
Abstract

This paper investigates the productivity effects of interindustry R&D
spillovers from publicly financed business R&D using data of West-German
manufacturing industries. We test whether such productivity effects exist and
whether they differ from productivity effects of spillovers from privately fi-
nanced R&D. Our results suggest that it is important to distinguish between
the productivity effects of spillovers from privately and publicly financed
business R&D. In particular, estimation results of cointegrating regressions
provide evidence of positive productivity effects of spillovers from privately
financed R&D but fail to confirm a statistically significant effect of publicly
financed R&D.
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I Introduction
Economic theory emphasizes the importance of an economy’s R&D sector and
of knowledge spillovers for long-run economic growth (see Aghion and Howitt
(1992), Grossman and Helpman (1991) and Romer (1986, 1990)). These
models show that market failures in the market of new goods and ideas may
lead to suboptimal investments in business R&D and in turn to suboptimal
economic growth. Knowledge spillovers, for example, drive a wedge between
private and social rates of return to R&D. The results reported by Jones and
Williams (1998) suggest that the level of optimal investment in R&D is much
higher than the level of actual investment in R&D. Thus, public support to
business R&D could, in principle, eliminate or reduce market failures.
Public R&D subsidies and R&D contracts are an important instrument

of governments’ technology policy in industrial economies. These are often
aimed at particular R&D projects, firms or industries. Such targeted forms
of public support to business R&D allow governments to decide what R&D
projects should be publicly funded.1 However, Klette et al. (2000: p. 472)
state that “...compared to the size of the programs and the emphasis put on
technology policy by politicians, the effort to evaluate in quantitative terms
the economic benefits and costs of R&D subsidies has been rather modest.”2

If R&D spillovers were the main justification for public support to busi-
ness R&D those R&D investments should be publicly financed for which the
gap between the private and the social rate of return is large (“the spillover
gap”).3 In the case of targeted public support, a successful policy means that
the support is directed towards those industries, firms or R&D projects which
generate knowledge spillovers and increase productivity of the recipient firms.
Therefore, one indicator for the evaluation of the success of targeted public
support to business R&D are the (ex post) measured productivity effects of
spillovers from publicly financed business R&D.
In empirical literature such spillovers have not been explicitly taken into

account until recently.4 Mamuneas (1999) and Mamuneas and Nadiri (1996)
provided empirical evidence for the existence of spillovers from publicly fi-
nanced R&D performed in U.S. manufacturing industries.5 In contrast to

1In contrast, untargeted public support to business R&D, like R&D tax credits or R&D
personnel subsidies, are designed to increase all firms’ R&D efforts in general. See Aghion
and Howitt (1998; chapter 14) for a discussion on the pros and cons of targeted and
untargeted R&D subsidies.

2Klette at al. (2000) discuss the conceptual problems of such evaluations.
3See Jaffe (1998).
4See Griliches (1992) for a survey.
5Their measure of publicly financed R&D also includes the R&D performed by gover-

ment agents and nonprofit institutions.
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previous empirical studies they do not exclusively focus on the direct pro-
ductivity effects of R&D subsidies and public R&D contracts but they also
study the inter industry spillovers from publicly financed (business) R&D.6

From an ex post point of view, their results suggest that the U.S. technology
policy has been quite successful in increasing the efficiency of U.S. manu-
facturing industries via interindustry R&D spillovers from publicly financed
R&D.
In this paper we will show that productivity effects of spillovers from

publicly financed business R&D may differ from those of privately financed
R&D. The productivity effects of spillovers are determined by a “pure pro-
ductivity effect” and by a “composition effect”. The latter is determined
by the distribution of publicly and privately financed business R&D across
industries and by the composition of the industries’ spillover sources. Both
effects may be different for publicly and privately financed business R&D.
We will investigate these effects empirically for 26 German manufacturing
industries.
This paper contributes to the existing empirical literature in three ways:

First, to our best knowledge this is the first study which investigates the
productivity effects of spillovers from publicly financed business R&D in 2-
digit West German manufacturing industries. So far, empirical studies on
productivity effects of R&D spillovers in German industry have not exam-
ined privately and publicly financed business R&D separately.7 Second, we
estimate the relationship between R&D and productivity using cointegrated
panel data. Until now only a few studies on productivity effects of R&D ex-
ist which make use of nonstationary panel data analysis.8 Third, we present
an alternative measure of technological association between industries. In
contrast to the existing literature we do not use direct I-O linkages between
industries to compute weighted R&D stocks from other industries but use the
similarity in I-O transaction profiles in order to construct spillover measures.
The remainder of this paper is organized as follows. In the next sec-

tion we lay out a simple conceptual framework for discussing the (possibly)
different productivity effects of interindustry R&D spillovers from privately
and publicly financed business R&D. In the third section the econometric
specification is explained and in the fourth section data trends are discussed.
Estimation results of the standard and nonstationary panel data analysis are
presented in section 5. The paper ends with a summary and some concluding
remarks.

6Direct productivity effects of publicly financed R&D have been examined, for example,
by Griliches (1986), Lichtenberg and Siegel (1991) or Mansfield (1980).

7See, for example, Bönte (1997) and Harhoff (2000).
8See, for example, Frantzen (1998), Kao et al. (1999) and Los and Verspagen (2000).
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II Conceptual Framework
One may ask whether in practice publicly financed R&D exhibits the same
productivity effects as privately financed R&D. Particularly, two relevant
questions are whether knowledge spillovers from privately and publicly fi-
nanced R&D are identical and what the conditions are under which the
differentiation between productivity effects of interindustry spillovers from
privately and publicly financed R&D matters? In what follows this question
will be addressed in more detail.
Assume that an industry i uses at least some part of the technological

knowledge that has been produced by the innovative activities of other in-
dustries. These inter industry spillover effects are captured by a spillover
variable S which enters the production function of industry i:

Yi = f(Xi, Si) (1)

where Yi is the output of industry i, Xi are industry i’s own inputs (e.g.
labor, physical capital and the industry’s “own” stock of knowledge) and Si
denotes an industry’s stock of externally available technological knowledge.
The variable S is assumed to be a function of the other industries knowl-

edge stocks (Wj , j 6= i):

Si = g(W1,W2, ...,WN−1), (2)

where the knowledge stocks are the result of the industries’ R&D efforts
in previous periods. If the development of an industry’s knowledge stock is
related to the source of finance of its R&D activities – here privately and
publicly financed R&D – the knowledge production function of industry j
can be written as:

Wj = h(KPj ,KGj), (3)

where the knowledge stocks that have been produced by privately and pub-
licly financed R&D are approximated by the industries’ privately and pub-
licly financed R&D capital stocks (KPj, KGj). Think of KPj and KGj as the
outcome (knowledge) of two different R&D projects.9

