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Abstract
The research reported in this paper seeks to detennine how skewed the distribution of
profits from technological innovation is -- i.e., whether it conforms most closely to the
Paretian, log normal, or some other distribution. The question is important, because
high skewness makes it difficult to pursue risk-hedging portfolio strategies. This
paper examines data from several sources -- the royalties from U.S. university patent
portfolios, the quasi-rents from marketed pharmaceutical entities, and the returns from
two large samples of high-technology venture startups. The evidence reveals a
distribution closer to log normality than Paretian. Preliminary hypotheses about the
underlying behavioral processes are advanced.
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1 Introduction

It is now widely recognized that the size distribution of profit returns from technological
innovation is strongly skewed to the right. The most profitable cases contribute a dispro­
portionate fraction of the total profits from innovation. Much less well understood is the
exact form the distribution function takes. In an early analysis (Scherer 1965), I found
that the reported profits from a small survey of U.S. patents conformed tolerably well to
the Pareto-Levy distribution:

(1) N = ky-a,

where V is the value ofprofits from an innovation, N is the number of cases with value Y
or greater, and k and a are parameters. For that sample, a appeared to be less than 0.5.
Since then economists have sought to discern the size distribution's form by analyzing the
rate at which patents have been allowed to expire before full term due to non-payment of
the periodic maintenance fees imposed by many national patent offices. Early evidence
analyzed by Pakes and Schankerman (1984, p. 78) favored the Pareto-Levy distribution,
but later work by Schankerman and Pakes (1986) found mixed but stronger support for
the log normal distribution.!

The difference between distributions is important. When the distribution is Pareto-Levy
and a is less than 2.0, the variance is not asymptotically finite, and for a < I, the mean is
also not asymptotically finite. What this implies is that as one draws ever larger samples,
there is an increasing chance that some unprecedentedly large value (e.g., an
extraordinarily large profit) will be included, overwhelming the observations drawn
previously and forcing the mean and variance upward -- in the limit (to be sure, never
attained) to infinity. With finite variances and means, log normal and similar skew
distributions are better behaved statistically. Still the more rightward-skewed the
distribution is, whether Pareto-Levy, log normal, or some related form, the more difficult
it is to hedge against risk by supporting sizable portfolios of innovation projects. The
potential variability of economic outcomes with Pareto-Levy distributions is so great that
large portfolio draws from year to year can have consequences for the macroeconomy. In
a simulation experiment, Nordhaus (1989, p. 324) discovered that aggregated Pareto­
distributed productivity effects from samples approximating in size the number of patents
issued annually in the United States mimicked long-term productivity fluctuations actually
experienced by the U.S. economy between 1900 and 1985.2

1 See also Pakes (1986, p. 777), Schankerman (1991); and Lanjouw (1992), all of whom find
distributions less skewed than the Pareto-Levy.

2 On the aggregation properties of Pareto-Levy distributions, see Mandelbrot (1963).



Crucial to the portfolio properties of large invention samples is· the·,value distribution of
obselVations in the right-hand (most valuable) tail. On this, studies of patent renewals
provide only limited insight. Even in nations with relatively high maintenance fees that
rise over the patent's life span, only 10 to 20 percent of the issued patents suIVive to full
term (i.e., 18 to 20 years) after paying all fees. Such patents are clearly of relatively high
value. However, the distribution of values within the full-term cohort is ascertained in
renewal studies only by extrapolation, not by direct measurement. Because, as we shall
see, it is difficult under even the best of circumstances to discriminate among size
distributions on the basis of right-hand tail characteristics, extrapolation is hazardous.
Also, the mapping from patents to innovations is far from simple. Many innovations are
covered by numerous patents, some with a crucial imitation-blocking role, some not.
Although patents cannot add significant value to a worthless technology, they enhance the
rewards appropriated from some valuable innovations, but in other cases are unimportant
because there are alternative barriers to competitive imitation. See Scherer (1977) and
Levin et al. (1987).

This paper reports the first results from an ongoing attempt to surmount the limitations of
prior research. It probes the right-hand tail, analyzing detailed innovation data across the
full spectrum of positive payoff outcomes. And it examines not only individual patents,
but technological innovations construed more broadly. Specifically, evidence will be
presented from three patent samples, in two ofwhich complementary patents are bundled
together; two nearly exhaustive samples of new pharmaceutical entities introduced into
the U.S. market; and two large samples ofhigh-technology venture capital investments.

The approach pursued here is inductive, seeking not to impose an a priori theory upon the
data, but merely to see what general patterns the data reveal as a first step toward sorting
out plausible from implausible theories. This methodology is common in the early
hypothesis-formulating stages of the physical sciences.3 The data will for the most part
be presented graphically, notably, on double logarithmic coordinates (on which a Pareto­
Levy distribution is linear) and log normal probability coordinates (on which the
cumulative log normal distribution has a linear plot). Statistical goodness-of-fit tests
among alternative distributions and the exploration of behavioral processes leading to the
obselVed distributions are planned for later papers.

