des NIW im Auftrag des Bundesministeriums für Bildung und Forschung
- Harho¤, D. (1999) "Firm Formation and Regional Spillovers—Evidence from Germany", Economics of Innovation and New Technology, 8, 27-55
- Helsley, R., Strange, W. (1990) "Matching and agglomeration economies in a system of cities", Regional Science and Urban Economics, 20, 189-212
- Ja¤e, A. B., Trajtenberg, M. Henderson, R. M. (1993) "Geographic Localization of Knowledge Spillovers as Evidenced by patent Citations", QJE, 108 (3), 577-598
- Keilbach, M. (2002) "Determinanten der räumlichen Konzentration von Industrie und Dienstleistungsbranchen. Eine empirische Analyse für Westdeutschland", Jahrbuch für Regionalwissenschaft", 22, 61-79
- Krugman, P. (1991a) "Geography and Trade", Cambridge, Mass.: MIT Press
- Krugman, P. (1991b) "Increasing Returns and Economic Geography", Journal of Political Economy, 99 (3), 483-499
- Lau, D. (1996) "Local Concentration and International Competitiveness: Some Empirical Evidence for Manufacturing Sectors in Selected European Countries", Konjunkturpolitik, 42, 181-205
- Marshall, A. (1920) "Principles of Economics", London: MacMillan

- Maurel, F., Sédillot, B. (1999) "A measure of the geographic concentration in French manufacturing industries", Regional Science and Urban Economics, 29, 575-604
- Mayerhofer, P., Palme, G. (2001) "Strukturpolitik und Raumplaung in den Regionen an der mitteleuropäischen EU-Außengrenze zur Vorbereitung auf die EU-Osterweiterung. Teilprojekt 6/1: Sachgüterproduktion und Dienstleistungen: Sektorale Wettbewerbsfähigkeit und regionale Integrationsfolgen", http://www.preparity.wsr.ac.at/public/ veroe¤entlichungen/at/veroe¤entlichungen_a6.html
- Orlando, M. J. (2002) "Measuring R&D spillovers: on the importance of geographic and technological proximity", Federal Reserve Bank of Kansas City
- Peneder, M. (1999) "Intangible Investment and Human Resources. The New WIFO Taxonomy of Manufacturing Industries", WIFO Working Papers 114/99
- Rosenthal, S. S., Strange, W. C. (2003) "The Determinants of Agglomeration", forthcoming Journal of Urban Economics
- Shaver, J. M., Flyer, F. (2000) "Agglomeration economies, ...rm heterogeneity, and foreign direct investment in the United States", Strategic Management Journal, 21, 1175-1193