9We do not assume, however, that Wj is necessarily identical with the effective stock
of knowledge that is used by industry j. If, for example, the results of a publicly financed
R&D project conducted in industry j are irrelevant for the same industry, its effective
knowledge stock will be left unchanged. In contrast, other industries may benefit from
the results of that project which will increase their effective knowledge stocks. We are
interested in the latter (interindustry) effect of publicly financed R&D and do not consider
intraindustry effects.
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The (different) effects of publicly and privately financed R&D will be
discussed now. The effect of a change of privately and publicly financed
R&D capital stocks on an industry’s stock of knowledge can be expressed as:

dWj =
∂Wj

∂KGj
dKGj +

∂Wj

∂KPj
dKPj, (4)

and the effect on the externally available knowledge stock of industry i is:

dSi =
NX
j 6=i

µ
∂Si
∂Wj

∂Wj

∂KGj

¶
dKGj +

NX
j 6=i

µ
∂Si
∂Wj

∂Wj

∂KPj

¶
dKPj (5)

where the partial derivative ∂Si/∂Wj is the change of industry i’s externally
available knowledge stock due to a change in the stock of knowledge of the jth
industry. For the sake of simplicity it is assumed that the marginal effects of
privately and publicly financed R&D on an industry’s knowledge stock are the
same for all industries (∂Wj/∂KGj = ∂W/∂KG; ∂Wj/∂KPj = ∂W/∂KP ).
Then, we can rewrite equation (5) as follows:

dSi =
∂W

∂KG

NX
j 6=i
ωijdKGj +

∂W

∂KP

NX
j 6=i
ωijdKPj (6)

where ωij is ∂Si/∂Wj. The marginal productivities of publicly and privately
financed R&D with respect to the production of (industry relevant) techno-
logical knowledge may differ (∂W/∂KG 6= ∂W/∂KP ).
Why should one expect to find such differences? The productivity of pub-

licly financed R&D may be higher, for example, if publicly financed projects
concentrate more on generic R&Dwhile privately financed R&D concentrates
on appropriable R&D. In that case, it may be easier for firms in other indus-
tries to make use of that knowledge which then expands their technological
opportunities. On the other hand, the productivity may be lower if a large
part of the knowledge that has been produced by publicly financed R&D is
defence related.10 Moreover, one might argue that x-inefficiency is a more se-
vere problem in publicly financed R&D projects thereby reducing the relative
productivity of publicly financed R&D.
To see the effects of a change in privately and publicly financed R&D

on the productivity of a spillover receiving industry i, we write the total
differential of equation (1) and substitute equation (6) into this expression.
Thus, we get:
10Of course, it is possible that even this technological knowledge is diffused to the

economy as a whole.
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dTFPi = dYi − ∂Yi
∂Xi

dXi =
∂Yi
∂Si

dSi (7)

= Θ
NX
j 6=i
ωijdKGj +Ψ

NX
j 6=i
ωijdKPj

= ΘdSGi +ΨdSPi

where the left side of the equation is the change in productivity of industry i
(dTFP )11 which is determined by the marginal productivity and the change
of the externally available stock of knowledge. Note, that the „own“ R&D
capital stock of industry i does not appear on the right side of equation (7)
since it is already included in X. If knowledge spillovers from an externally
available knowledge stock exist and increase industry i’s output the partial
derivative ∂Yi/∂Si will be positive. The parameter Θ reflects the marginal
productivity of publicly financed R&D (∂Yi/∂Si · ∂W/∂KG) and the para-
meter Ψ reflects the one of privately financed R&D (∂Yi/∂Si · ∂W/∂KP ).
Equation (7) points out that the productivity effects of interindustry R&D

spillovers from publicly and privately financed R&D may differ at least for
two reasons. First, an increase in SGi will provoke a higher (lower) increase
in productivity of the spillover receiving industry compared with an identical
increase in SPi if the marginal productivity of publicly financed R&D capital
stocks with respect to the production of (industry relevant) knowledge is
higher (lower): Θ ≶ Ψ. We call this the pure productivity effect. Second,
they will differ if both are equally productive (Θ = Ψ) but the changes in
SGi and SPi are different. The last statement is trivial. Nevertheless, it
deserves our interest because it highlights one important feature of public
support to business R&D, namely the effectiveness of public support. In
industrial economies the bulk of public support to business R&D is often
targeted to a few industries. Now assume that industries are not equally
capable of receiving spillovers from other industries (ωi1 6= ωi2 6= .... 6= ωiN).
The value of ωij may be zero or very low for some industries (j). Suppose
that, first, a government increases the public support to R&D solely in these
industries and second, privately financed R&D increases in all industries. In
that case, an identical increase in the overall privately and publicly financed
R&D capital stocks (dKP = dKG) will lead to lower productivity effects of
publicly financed R&D. Thus, the composition of the industries’ externally
available knowledge stocks matters. Therefore, we call this the composition
effect.
11This is the change of ouput which cannot be explained by a change of an industry’s

own inputs.
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III Econometric Specification
The previous theoretical considerations have shown that productivity effects
of interindustry R&D spillovers from publicly financed R&D are determined
by two effects: the pure productivity effect and the composition effect. The
former will be quantified by using econometric estimation techniques and
the latter by using a priori information. In what follows we describe the
methodology used here.
First, the composition effect is quantified. In line with the majority of

empirical studies on R&D spillovers it is assumed that the externally available
knowledge stocks are simply the weighted sum of the other manufacturing
industries’ knowledge stocks:12

SGi =
NX
j 6=i
ωijKGj , SPi =

NX
j 6=i
ωijKPj, (8)

where ωij is assumed to be constant over time and 0 ≤ ωij ≤ 1. This para-
meter can be interpreted as the effective fraction of knowledge in industry
j borrowed by industry i.13 A value of one and ωij = ωji means that the
whole knowledge stock of each industry j is freely available to industry i and
vice versa which implies that technological knowledge is a pure public good.
In contrast, a value of zero rules out the existence of interindustry R&D
spillovers. However, both are extreme cases. To avoid such strong assump-
tions, we make use of a priori information in order to calculate estimates of
ωij.
In the empirical literature several approaches to the measurement of ωij

exist. Most authors make use either of Input-Output or of patent data to
construct measures of ωij. It is often argued, however, that the use of I-O
data will be inadequate if one is interested in the quantification of knowledge
spillovers. The latter are not necessarily related to purchases of inputs. The
flow of knowledge between two industries may be important though the direct
link between industries is small. The I-O measure fails to identify such
effects.14 Thus, measures of technological proximity based on patent data
seem to be more useful to measure knowledge spillovers. However, the use of
patent data has several shortcomings, too. The main objection to the use of
patent data is their poor performance as an indicator of innovative output.
12Alternatively, Bernstein and Nadiri (1988) use R&D capital stocks of different indus-