2 Patent Data

Figure 1 plots on log-log coordinates the profitability data analyzed in my 1965 article.
The profit estimates were drawn from a sUlVey of 600 U.S. patents by Sanders et al.
(1958, p. 355), among which 74 useable responses with positive profits were received.
(For 149 additional patents, net losses, typically small, were quantified.) The data were

3 See Ijiri and Simon (1977, pp. 4-5 and 109-111), who explain their approach to analogous
problems in similar terms; Scherer (1986) (on Kepler, Einstein, Watson; and Crick), and more
generally Hanson (1961).
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reported as patent counts over seven profit intervals. Consistent with the Pareto
distribution assmnptions of equation (1), the dotted line plots the data points at lower
interval bounds. Since the lowest (under $5,000) interval was bo~ded at zero, for which
no logarithm exists, a lower bound of $1,000 was assumed. The distribution function's
implied left-tail shape is sensitive to that assumption. The highest profit interval, "over $1
million," included five patents. That interval is unbounded, and the right-hand tail's
configuration could be sensitive to the distribution ofvalues within it. The solid line plots
data points at the geometric means of class intervals, assuming conservatively a mean
value for the highest-profit interval of$2.24 million, i.e., the geometric mean of$1 million
and $5 million. A value of $3,000 was assumed for the lowest-profit interval. Since two
ofthe seven intervals are in principle unbounded, arbitrariness is inescapable.

For the dotted lower-interval-bound plot, a straight line fitted by least squares yields an a
value of 0.37, with ~ of 0.914. For the solid geometric mean plot, a. = 0.45 and ~ =
0.949. Both a. values are within the range where neither means nor variances are
asYmptotically finite. However, both plots reveal a modest degree of concavity
inconsistent with the Pareto-Levy hypothesis. The data are far too fragmentary to support
statistical tests of alternatives to linearity in the logarithms.

For a first extension of the patent value analysis, a novel data source was tapped. The
Bayh-Dole 'Act of 1980 changed U.S. law, permitting researchers in universities and other
non-profit institutions supported by federal government grants to apply for and receive"
patents on inventions resulting from their government-funded research. Many universities
established technology licensing offices, to apply for patents on such inv~ntions and to
negotiate licenses with private sector enterprises for their commercial exploitation. By
1993, the royalty revenues received by 117 U.S. universities from their outstanding
technology licenses had reached an annual rate of $242 million.4 Among those 117, the
top ten institutions had royalty revenues of$171 million, or 70.6 percent ofthe total.

One of the top ten on this list was Harvard University, my employer. The Harvard Office
of Technology Licensing kindly provided to me a detailed confidential tabulation of the
total royalties received between 1977 and May 1995 on 118 technology "bundles" with
non-zero royalties whose patents had been applied for by the end of 1990. Among the
118 bundles, 27 included more than one patent, and six 'included five or more patents.
The twelve bundles with the largest cumulative royalties originated nearly 84 percent of
total portfolio royalties -- characteristic evidence ofhigh royalty distribution skewness.

Figure 2 plots the royalty income (multiplied by a constant disguise parameter) from
individual invention bundles. The plot is clearly not linear, as would be expected with a
Pareto-Levy distribution, but shows considerable concavity to the origin. Ifa straight line

4 Aggregated university data were provided by the Association of University Technology
Managers,
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(in the logarithms) is forced by least squares to the data. the indicated a is -0.41, with r
of 0.865. However, a is evidently larger in the higher-value tail of the distribution. A
linear regression on the 50 most valuable invention bundles yields an a of 0.69, with the
standard error of the coefficient being 0.013 and r = 0.984. A further analysis of all 118
Harvard technology bundles revealed the fitted Pareto-Levy line to be insignificantly
influenced by the number of patents in the bundles and (surprisingly) to the age of the
patent bundles.

Figure 3 plots the Harvard royalty data on log normal prob-ability coordinates, with the
cumulative probability given on the horizontal axis and the cumulative number of
invention bundles required to reach that probability, starting from the most valuable
bundle (i.e., from the right-hand·tail), on the vertical axis. The linear fit one would expect
if the distribution were log normal is absent. The first-and second-highest royalty cases
have values too similar to yield a straight-line fit (as is evident also in Figure 2). The
remainder of the distribution is slightly concave downward. Thus, the Harvard royalty
distribution is much less skew than one would expect Under a Pareto-Levy law and
somewhat less skew than predicted by a log normal law.