6 Appendix

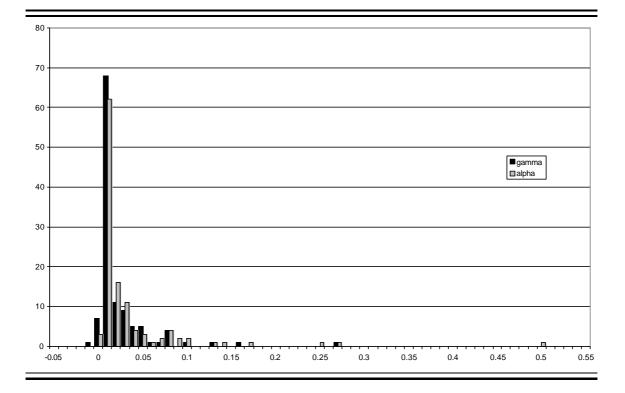


Figure 7: Distribution of $^\circ$ and $^{\mbox{\tiny (B)}}$

Rank	NACE	γ	Н	G	α	Т	Sign.	. Rank α
1	112	0.263	0.070	0.314	0.268 Erbringung von Dienstleistungen bei der Gewinnung von Erdöl und			2
2	131	0.156	0.204	0.327	0.248 Eisenerzbergbau			3
3	335	0.124	0.027	0.147	0.125 Herstellung von Uhren			6
4	362	0.096	0.010	0.105	0.096 Herstellung von Schmuck u.ä. Erzeugnissen			7
5	101	0.077	0.045	0.118	0.087 Steinkohlenbergbau und - brikettherstellung			10
6	143	0.074	0.097	0.163	0.087 Bergbau auf chemische und Düngemittelminerale			9
7	132	0.072	0.177	0.235	0.094 NE-Metallerzbergbau (ohne Uran- und Thoriumerze)			8
8	152	0.070	0.026	0.093	0.072 Fischverarbeitung			14
9	103	0.069	0.044	0.109	0.075 Torfgewinnung und -veredlung			13
10	263	0.060	0.098	0.151	0.076 Herstellung von keramischen Wand- und Bodenfliesen und -platten			11
11	111	0.049	0.069		0.060 Gewinnung von Erdöl und Erdgas			16
12	176	0.047	0.012		0.048 Herstellung von gewirktem und gestricktem Stoff			18
13	160	0.041	0.072	0.110	0.056 Tabakverarbeitung			17
14	232	0.041	0.039	0.078	0.045 Mineralölverarbeitung			19
15	102	0.041	0.050	0.088	0.063 Braunkohlenbergbauund-brikettherstellung			15
102	222	0.001	0.001		0.002 Druckgewerbe			107
103	281	0.001	0.001	0.002	0.002 Stahl- und Leichtmetallbau			108
104	292	0.001	0.002	0.003	0.002 Herstellung von sonstigen Maschinen für unspezifische Verwendung			109
105	158	0.001	0.001	0.001	0.001 Sonstiges Ernährungsgewerbe (ohne Getränkeherstellung)			112
106	204	0.001	0.009	0.010	5 5 5		no	100
107	159	0.001	0.003	0.003	•			111
108	342	0.000	0.008		0.001 Herstellung von Karosserien, Aufbauten, Anhängern		no	113
109	343	0.000	0.014		0.001 Herstellung von Teilen und Zubehör für Kraftwagen und	MT	no	110
110	311	-0.001	0.057		-0.001 Herstellung von Elektromotoren, Generatoren und Transformatoren	MT	no	115
111	316	-0.001	0.021	0.019	-0.001 Herstellung von elektrischen Ausrüstungen a. n. g.	MT	no	116
112	354	-0.001	0.182	0.180	······································		no	97
113	231	-0.002	0.263	0.260	0.164 Kokerei		no	4
114	341	-0.004	0.046		0.000 Herstellung von Kraftwagen und Kraftwagenmotoren	MT	no	114
115	242	-0.005	0.186		0.034 Herstellung von Schädlingsbekämpfungs- und Pflanzenschutzmitteln	ΗT	no	23
116	120	-0.010	0.654	0.648	0.493 Bergbau auf Uran- und Thoriumerze		no	1

Figure 8: The most and least concentrated NACE3 manufacturing industries

Figure 9: The ranking of high- and medium-tech industries

								Rank
Rank	NACE	γ	н	G	α		Sign.	α
						High-technology industries		
16	296	0.037	0.072	0.105		Herstellung von Waffen und Munition		20
19	233	0.032	0.263	0.285	0.133	Herstellung und Verarbeitung von Spalt- und Brutstoffen	no	5
23	353	0.027	0.050	0.076	0.029	Luft- und Raumfahrzeugbau		25
						Herstellung von Büromaschinen, Datenverarbeitungsgeräten und-		
51	300	0.007	0.035	0.041	0.008	Einrichtungen		59
54	322	0.007	0.019	0.025	0.008	Herstellung von nachrichtentechnischen Geräten und Einrichtungen		61
59	333	0.006	0.124	0.128	0.007	Herstellung von industriellen Prozeßsteuerungsanlagen	no	64
73	321	0.004	0.012	0.016	0.005	Herstellung von elektronischen Bauelementen		81
84	244	0.003	0.018	0.020	0.004	Herstellung von pharmazeutischen Erzeugnissen	no	90
						Medium-technology industries		
32	334	0.015	0.020	0.035		Herstellung von optischen und fotografischen Geräten		41
38	352	0.011	0.042	0.052		Schienenfahrzeugbau		37
43	315	0.009	0.034	0.042		Herstellung von elektrischen Lampen und Leuchten		52
49	246	0.007	0.010	0.017		Herstellung von sonstigen chemischen Erzeugnissen		56
50	314	0.007	0.046	0.052		Herstellung von Akkumulatoren und Batterien	no	42
57	291	0.006	0.006	0.013		Herstellung von Maschinen für die Erzeugung und Nutzung von		66
62	323	0.005	0.020	0.025		Herstellung von Rundfunk- und Fernsehgeräten sowie phono- und		70
68	293	0.005	0.009	0.013		Herstellung von land- und forstwirtschaftlichen Maschinen		82
72	243	0.004	0.014	0.018		Herstellung von Anstrichmitteln, Druckfarben und Kitten		76
76	-	0.004	0.002			Herstellung von Werkzeugmaschinen		85
82		0.003	0.002	0.005		Herstellung von medizinischen Geräten und orthopädischen		93
97	241	0.002	0.071	0.073		Herstellung von chemischen Grundstoffen	no	98
101	295	0.002	0.002	0.004		Herstellung von Maschinen für sonstige bestimmte Wirtschaftszweige		106
109	343	0.000	0.014	0.014		Herstellung von Teilen und Zubehör für Kraftwagen und	no	110
111	316	-0.001	0.021			Herstellung von elektrischen Ausrüstungen a. n. g.	no	116
110	311	-0.001	0.057			Herstellung von Elektromotoren, Generatoren und Transformatoren	no	115
114		-0.004	0.046	0.042		Herstellung von Kraftwagen und Kraftwagenmotoren	no	114
115	242	-0.005	0.186	0.182	0.034	Herstellung von Schädlingsbekämpfungs- und Pflanzenschutzmitteln	no	23