tries as separate variables. However, with a growing number of spillover sources (indus-
tries) this approach is not really feasible. See Griliches (1992) for a discussion.
13See Griliches (1995), p. 65.
14See Branstetter (2000) and Griliches (1992) for a detailed discussion.
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Not all the innovative output is patented by the industries and the number of
patents may not tell much about their economic value.15 Moreover, industries
may have very different propensities to patent. The aerospace industry, for
example, seems to have an extremely low propensity to patent compared
with other industries. Thus, the number of patents is not a reliable indicator
of this industry’s innovative output.16 Unfortunately, this is the industry in
our sample to which government allocates the lion share of public support to
business R&D.
Another data set which can be used to construct proximity measures is

the firms’ or industry’s distribution of R&D expenditures across product ar-
eas.17 By looking at the German industries’ distribution of applied R&D
expenditures across product areas we have found for higher-technology in-
dustries that these distributions overlap to a very limited extent. These
industries spent on average less than 10% of their applied R&D expenditures
in other than the industries’ own product area. As a result, a proximity
measure based on the similarity of such R&D profiles would indicate a low
degree of proximity between industries. We think that such a measure is
appropriate for firm level studies because there is more variation in the firms
R&D profiles but is not very useful for the investigation of German industry
level data.
Therefore, we present an alternative measure of proximity here which is

based on the industries’ input profiles. In contrast to previous studies using
I-O data it is not the direct link between two industries that is at the center
of interest but the degree of similarity of the input profiles. The correla-
tion between input profiles of two industries is viewed as a measure of their
technological association.18 We assume that industries which employ the
same types of intermediate inputs have similar production technologies. Of
course, the intermediate inputs profile does not fully describe an industry’s
production technology. However, the combination of intermediate inputs is
a relevant part of an industry’s production technology. If, for instance, two
industries, e.g. plastic products and rubber products industry, make use of
an intermediate input purchased from a third industry, e.g. chemical indus-
try, both industries turn this input into outputs and they have an incentive
to reduce the costs of this input. Thus, both industries may benefit from
each other’s process innovations. Moreover, suppliers themselves may be a
channel of knowledge spillovers because knowledge may flow from firms of
15See Griliches (1990).
16See Verspagen and Loo (1999).
17See, for example, Goto and Suzuki (1989) and Harhoff (2000).
18We have borrowed this idea from empirical studies on the identification of industrial

clusters. See Lublinski (2001) for a survey of this literature.
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one industry to firms of other industries via common suppliers.19 Therefore,
we argue that a high degree of similarity between input profiles may ease
knowledge spillovers between industries.
The proximity measure is computed as follows. The value of intermediate

inputs of the industries is disaggregated into the values of demands for the
goods of N industries. Let ai be a vector of the N shares of the value
of individual intermediate inputs in the value of total intermediate inputs
of industry i. The technological association between two industries can be
approximated by the centered correlation coefficient (pij) between the vectors
ai and aj of each pair of industries:

ωij = pij =
ai a

0
jq

(aia0i)(aja
0
j)

(9)

In contrast to traditional I-O weights this measure is symmetric (pij =
pji), which implies that the effective fraction of knowledge in industry j
borrowed by industry i is equal to the fraction of knowledge in industry i
borrowed by industry j.20 One may ask whether this assumption is realis-
tic. According to the arguments presented above symmetry arises because
similar production technologies allow the industries to benefit from each oth-
ers’ process innovations. Let us come back to our example of rubber and
plastic products. It is likely that firms of the rubber products industry ben-
efit as much from firms of the plastic products industry as vice versa since
firms may imitate each other’s process innovations. We take these industries
to demonstrate the difference between the traditional I-O measure and the
proximity measure used in this study. The former indicates low knowledge
flows between the rubber and the plastic product industries (ωij ,ωji < 0.01),
whereas the latter suggests a remarkable potential for knowledge spillovers
(ωij = 0.53).
Though German statistical office provides data that allow us to calculate

vectors containing 56 value shares of intermediate inputs we restrict the vec-
tor to the shares of 32 manufacturing industries. This is done to avoid that
technologically dissimilar industries exhibit a high degree of technological
association due to similarities in non-manufacturing purchases.21

The next step is the specification of the relationship between an industry’s
19The latter are interested in a broad diffusion of process innovations among their cus-

tomers.
20Such symmetric weights have also been assumed, for example, by Jaffe (1986) and

Harhoff (2000).
21If, for example, two industries exhibit similar shares of services from the financial

sector this does not coincide with our understanding of technological association.
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level of productivity and interindustry R&D spillovers. First, we investigate
whether there is any empirical evidence of interindustry R&D spillovers ir-
respective the source of finance. To do so, we use the following estimation
equation and include the spillover variable S, which is simply the weighted
sum of the manufacturing industries’ total R&D stocks (Sit = SGit + SPit):

lnTFPit = µ0 + γ lnSit−3 + uit, (10)

where parameter γ is the the elasticity of the industry’s TFP with respect to
the externally available knowledge stock and uit is a disturbance term. The
R&D capital stocks are lagged 3 years to allow for lags due to the diffusion of
technological knowledge. Mansfield (1985) found that detailed information
concerning new products and processes is known to the rivals within about
a year. It is likely that knowledge transfer between different industries needs
even more time. In addition, there will be a lag between knowledge transfer
and commercial application.
To investigate the different productivity effects of publicly and privately

financed R&D spillovers the two variables are included separately:22

lnTFPit = µ0 + α lnSGit−3 + β lnSPit−3 + uit, (11)

where the parameters α and β represent the elasticities of the industry’s
TFP w.r.t. the publicly and privately financed R&D capital stocks SGit
and SPit and uit is a disturbance term. If publicly (privately) financed R&D
exhibits positive R&D spillovers one would expect to observe a positive and
statistically significant estimate of the parameter α (β).

IV Data
The data used in this study consist of gross output, intermediate inputs,
labor, physical and R&D capital for 26 (two digit) West-German manufac-
turing industries over the years 1979 to 1993.23 R&D expenditure data at
the industry level (three digit Wirtschaftszweige (WZ) level) are based on
the surveys of the Science Statistics, an affiliate of the Stifterverband für
die Deutsche Wissenschaft (a private non-profit organization), that are con-
ducted every two (odd) years.24 The R&D data contain industry-specific
22All variables are normalized to one for the year 1987.
23Because of data problems six industries had to be excluded from the sample. For these

industries there are either no consistent price indices or data are not available (mineral oil
refining, shipbuilding, aircraft, tobacco, beverages, leather and leather goods).
24R&D data collected by the Science Statistics form the basis for the national statistics

on business R&D activities in Germany as well as for statistics of international institutions
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information on total, privately and publicly financed R&D expenditures of
the firms. In the questionnaire of the Science Statistics firms are asked for
the sources of finance of their R&D expenditures. This measure of pub-
licly financed R&D contains direct (project oriented) R&D subsidies as well
as public R&D contracts and reveals (targeted) public support to business
R&D from the performer’s point of view.25 The observation period begins in
1979 and ends in 1993 because of limited comparability with R&D data of
the preceding and the following years.26