Eleven university technology licensing offices, including the top ten royalty recipients of
1993, were asked to provide information on the distribution of their technology license
royalties, divided into nine value ranges, and on total royalty income, for each of their
fiscal years 1991 through 1994.5 Six of the eleven, with total royalties of nearly $83
million in 1993 on 466 positive-royalty cases, responded favorably. All six accounted for
their licensed technglogies as bundles of patents and disclosures rather than single
patents, although, as in the Harvard case, most of the bundles contained only one patent.
The largest royalty interval, "more than $5 million," was open-ended. Because data on
total royalty receipts per year \yere obtained, however, it was possible to approximate
with tolerable accuracy the values of individual bundles in that tail of the distribution.
The approximation was carried out by assigning to closed intervals the mean value of
Harvard patents in that interval (which in every case was close to the geometric mean of
the interval extremes). Interval totals were found by multiplying the number of patents in
an interval by the mean values, .and the sum of such totals for all closed intervals was
subtracted from total royalties to estimate royalties in the right-hand tail (with at most one
observation per university per year).

5 In interpreting data published by the Association of University Technology Managers, one must
be careful to eliminate royalties from trademark licensing, e.g., from firms printing university
seals on their garments.
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The fractions of total sample royalties contributed by the top six technology bWldles in
each year were as follows:

1991 1992 1993 1994

\
Percent ofroyalties 66.2% 70.9% 75.6% 74.4%
Total number ofroyalty- 350 408 466 486
paying bundles

The most lucrative bundle licensed by any university held the process and product patents
on gene splicing methods assigned in 1980, 1984, and 1988 to Stanley Cohen of Stanford
University and Herbert Boyer of the University of California (and administered by the
Stanford Technology Licensing Office). At the end of fiscal year 1994, 290 non­
exclusive licenses to that bundle had been issued. Over the four years covered by our
sample, the bundle yielded royalty payments ofroughly $75 million. See Winston-Smith
(1996). Since licenses to the Cohen-Boyer patents, which had a revolutionary impact on
the biotechnology industry's development, carried only modest royalty payments,6 the
social surplus contributed by the inventions was vastly in excess of royalties appropriated
by the patent-holding institutions.

Figure 4 arrays the six universities' royalty distributions on double logarithmic
coordinates. Over the four years sampled, the distributions are reasonably stable. They
are clearly not linear as predicted under the Pareto-Levy law; considerable concavity is
evident. However, it would be premature to reject the linearity hypothesis for the most
valuable tail. Fitting log-linear regressions to bundles with annual royalties of $50,000 or
more, the results are as follows:

1991 1992 1993 1994

Estimated Ct. 0.665 0.660 0.583 0.649
Standard error (.038) (.036) (.039) (.029)
~ 0.963 0.971 0.949 0.974
Observations (N) 14 12 14 15
Bundles included, 64 75 65 76

Again, the Ct. values are in the range within which, asymptotically, 'Pareto-Levy
distributions have neither finite means nor variances.

6 The original terms called for a $10,000 advance payment plus royalty rates ranging from 0.5
percent (on the sale of end products such as injectable insulin) to 1-3 percent on bulk products
and 10 percent on basic genetic vectors and enzymes.
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3 The Profitability of Approved New Pharmaceutical Entities

New chemical entities for use as phannaceuticals in the United States must undergo a
rigorous series of clinical tests before being approved by the Food and Drug
Administration. On average, 17.5 new chemical entities (NCEs) received FDA approval
per year between 1970 and 1986.7 Only about 23 percent of the new chemical entities
entered into human trials emerged with marketing approval from the FDA. Counting both
successes and failures, but ignoring the time value of invested fimds,' the average pre­
clinical and clinical research and development cost ofnew drugs appearing on the market
during the late 1970s and early 1980s was nearly $100 million (in 1987 dollars). See
DiMasi et al. (1991).

Henry Grabowski and John Vernon (1990, 1994) used detailed data on drug sales to
estimate the gross profitability (before deduction of R&D costs) of new chemical entities
(other than cancer drugs) approved by the FDA during the 1970s and early 1980s whose
development was carried out by industrial companies in-the United States. Subtracting
estimated production and marketing costs from sales revenues, domestic and foreign, they
obtained for each drug what are best described as Marshallian quasi-rents to R&D
investment. These quasi-rents were discounted at a real discount rate of 9 percent to the
date at which the drugs were first marketed. The drugs were divided into deciles in
descending discounted quasi-rent order, leading to the frequency distribution shown in
Figure 5 for average quasi-rents of drugs introduced during the 1970s. A similar analysis
with nearly identical results was conducted for drugs introduced between 1980 and 1984.
Also estimated was the average research and development investment per approved new
chemical entity, including the cost of failed experiments, brought forward at compound
interest to the time ofmarketing - in Figure 5, $81 million (in 1986 dollars) per new drug
introduced during the 1970s. Drugs in the top decile - the so-called blockbusters -­
generated 55 percentof total 1970s sample quasi-rents, i.e., 5.6 times the average R&D
costs underlying their market entry.8 Drugs in the second decile yielded double their
R&D investments, drugs in the third decile essentially broke even, and drugs in the seven
lowest deciles ~rought in discounted quasi-rents less than their average R&D
investments.