						Intra-industry concentration		
Rank				Rank	Rank	< as % of group's		# indus-
γ ^c	NACE2	γ^{c}	λ	λ	α	concentration	NACE2	tries
<u> </u>	11	0.051	0.402	7	1	68%	Gewinnung von Erdöl und Erdgas, Erbringung damit ver	
2	23	0.015	0.382	9	4	93%	Kokerei, Mineralölverarbeitung, Herstellung von Brutstof	
3	17	0.007	0.387	8	9	33%	Textilgewerbe	7
4	35	0.005	0.319	11	6	55%	sonstiger Fahrzeugbau	5
5	27	0.003	0.274	12	11	56%	Metallerzeugung und-Bearbeitung	5
6	20	0.003	0.575	5	22	37%	Holzgewerbe (ohne Herstellung von Möbeln)	5
7	22	0.003	0.584	4	10	60%	Verlags-, Druckgewerbe, Vervielfältigung	3
8	21	0.003	0.748	2	16	57%	Papiergewerbe	2
9	37	0.003	1.046	1	21	64%	Recycling	2
10	14	0.002	0.137	18	23	65%	Gewinnung von Steinen und Erden, sonstiger Bergbau	5
11	24	0.002	0.513	6	15	30%	chemische Industrie	7
12	26	0.002	0.208	15	26	49%	Glasgewerbe, Keramik, Verarbeitung von Steinen und E	8
13	18	0.002	0.322	10	13	97%	Bekleidungsgewerbe	3
14	19	0.002	0.061	21	7	93%	Ledergewerbe	3
15	28	0.002	0.235	14	19	49%	Herstellung von Metallerzeugnissen	7
16	36	0.001	0.080	20	17	89%	Herstellung von Möbeln, Schmuck, Musikinstrumenten u	6
17	33	0.001	0.166	16	18	65%	Medizin-, Meß-, Steuer-und Regelungstechnik, Optik	5
18	15	0.001	0.237	13	27	43%	Ernährungsgewerbe	9
19	25	0.000	0.157	17	25	91%	Herstellung von Gummi-und Kunststoffwaren	2
20	29	0.000	0.136	19	24	62%	Maschinenbau	7
21	31	0.000	-0.143	24	14	-2%	Herstellung von Geräten der Elektrizitätserzeugung, -Ve	6
22	32	-0.001	-0.149	25	12	134%	Rundfunk-, Fernseh-und Nachrichtentechnik	3
23	34	-0.002	0.666	3	20	65%	Herstellung von Kraftwagen und Kraftwagenteilen	3
24	13		-0.027	22	3	101%	Erzbergbau	2
25	10	-0.003	-0.038	23	5	103%	Kohlenbergbau, Torfgewinnung	3