Data on gross output, intermediate inputs, employment and investment
in physical capital are obtained from the yearly disaggregated (two digit
SYPRO level) national income accounts (Statistisches Bundesamt, Fachserie
18). Industry-specific data on the average yearly hours worked are taken from
the Statistics of the Institut für Arbeitsmarkt- und Berufsforschung (IAB).
Compatibility with the R&D data is ensured since the industrial classification
of the R&D data can be transferred to the industry classification of the
national income accounts. For more detailed information on the data sources
and the construction of the variables refer to appendix A.

insert table [1] about here

Table 1 presents the growth rates of the externally available R&D capital
stocks.27 Weighted as well as unweighted measures are reported to give first
insights into the effects of different weighting schemes. As can be seen from
table 1 a very different picture of the development of externally available
R&D capital stocks emerges from the different weighting schemes. The un-
weighted R&D capital stocks exhibit similar growth rates across industries
and therefore the variation between industries is relatively small.28 However,
the growth rate of the unweighted publicly financed R&D capital stocks is

(e.g. OECD statistics).
25In the questionaire firms are explicitely instructed not to include indirect R&D sub-

sidies, like R&D personnel subsidies.
26In the year 1979 additional small and medium-sized firms – identified in the Federal

R&D Incentive Programme – entered the survey which lead to a remarkable increase of
measured R&D expenditures. The data of total R&D expenditures from 1991 onwards
refer to unified Germany. Especially for this study the Science Statistics has kindly carried
out an analysis of the data to estimate the total R&D expenditures of West-German
manufacturing industries for the years 1991 and 1993.
27Because of data problems six industries had to be excluded from the sample but they

are included in the computation of R&D capital stocks. (mineral oil refining, shipbuilding,
aircraft, tobacco, beverages, leather and leather goods).
28This is not surprising since the only difference between the industries’ spillover mea-

sures is each industry’s own R&D capital stock which is excluded from the aggregate R&D
capital stock.
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0.3% on average and much lower compared to the growth rate of unweighted
privately financed R&D (3.1%) which is due to the differences in the devel-
opment of publicly and privately financed R&D expenditures. The growth
rates of the weighted R&D capital stocks are, in contrast, not that similar.
This is especially true for the publicly financed R&D capital stocks where the
growth rates range from -1.55% to 0.79. The privately financed R&D capital
stocks do also show more variation compared to the unweighted R&D capital
stocks but here all growth rates are still positive. Taken together, weighting
does strongly affect the measured growth rates of the spillover measures.
Since the unweighted spillover measure implies that all industries are

equally capable of receiving R&D spillovers from all other industries (com-
plete diffusion) differences between this measure and the weighted spillover
measure give a hint on the relevance of the composition effect. In our sample
the remarkable differences between the weighted and unweighted spillover
measure of publicly financed R&D are due to the highly skewed distribu-
tion of the public support to business R&D. During the observation period
the aerospace industry had the largest share (approximately 46%) in the
publicly financed R&D capital stock of all manufacturing industries.29 How-
ever, according to the measure of technological proximity used here, the
knowledge of this industry spills over to a small group of high- and medium-
high-technology industries whereas industries which have a very small tech-
nological association with the aerospace industry are not equally capable of
gaining from R&D efforts of that industry.30 Thus, the unweighted spillover
measure is dominated by the development of R&D efforts in the aerospace
industry while the weighted measure is not or to a lesser extent. Moreover,
the development of the industries’ publicly financed R&D capital stocks is
very different. The publicly financed R&D capital stock of the aerospace
industry, for example, has increased by approximately 25% during the obser-
vation period while the stocks of electrical engineering (36) and mechanical
engineering (32) industries have decreased by roughly 18% and 20%.31 Thus,
the composition effect described in the previous section reduces the potential
growth effects of publicly financed R&D drastically.
29The highest shares thereafter are those of electrical engineering (26%), chemical in-

dustry (7%) and mechanical engineering (7%).
30In most of the medium-low and low-technology industries the degree of technological

association with the aerospace industry is below 0.05. But even for higher-technology
industries it does not exceed a value of 0.3. This is far below a value of one which is
implicitely assumed for unweighted R&D stocks.
31Of course, one can always obtain non-negative growth rates if the choosen deprecition

rate of the R&D capital stocks is sufficiently small. See appendix A for the construction
of the variables.
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V Estimation

A Standard Panel Data Analysis

In this section the productivity effects of R&D spillovers from publicly fi-
nanced R&D are investigated by using standard panel data analysis where
the disturbance term uit is specified as the sum of an unobservable industry-
specific effect (µi) and a remainder disturbance (νit): uit = µi + νit and νit
is i.i.d (0, σ2). The industry-specific effects are treated as fixed and control
for time invariant effects, e.g. omitted variables and misspecifications.32

Each industry’s own R&D capital stock K is included into the regres-
sions to reduce the potential omitted variables problem. One reason for the
inclusion are potential intraindustry R&D spillovers.33 If they exist the level
of total factor productivity will depend on the level of the industry’s own
knowledge stock. A statistically significant coefficient can be interpreted
as empirical evidence of excess returns to the industries’ own R&D.34 One
might expect that the impact of interindustry R&D spillovers may be higher
for higher-technology industries than for less sophisticated industries because
firms in higher-technology industries may have better opportunities to make
use of knowledge flows from external sources.35 Harhoff (2000), for example,
reports that productivity effects from R&D spillovers differ between German
firms in high-technology industries and those in other industries. Los and
Verspagen (2000) have found that R&D spillovers have a positive impact
on productivity of U.S. manufacturing firms and that the magnitude of this
effect depends on a firm’s (industry’s) level of technology.
Therefore, we investigate whether differences between groups of indus-

tries with different levels of technology exist. The assignment to a level of
technology is based on a revised version of the OECD’s classification (high-,
medium- and low-technology) where the medium-technology group is fur-
ther disaggregated into two sub-categories: medium-high- and medium-low-
technology (see table 1).36 Since the level of aggregation in our data does
not allow us to distinguish between high-technology and medium-high tech-
nology industries these categories are merged. We call this group of indus-
tries the higher-technology industries. Analogous, the medium-low and low-
32See Baltagi (1995).
33See Griliches (1995).
34For the computation of TFP index it was assumed that R&D exhibits the same rate

of return as physical capital stocks.
35Cohen and Levinthal (1989) have argued that firms have to built up an absorptive

capacity in order assimilate and exploit externally available knowledge.
36R&D intensity – the ratio of R&D expenditures to output – is the main criterion

for classification. See Hatzichronoglou (1997) for further details.
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technology-industries are merged. This group of industries is called the lower-
technology-industries. We allow for differences between these two groups of
industries by estimating a dummy variable model.37

The estimation results for equation (10) are presented in columns (1) and
(2) of table 2. In column (1) the estimated coefficient of the spillover variable
(S) is 0.303 and its conventional t-statistic is significantly large. The value
of the estimated coefficient of the industries’ own R&D capital stocks (K)
as well as its t-statistic are much lower but still significant according to the
conventional t-values. Next, we investigate whether differences between the
two groups of industries exist. The results suggest that the impact of own
R&D is significantly higher in higher-technology industry whereas the impact
of interindustry R&D spillovers is significantly higher in lower-technology in-
dustries (see column (2)). The estimated coefficient of the spillover variable
is even negative for the group of higher technology-industries. We turn now
to the estimation results for equation (11) which are reported in columns (3)
and (4) of table 2. The value of the estimated coefficient of privately financed
R&D capital (SP ) is 0.276 and its t-value is 9.15. The value of the estimated
coefficient of publicly financed R&D capital (SG) is similar (0.24) but its t-
value is much lower (2.64). Again, we allow for differences between the two
groups of industries (see column 4). The results indicate that the impact of
interindustry spillovers from privately financed R&D is significantly higher
in lower-technology industries compared with higher-technology industries
where the estimated coefficient negative. R&D spillovers from publicly fi-
nanced business R&D do not seem to have any impact on productivity for
both groups of industries.

insert table [2] about here

The results concerning the impact of R&D spillovers on productivity of
higher-technology industries contradict our expectations. One explanation
for this result may be the fact that the “computer” industry (50) is a clear
outlier with respect to productivity growth. During the observation period
this industry has experienced a much stronger productivity growth than
other higher-technology industries. At the same time, the development of
the spillover variables was very similar in higher-technology industries. This
may lead to a negative correlation between productivity and interindustry
R&D spillovers for the group of higher-technology industries. Therefore, we
37The spillover variables are interacted with a dummy variable that takes on the value

of one for the group of lower-technology industries (medium-low and low-technology) and
zero for the group of higher-technology industries (high-technology and medium-high-
technology).
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have excluded this industry from our sample and have reestimated equations
(10) and (11) with a sample of 25 industries in order to check the robustness
of results.
As can be seen from table 3, results change when the “computer” in-

dustry (50) is excluded. First, the value of the estimated coefficient of own
R&D is no longer statistically significant irrespective whether we allow for
differences between higher-technology industries and other industries or not.
Second, the estimated coefficient of the spillover variable is now positive for
higher-technology industries. But it is still statistically insignificant and there
is still some empirical evidence for a difference between higher-technology in-
dustries and other industries with respect to the productivity effects of R&D
spillovers (see column (3)). Third, the estimate of the coefficient of the
spillover variable SG as well as its t-value are much lower compared with the
results presented above (see column (3)). However, the estimated coefficient
of SG is still statistically significant at the 5% level.
In order to check the robustness of our results, we have also investigated

whether the exclusion of other higher-technology industries has a similar
effect on estimation results but we have found that the results are hardly
affected. Moreover, we have included the capacity utilization rate of the
manufacturing sector to control for common business cycle effects because
the revenue based measure of total factor productivity as well as the R&D
variables may be affected by demand shocks, for instance. Again, results do
not change.38

insert table [3] about here

B Nonstationary Panel Data Analysis

The validity of the standard panel data analysis rests on the assumption that
the individual time series are stationary. However, since most of the data
used in this study exhibit a clear trend we can not rule out the possibility
that the data are nonstationary and that the results presented above are
entirely spurious.39 Since the results of a nonstationary panel data analysis
may be very different from those of the standard panel data approach, we
will present the results of such an analysis in this section.40 The results are
38Industry-specific capacity utilization rates have also been used but estimation results

are not affected. The capacity utilization rates are obtained from the Ifo Institute for
economic research.
39Recently, this problem has gained a growing interest in the literature on panel data

analysis. See Banerjee (1999) for an overview.
40This has been shown, for example, by Kao et al. (1999) who applied a nonstationary

panel data analysis to Coe and Helpman’s (1995) international R&D spillovers regression.
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computed using NPT 1.3 for GAUSS (Chiang and Kao (2002)).
First, we present the results of panel unit root tests. We have used a test

proposed by Im et al. (1997) which is based on the average of the (industries’)
augmented Dickey-Fuller (ADF) statistics. The results are reported in table
4. The null hypothesis that the productivity measure and the R&D capital
stocks have a unit root can not be rejected at the 5% level of sigificance.41

Thus, we assume for the further analysis that all variables have a unit root.

insert table [4] about here

Cointegration tests for panel data proposed by Pedroni (1995) and Kao
(1999) are conducted to investigate whether the estimated equations are coin-
tegrated or not.42 Results of the tests are reported in table 5 where the upper
half of the table presents the results of the full sample and the lower half
those of the sample without the “computer” industry. As can be seen from
the upper half of the table, the null hypothesis of no cointegration is rejected
by Pedroni’s tests but is failed to reject by Kao’s augmented Dickey-Fuller
type at least for columns (1) and (3). If the (outlier) “computer” industry
is excluded from the sample all tests reject the null hypothesis at a 5% level
of significance (see lower half of the table). These results suggest that the
estimation equations are indeed cointegrated at least for the sample without
the computer industry.

insert table [5] about here

Since the usual t-statistics based on standard OLS estimates are not valid
if panel data are nonstationary, we make use of the DOLS and the FMOLS
estimator which provide asymptotically unbiased estimates (see Kao and
Chiang (2000)).43 The equations (10) and (11) have been estimated by using
these estimators. We present the estimation results for the sample without
the “computer” industry in table 6 because cointegration can not be rejected
for this sample.

insert table [6] about here

41It is fair to say that a low power of panel unit root tests may be a problem in panels
with short time dimension. However, our results are in line with the findings of Coe and
Helpman (1995) and Frantzen (1998), for example, who have also found that time series
of TFP and R&D capital stocks are nonstationary.
42See Chiang and Kao (2002) and Pedroni (1995).
43See appendix B for a more detailed description of these estimators.
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The DOLS and the FMOLS estimator yield similar results in most cases.
The results provide clear empirical evidence for positive productivity effects
of interindustry R&D spillovers. The value of the estimated coefficients of
the spillover variable S are 0.24 and 0.29 and statistically significant at the
1% level (see columns (1a) and (1b)). There is also clear empirical evidence
for a positive impact of R&D spillovers from privately financed business R&D
whereas R&D spillovers from publicly financed R&D do not have a statis-
tically significant effect on productivity. The estimated coefficients of SP
range from 0.213 to 0.319 and they are statistically significant at the 1%
level (see columns (3a) and (3b)) which confirms the result of the standard
panel data analysis. In contrast, the estimated coefficients of the variable
SG are now statistically insignificant at the 5% level. The estimation of the
dummy variable model does not change this result. Again, the coefficient of
SG is statistically insignificant and results suggest that no difference between
higher- and lower-technology industries exists. The results are less clear-cut
for productivity effects of R&D spillovers from privately financed R&D. The
FMOLS estimate suggest that a difference between higher-technology and
lower-technology industries does not exist while the DOLS estimate indi-
cates that the estimated coefficient of the variable Sp of the lower-technology
group is higher than that of the group of higher-technology industries (see
column 4a and 4b). One reason for this result may be the fact that our tech-
nology classification is very crude due to data restrictions.44 Therefore, we
think that the results reported in columns (3a) and (3b) are more reliable.
We have also applied the DOLS and FMOLS estimator to the full sample