Figure 10: The coagglomeration of manufacturing industries

Figure 11: Regression 1

Coefficient	Std.Error	t-Statistic	Prob.
0.021109	0.004863	4.340700	0.0000
-4.91E-05	1.61E-05	-3.054190	0.0030
-0.183674	0.067018	-2.740664	0.0074
0.030717	0.005661	5.426097	0.0000
-0.002175	0.003561	-0.610564	0.5430
0.000706	0.003259	0.216572	0.8290
-0.033235	0.022366	-1.485998	0.1408
0.096265	0.028234	3.409539	0.0010
-0.060293	0.055706	-1.082353	0.2820
0.046416	0.045858	1.012180	0.3142
0.513503	Meandependentvar		0.012708
0.464307	S.D. dependent var		0.017375
	0.021109 -4.91E-05 -0.183674 0.030717 -0.002175 0.000706 -0.033235 0.096265 -0.060293 0.046416 0.513503	0.021109 0.004863 -4.91E-05 1.61E-05 -0.183674 0.067018 0.030717 0.005661 -0.002175 0.003259 -0.033235 0.022366 0.096265 0.028234 -0.060293 0.055706 0.046416 0.045858 0.513503 Meandependentvar	0.021109 0.004863 4.340700 -4.91E-05 1.61E-05 -3.054190 -0.183674 0.067018 -2.740664 0.030717 0.005661 5.426097 -0.002175 0.003259 0.216572 -0.033235 0.022366 -1.485998 0.096265 0.028234 3.409539 -0.600293 0.055706 -1.082353 0.046416 0.045858 1.012180 0.513503 Meandependentvar

Figure 12: Regression 2

Variable	Coefficient	Std.Error	t-Statistic	Prob.
CONSTANT	0.022355	0.004795	4.662469	0.0000
SIZE	-4.71E-05	1.61E-05	-2.929759	0.0043
DEPREC	-0.187364	0.066713	-2.808497	0.0061
RESOURCE	0.032172	0.005413	5.943592	0.0000
FINALGOOD	-0.002378	0.003555	-0.669019	0.5052
FINALGOOD*TC	0.000504	0.003247	0.155314	0.8769
MANUFINP	-0.033497	0.022263	-1.504627	0.1360
SERVICEINP	0.105855	0.026981	3.923280	0.0002
RDINTENS	-0.055400	0.042732	-1.296450	0.1982
UNIVERSITY	0.068950	0.054625	1.262249	0.2102
R-squared	0.516558	Meandependentvar		0.012708
Adjusted R-squared	0.467670	S.D. dependent var		0.017375

Figure 13: Regression 3

Variable	Coefficient	Std.Error	t-Statistic	Prob.
CONSTANT	0.020656	0.004823	4.283005	0.0000
SIZE	-5.12E-05	1.60E-05	-3.203559	0.0019
DEPREC	-0.172355	0.067030	-2.571324	0.0118
RESOURCE	0.028714	0.005847	4.911085	0.0000
FINALGOOD	-0.001511	0.003461	-0.436585	0.6635
FINALGOOD*TC	5.07E-05	0.003246	0.015615	0.9876
MANUFINP	-0.033664	0.022135	-1.520871	0.1318
SERVICEINP	0.094166	0.027592	3.412782	0.0010
RDINTENS	-0.006246	0.019769	-0.315961	0.7528
SKILLDEV	0.032124	0.020192	1.590879	0.1152
R-squared	0.521510			
Adjusted R-squared	0.473123			
	-			

Figure 14: Regression 4

Variable	Coefficient	Std.Error	t-Statistic	Prob.
CONSTANT	0.021660	0.005098	4.248970	0.0001
SIZE	-4.63E-05	1.71E-05	-2.712988	0.0080
DEPREC	-0.193172	0.068010	-2.840339	0.0056
RESOURCE	0.032953	0.005695	5.786444	0.0000
FINALGOOD*TC	0.000579	0.003288	0.176124	0.8606
FINALGOOD	-0.001275	0.003441	-0.370499	0.7119
MANUFINP	-0.034476	0.023152	-1.489107	0.1400
SERVICEINP	0.105549	0.027856	3.789038	0.0003
HIGHT	0.003749	0.006531	0.574055	0.5674
MEDIUMT	-0.001274	0.004252	-0.299679	0.7651
SECSERVICE	-0.005183	0.021310	-0.243216	0.8084
R-squared	0.510573			
Adjusted R-squared	0.454956			

Figure 15: Regression 5

Variable	Coefficient	Std.Error	t-Statistic	Prob.
CONSTANT	0.020948	0.004770	4.391998	0.0000
SIZE	-4.66E-05	1.70E-05	-2.736447	0.0075
DEPREC	-0.192052	0.067963	-2.825835	0.0058
RESOURCE	0.032642	0.005598	5.831420	0.0000
FINALGOOD	-0.001081	0.003409	-0.317202	0.7518
FINALGOOD*TC	0.000573	0.003291	0.174125	0.8622
MANUFINP	-0.034214	0.023160	-1.477273	0.1432
SERVICEINP	0.104149	0.027313	3.813131	0.0003
HIGHT	0.002697	0.006748	0.399663	0.6904
MEDIUMT	-0.001712	0.004226	-0.405003	0.6865
UNIVERSITY	0.000746	0.033969	0.021966	0.9825
R-squared	0.510247			
Adjusted R-squared	0.454593			

Figure 16: Regression 6

Variable	Coefficient	Std.Error	t-Statistic	Prob.
CONSTANT	0.020004	0.004303	4.649129	0.0000
SIZE	-4.98E-05	1.70E-05	-2.936981	0.0042
DEPREC	-0.175678	0.068019	-2.582764	0.0115
RESOURCE	0.029026	0.006032	4.812349	0.0000
FINALGOOD	-0.001222	0.003321	-0.367909	0.7138
FINALGOOD*TC	7.27E-05	0.003268	0.022258	0.9823
MANUFINP	-0.033275	0.022872	-1.454844	0.1493
SERVICEINP	0.094346	0.027786	3.395425	0.0010
HIGHT	0.001256	0.005255	0.238954	0.8117
MEDIUMT	-0.001126	0.003889	-0.289474	0.7729
SKILLDEV	0.030534	0.020875	1.462711	0.1471
R-squared	0.521869			
Adjusted R-squared	0.467536			

Figure 17: Regression 7

Variable	Coefficient	Std.Error	t-Statistic	Prob.
CONSTANT	0.021874	0.005496	3.979964	0.0001
SIZE	-5.40E-05	1.63E-05	-3.310483	0.0014
DEPREC	-0.191591	0.069617	-2.752063	0.0072
RESOURCE	0.035221	0.006007	5.863685	0.0000
FINALGOOD	-0.000544	0.003433	-0.158548	0.8744
FINALGOOD*TC	0.000914	0.003266	0.279910	0.7802
MANUFINP	-0.040722	0.023401	-1.740164	0.0853
SERVICEINP	0.107674	0.027490	3.916901	0.0002
RD1	0.005476	0.003745	1.462423	0.1472
RD2	0.004906	0.005504	0.891197	0.3753
SECSERVICE	-0.015528	0.022421	-0.692528	0.4904
R-squared	0.519146			
Adjusted R-squared	0.464504			

Variable	Coefficient	Std.Error	t-Statistic	Prob.
CONSTANT	-0.000815	0.007627	-0.106875	0.9151
SIZE	-4.08E-05	1.59E-05	-2.568857	0.0119
DEPREC	-0.184083	0.065175	-2.824457	0.0059
RESOURCE	0.036200	0.005491	6.592989	0.0000
FINALGOOD	-0.000561	0.003190	-0.175968	0.8607
FINALGOOD*TC	0.001530	0.003082	0.496344	0.6209
MANUFINP	-0.046401	0.022094	-2.100211	0.0386
SERVICEINP	0.099665	0.025467	3.913436	0.0002
RD1	0.003137	0.003542	0.885709	0.3782
RD2	0.001737	0.005113	0.339797	0.7348
NOTRAIN	0.064618	0.018089	3.572256	0.0006
UNIVERSITY	0.060876	0.038046	1.600050	0.1132
R-squared	0.578924			
Adjusted R-squared	0.525685			

Figure 18: Regression 8

Figure 19: Regression 9

Variable	Coefficient	Std.Error	t-Statistic	Prob.
CONSTANT	0.018642	0.004443	4.195790	0.0001
SIZE	-5.51E-05	1.62E-05	-3.403580	0.0010
DEPREC	-0.167045	0.068661	-2.432894	0.0170
RESOURCE	0.030030	0.006180	4.859403	0.0000
FINALGOOD*TC	0.000304	0.003253	0.093508	0.9257
FINALGOOD	-0.000224	0.003297	-0.067828	0.9461
MANUFINP	-0.035642	0.023000	-1.549638	0.1248
SERVICEINP	0.094568	0.027538	3.434076	0.0009
RD1	0.004040	0.003452	1.170498	0.2450
RD2	0.001431	0.004052	0.353178	0.7248
SKILLDEV	0.030243	0.020391	1.483193	0.1416
R-squared	0.528317			
Adjusted R-squared	0.474716			