(including “computer” industry) and the results are very similar. In partic-
ular, the estimated coefficient of the publicly financed R&D capital stock is
statistically insignificant. To save space these results are not presented here
but they are available from the author upon request.
All in all, the results provide strong empirical evidence for positive pro-

ductivity effects of interindustry R&D spillovers. However, the positive ef-
fects of interindustry R&D spillovers seem to have their origins in privately
rather than in publicly financed R&D, since the estimation results do not
reject the hypothesis that no linkage between total factor productivity and
R&D spillovers from publicly financed R&D capital exists.

44Our technology-classification is based on the two-digit (SYPRO) classification. Firm
level studies, like the studies of Harhoff (2000) and Los/Verspagen (2000), can make use
of more detailed classifications, e.g. four digit classification.
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VI Conclusion
In this paper the productivity effects of interindustry R&D spillovers from
publicly financed business R&D have been investigated for West-German
manufacturing industries. These productivity effects are determined by the
marginal product of the publicly financed knowledge stock (pure productivity
effect) and the knowledge diffusion across industries. The latter depends
on the composition of the industries’ spillover pools and the distribution of
public support to business R&D across industries (composition effect).
Empirical results suggest that in German industry the potential growth

effects of public support to business R&D are drastically reduced by the com-
position effect. According to our measure of technological association, a large
part of knowledge which has been generated by public support to business
R&D does not diffuse across industries. Moreover, results show remarkable
variations in the compostion effect between industries. While the externally
available knowledge stock that has been publicly financed grows in almost
all higher-technology industries most of the lower-technology industries have
experienced a decrease.
The second, more relevant question is whether the marginal product of

R&D spillovers from publicly financed business R&D is positive at all. The
estimation results of a standard panel data analysis provide empirical evi-
dence of positive and statistically significant productivity effects of spillovers
from publicly financed business R&D. The results change, however, when es-
timation methods of cointegrating regressions in panel data are applied to the
sample. They still confirm a positive impact of interindustry R&D spillovers
from privately financed R&D but fail to confirm a statistically significant
effect of publicly financed R&D.
Reading the estimation results literally, they imply that the German

technology policy has been rather unsuccessful in increasing the efficiency
of West-German manufacturing industries via interindustry R&D spillovers.
However, measurement problems should keep us from drawing definitive con-
clusions. It is implicitly assumed in this study – as in previous empirical
studies – that R&D projects are exclusively financed either by firms or by
the government. This differentiation may, however, be somewhat artificial
since most of the publicly supported R&D projects performed in the industry
may not be exclusively financed by the one or the other. In addition, the
primary aim of publicly financed R&D may not be an increase in efficiency
of private production but better health care or an increase in the level of
national security.
Nevertheless, our results suggest that it is important to distinguish be-

tween productivity effects of R&D spillovers from privately and publicly fi-
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nanced business R&D. It would be desirable to distinguish various types of
public R&D, such as health or defense related R&D. Unfortunately, our data
do not provide information about these types of R&D and therefore this is left
for future research. Another direction for future research are international
comparative studies which could provide valuable insights since countries
differ remarkably with respect to the governments’ technology policy.
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A Data
The publicly and privately financed R&D capital stocks (KG, KP ) of industry
i in period t are constructed by the perpetual inventory method:

KXit =
∞X
τ=0

IXit−τ (1− σK)τ = IXit + (1− σK)KXit−1, (12)

where IXit represents the publicly (privately) financed real R&D expenditures
(X=G,P). The constant depreciation rate of R&D capital σK is assumed to
be 15 per cent which is in line with the majority of empirical studies using
this approach.
Computation of R&D stocks requires rather long series of real R&D ex-

penditures for each industry. To estimate an industry’s total R&D capital
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stock of the year 1979 R&D expenditures of the years 1971 to 1978 are used.45

The benchmark for K in the year 1970 is computed by the ratio of R&D ex-
penditure in year 1971 divided by the sum of the depreciation rate and the
(pre-sample) growth rate of R&D.46 We assume that the latter is equal to
the growth rate of physical investment in the preceding decade. Real R&D
expenditures equal nominal R&D expenditures divided by a R&D deflator.
We construct an R&D deflator for each industry as a Thörnqvist index of
price indices of intermediate inputs, wages and investment for the years 1979
to 1993 which we link with a price index of wages of the years 1971-1979.
Since the survey is conducted every two years there are missing observa-

tions in the years between the surveys. For those years only data of planned
total R&D expenditures exist.47To estimate the privately and publicly R&D
expenditures of these years we proceed as follows: Firstly, we calculate the
arithmetic mean for the two adjacent years. Secondly, privately and publicly
financed R&D expenditures of those years are estimated by multiplying the
total R&D expenditures by the estimated ratio.
Official statistics do not contain real gross output and real intermediate

inputs series at the industry level. Therefore, we have constructed industry-
specific price indices to convert nominal output and nominal intermediate
inputs in real output and real intermediate inputs. The output (intermedi-
ate inputs) price index for each industry has been obtained as follows: First
we used a disaggregated output (input) table for 1990 to obtain weights for
the respective bundle of goods (intermediate inputs) in each of the 26 indus-
tries.48 Then the price index for each industry’s gross output (intermediate
inputs) were calculated as the weighted sum of official producer (intermediate
input) price indices.49

Indices of labor input have been constructed for each industry using data
on hours worked and compensation per hour. Individual labor inputs are
classified by the employment status: blue-collar workers, white-collar workers
and self employed persons. Physical capital input is measured as an index of
two physical capital inputs: equipment and structures.50

45Because consistent data of privately and publicly financed R&D expenditures are not
available for these years we assume that the share of privately financed R&D in total R&D
is equal to the share of the year 1979.
46See Hall and Mairesse (1995), p. 270.
47Responding firms estimate their R&D expenditures or the growth rate for the year

following the survey.
48These tables are taken from Fachserie 18, Reihe 2, Statistisches Bundesamt.
49Producer (output) price indices (domestic and foreign sales) were obtained from Fach-

serie 17, Reihe 2 and 8 (Statistisches Bundesamt). The Federal Statistical Office kindly
provided the disaggregated intermediate input price indices.
50See Jorgenson et al. (1987) for a detailed description of the methodology.
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Among others, Schankerman (1981) points out that double-counting of
R&D inputs may produce biased estimation results.51 To avoid this problem
we have corrected the inputs and their revenue shares for R&D by using the
industry-specific information on the composition of internal R&D expendi-
tures (personnel expenditures, investment, other current expenditures). In-
termediate inputs of each industry have been corrected for R&D inputs by
subtracting internal R&D expenditures related to “other current R&D expen-
ditures” (material) from total expenditures on intermediate inputs. In this
study the labor input used in production comprises the inputs of blue-collar
workers, white-collar workers and self employed persons. For the R&D correc-
tion of the labor input we have assumed that mainly white-collar workers are
engaged in R&D.52 The hours worked in R&D – calculated by dividing the
R&D expenditures related to R&D personnel by the industry-specific white-
collar hourly wage – were subtracted from the yearly total hours worked
by white-collar workers. Through this correction the revenue share of white
collar workers is reduced by the amount of R&D expenditures spent on R&D
personnel. The correction of physical capital input and its revenue share is
more difficult. We have assumed that investment related to R&D is mainly
investment in equipment. Corrected capital stocks of equipment have been
constructed for each industry by subtracting R&D related investment from
investment in equipment and apply the perpetual inventory formula to the
R&D corrected real investment in equipment.53

The index of total factor productivity used in this study is defined as the
ratio of real gross output to a Thörnqvist index of total input (Vit). Annual
growth rates of aggregate input in the ith industry are defined as follows:

ln

µ
Vit
Vit−1

¶
=

X
wli ln

µ
Xlit
Xlit−1

¶
. (13)

where X is the quantity of input l. In contrast to other empirical studies,
R&D capital is explicitly included in the calculation of an industry’s total
factor productivity (l = Z,L,C,K). Total input growth is the weighted sum
of individual input growth rates where the weights (w) are the average rev-
enue shares of inputs (wli = 0.5 [wlit−wlit−1]). The input index is computed
51Without correction R&D inputs would be double counted since they are already in-

cluded in intermediate inputs, labor and physical capital.
52This is supported by the data of the Science Statistics. According to these data, ap-

proximately 70% of the R&D personnel in German manufacturing industries are scientists,
engineers or technicians. See Science Statistics (1996), table 16.
53Capital stocks of structures have also been computed by using the perpetual inven-

tory method. Depreciation rates of equipment and structures at the industry level were
computed from disaggregated national income accounts. The initial capital stocks are the
net capital stocks of the year 1970 taken from the disaggregated national income account.
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from these growth rates and normalized to one in the year 1987.54 Assuming
constant returns to scale, perfect competition and profit maximization an in-
dustry’s property compensation can be computed as the difference between
the value of output and the sum of (R&D corrected) expenditures on inter-
mediate inputs and labor. Since each industry has three assets (structures,
equipment and R&D capital) this residual is equal to the sum of the values of
their capital services. Following Jorgenson et al. (1987) user costs of capital
are calculated assuming an identical ex post rate of return for all assets.55

B FMOLS and DOLS Estimator
The standard time-invariant panel model is:

yit = αi + x
0
itβ + uit, i = 1, ..., N, t = 1, ..., T, (14)

where αi are the “fixed effects” and uit, are the stationary disturbance terms.
In contrast to standard panel data analysis, it is now assumed that all ex-
planatory variables (x) are integrated of order one I (1) for all i:

xit = xit−1 + εit.

Given this specification, the equation (14) states that yit is cointegrated with
xit where β is the cointegrating vector. It is assumed that the explained and
explanatory variables are independent across cross-sectional units.56 The FM
estimator of β, βFM is:

bβFM =

"
NX
i=1

TX
t=1

(xit − xi)(xit − xi)0
#−1 "

NX
i=1

Ã
TX
t=1

(xit − xi)by+
it − T b∆+

εu

!#
,

(15)
where b∆+

εu corrects for serial correlation and by+
it corrects for endogeneity. The

DOLS estimator of β (βDOLS) can be obtained from the estimation of the
following equation:

yit = αi + x
0
itβ +

q2X
j=−q1

cij∆xit+j + υit. (16)

54The TFP index is also normalized to one in the year 1987.
55For a detailed description of the construction of the TFP index see Bönte (2002).
56For a detailed discussion of the assumptions see Kao and Chiang (2000).
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where the lagged and lead values of the first difference of the explanatory
variables are included.
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Table 1: Average Annual Growth Rates of the Spillover Variables (1980 -1993
for 26 West-German Manufacturing Industries))
Industriesa)b) (1) (2) (3) (4)
HIGH-TECHNOLOGY AND SG SGu SP SPu
MEDIUM-HIGH-TECHNOLOGY
Electrical Engineering, (36) 0.79 0.58 2.81 2.92
Precision and Optical Instruments (37) -0.05 0.28 2.80 3.13
Mechanical Engineering (32) 0.28 0.34 3.24 3.27
Office Machinery and Data Process. Equip. (50) 0.15 0.30 2.85 2.94
Chemical Industry (24/40) 0.53 0.63 2.75 3.60
Manuf. of Road vehicles (33) 0.12 0.40 2.58 2.70
MEDIUM-LOW- AND
LOW-TECHNOLOGY
Manurfacture of Tools (38) -0.34 0.15 2.50 3.07
Iron and Steel Industry (27) 0.60 0.38 2.88 3.14
Manufacture of Structural Metal Products (31) 0.02 0.23 2.63 3.08
Non-Ferrous Metal Industry (28) 0.12 0.28 2.35 3.12
Manufacture of Ceramic Goods (51) -1.00 0.27 2.12 3.10
Drawing Plants, Cold Rolling Mills etc. (30) 0.05 0.24 2.51 3.08
Manufacture and Processing of Glass (52) -0.82 0.27 2.25 3.08
Manufacture of Rubber Products (59) -1.33 0.28 2.24 3.09
Manufacture of Plastic Products (58) -1.55 0.27 1.96 3.10
Foundries (30) -0.15 0.27 2.39 3.10
Stone and clay (25) -0.75 0.27 2.24 3.11
Manufacture of Music Instr., Toys (39) -0.35 0.27 2.35 3.10
Manufacture of Wood Products (54) 0.05 0.27 2.74 3.10
Textile Industry (63) -1.55 0.28 2.00 3.14
Processing of Paper and Board (56) -1.13 0.28 2.11 3.10
Manufacture of Pulp, Paper and Board (55) -1.25 0.27 2.06 3.10
Wood Working (53) -1.08 0.27 2.11 3.10
Food Industries (68) -0.80 0.27 2.28 3.08
Printing and Duplicating (57) -1.4 0.27 2.03 3.10
Clothing Industry (64) 0.02 0.27 1.80 3.1
Notes: Technology Classification is based on a revised OECD Classification, see
Hatzichronoglu (1997). Numbers in parentheses are industry classification (SYPRO).

SG and SGu denote the weighted and unweighted sum of the publicly financed R&D cap-
ital stocks of other manufacturing industries. SP and SPu denote the weighted and
unweighted sum of the privately financed R&D capital stocks of other manufacturing

industries.
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Table 2: Interindustry R&D Spillovers and Total Factor Productivity (Pooled
data 1982-1993 for 26 West-German Manufacturing Industries)

Dependent Variable: ln(Total Factor Productivity)

(1) (2) (3) (4)
lnK 0.056 0.519 0.050 0.522

(3.03) (10.27) (2.71) (10.26)
lnS 0.303 -0.221 – –

(9.26) (-2.92)
lnSP 0.276 -0.221

(9.15) (-1.90)
lnSG 0.240 0.060

(2.64) (0.17)
DML lnK -0.520 -0.527

(-9.73) (-9.83)
DML lnS 0.552

(6.70)
DML lnSP 0.547

(4.54)
DML lnSG 0.265

(0.72)
R2 0.359 0.512 0.373 0.529

Notes: The conventional t-statistics are reported in parantheses. Number of observations:
312. All regressions include unreported industry-specific dummies. K is the industry’s
own R&D capital stock lagged one year. S is the weighted sum of the total R&D capital

stocks of other manufacturing industries, lagged 3 years. SG is the weighted sum of the
publicly financed R&D capital stocks of other manufacturing industries, lagged 3 years. SP
is the weighted sum of the privately financed R&D capital stocks of other manufacturing

industries, lagged 3 years. DML is the dummy variable of medium-low and low-technology
industries.
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Table 3: Interindustry R&D Spillovers and Total Factor Productivity (Pooled
data 1982-1993 for 25 West-German Manufacturing Industries; without
"computer" industry)

Dependent Variable: ln(Total Factor Productivity)

(1) (2) (3) (4)
lnK -0.0001 0.048 -0.002 0.051

(-0.005) (0.63) (-0.14) (0.68)
lnS 0.284 0.11

(10.81) (1.43)
lnSP 0.260 0.074

(10.65) (0.64)
lnSG 0.134 0.128

(1.80) (0.39)
DML lnK -0.048 -0.056

(-0.63) (-0.73)
DML lnS 0.210

(2.48)
DML lnSP 0.251

(2.12)
DML lnSG 0.197

(0.59)
R2 0.341 0.366 0.346 0.395

Notes: The conventional t-statistics are reported in parantheses. Number of observations:
300. All regressions include unreported industry-specific dummies. K is the industry’s
own R&D capital stock lagged one year. S is the weighted sum of the total R&D capital

stocks of other manufacturing industries, lagged 3 years. SG is the weighted sum of the
publicly financed R&D capital stocks of other manufacturing industries, lagged 3 years. SP
is the weighted sum of the privately financed R&D capital stocks of other manufacturing

industries, lagged 3 years. DML is the dummy variable of medium-low and low-technology
industries.
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Table 4: Results of Panel Unit Root Tests (based on Im et al. (1997), t-bar
test)

t-bar statistic∗) critical probability
productivity lnTFP 0.611 0.27
own R&D lnK 0.079 0.47
total spillover lnS -1.267 0.10
privately financed lnSP -0.655 0.26
publicly financed lnSG 1.511 0.07
Notes: *) This is the standardized t-bar statistic (see Im et al. 1997). One lagged first

difference and a time trend included. Tests are computed by using GAUSS library NPT
1.3 developed by Chiang and Kao (2002).

Table 5: Results of Panel Cointegration Tests

Panel Cointegration Tests (26 industries)a) (1) (2) (3) (4)
Pedroni (1995) PC1 -13.007 -15.694 -13.129 -15.999

(0.000) (0.000) (0.000) (0.000)
Pedroni (1995) PC2 -12.454 -15.026 -12.570 -15.3186

(0.000) (0.000) (0.000) (0.000)
Kao-ADF (1999) -0.821 -2.028 -0.871 -2.211

(0.206) (0.021) (0.192) (0.013)
Panel Cointegration Tests (25 industries)b) (1) (2) (3) (4)

Pedroni (1995) PC1 -15.297 -15.819 -15.269 -16.189
(0.000) (0.000) (0.000) (0.000)

Pedroni (1995) PC2 -14.646 -15.146 14.619 -15.499
(0.000) (0.000) (0.000) (0.000)

Kao-ADF (1999) -2.001 -2.299 -1.994 -2.526
(0.023) (0.011) (0.023) (0.006)

Notes: Critical probabilities are reported in parentheses. a) Columns contain the results
of cointegration tests based on the residuals of the regressions that are reported in columns
with the same numbers in table 2. b) Columns contain the results of cointegration tests

based on the residuals of the regressions that are reported in columns with the same
numbers in table 3. Tests are computed by using GAUSS library NPT 1.3 developed by

Chiang and Kao (2002).
.
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Table 6: Panel DOLS and FMOLS Estimation ( 25 West-German Manufac-
turing Industries, without "computer" industry)

(1a) (1b) (2a) (2b) (3a) (3b) (4a) (4b)
lnK 0.007 -0.012 0.058 0.148 0.004 -0.012 0.017 0.138

(0.33) (-0.40) (0.54) (1.01) (0.17) (-0.40) (0.17) (0.98)
lnS 0.242∗∗ 0.292∗∗ 0.066 -0.068

(6.32) (5.55) (0.58) (-0.43)
lnSP 0.213∗∗ 0.319∗∗ 0.047 -0.381∗

(6.08 (6.61) (0.32) (-1.89)
lnSG 0.132 0.086 0.170 0.733

(1.27) (0.60) (0.47) (1.48)
DML lnK -0.046 -0.159 -0.010 -0.146

(-0.42) (-1.06) (-0.10) (-1.02)
DML lnS 0.230∗ 0.412∗∗

(1.89) (2.47)
DML lnSP 0.234 0.613∗∗

(1.55) (2.95)
DML lnSG 0.151 -0.081

(0.40) (-0.16)
R2 0.335 0.278 0.361 0.322 0.337 0.286 0.386 0.371

Notes: The t-statistics are reported in parantheses. Number of observations: 300. SG
is the weighted sum of the publicly financed R&D capital stocks of other manufacturing
industries, lagged 3 years. SP is the weighted sum of the privately financed R&D capital
stocks of other manufacturing industries, lagged 3 years. ∗ denotes significant at the 5
% level; ∗∗ denotes significant at the 1 % level. a) Estimation results using the FMOLS
estimator. b) Estimation results using the DOLS estimator. The DOLS estimates are
based on regressions that include one lead and two lags. Estimators are computed by

using GAUSS library NPT 1.3 developed by Chiang and Kao (2002).
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