A high degree of skewness is evident in Figure 5. To permit a more detailed analysis,
Grabowski and Vernon supplied the quasi-rent data for individual NeEs, m,ultiplied to

7 Pharmaceutical Manufacturers Association, Statistical Fact Book (August 1988), Table 2-4.
The typical new drug is protected by one product patent and sometimes by a few process
patents. In 1976, U.S. pharmaceutical manufacturers obtained at least 868 patents and, allowing
for incomplete sample coverage, as many as 1,000. See Scherer (1983, p. 110). Thus, there is
far from a one-to-one correspondence between new patent counts and new product counts.

8 One might expect R&D costs to be higher for the most lucrative drugs, but the available
evidence fails to provide support. See DiMasi et al. (1994).
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maintain confidentiality by an wulisclosed disguise parameter. (Multiplication by a
constant does not distort the size distri-bution parameters in which we are interested.)
Figure 6 plots on double log coordinates the data for 98 NCEs introduced during the
1970s. (Two observations with negative quasi-rents are omitted.) Figure 7 does the
same for 66 NCEs introduced between 1980 and 1984. As with the quite differently
constituted patent data, the distribution is much too concave to be Pareto-Levy.
However, if one focuses only on the most successful third of all the new products, a log
linear regression fits tolerably well:

Estimated a
Standard error
i-
Number ofNCEs

1970sNCEs

1.14
(.04)
0.964

33

1980sNCEs

1.18
(.075)
0.926

22

Here, for the first time, with samples that cover almost exhaustively the relevant
population of domestically developed and approved new chemical entities in their time
frames, we find a values in the tail exceeding the unit threshold below which Pareto-Levy
first moments are asymptotically infinite. From the evidence analyzed thus far, we begin
to suspect a sampling bias on estimated a values. Given concavity of the innovative
reward distribution on log-log coordinates, the smaller and less exhaustive the sample is
relative to the potential universe, the less likely it is that extreme outliers will be drawn in,
and hence the lower (in absolute value) estimated a coefficients for the right-hand tail will
be.

Figure 8 plots the NeE data for the 1970s on log normal probability coordinates. As with
the Harvard invention bundle sample, the plot deviates visibly from linearity. Its
consistent concavity suggests more equality among the observations, and hence less
skewness, than one would expect if the data conformed to a log normal process.

4 High-Technology Venture Firm Startups

An institution that contributes enormously to America's prowess in high-technology fields
is its venture capital industry. Hundreds of new firms are founded each year to develop
and commercialize promising ideas emerging from university laboratories, independent
inventors, and industrial corporations that for some reason chose not to pursue the
opportunities internally. See Roberts (1991). Typically, initial experiments and bench
model development are supported using the technically trained entrepreneur's own funds
and seed money raised from acquaintances (who as high-technology "angels" may sustain
many such early investments). When this low-cost preliminary activity yields promising
results, the fledgling enterprise turns to a high-technology venture fund for financial
support, which ranges from a few hundred thousand to several million dollars. The
venture capital fund raises money from an array of investors -- in the industry's early
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history, from wealthy individuals, but more recently, from pension funds and university
endowments - and attempts to pool its risks by investing in dozens of startup enterprises.
If an individual venture succeeds in marketing one or more new products with good
prospects, it "goes public" - i.e., it floats an initial public offering (!PO) of its common
stock; or (somewhat more frequently) its investors sell out their shares to a well­
established company. The venture fund investors then "cash in" their proceeds or
reinvest them in the new publicly-traded company shares.

The first modem U.S. high-technology venture capital fund was the American Research
and Development Corporation (ARDC), founded in Boston shortly after the close of the
Second World War. Figures 9a and 9b, drawn from Willmann (1991), trace ARDC's
early portfolio history. Figure 9a shows the nwnber of individual startup companies in
which ARDC invested annually (light dotted line) and the total number of companies in
its portfolio (solid line). During the 1950s, its portfolio contained from 23 to 30
companies. Its investment target count rose into the mid 40s by the 1960s. Figure 9b
traces the net value of ARDC's investment portfolio. - During the mid-1950s, a few
successes (such as High Voltage Engineering Company and Airborne Instruments Inc.)
fueled an appreciable portfolio value increase. ill 1966, however, the portfolio value
exploded. By decomposing the portfolio into two parts -- Digital Equipment Company
(DEC) and more than 40 other companies - Figure 9b shows that most of the explosion
was attributable to ARDC's $70,000 investment (in 1957) in DEC. DEC's great success
came with the introduction of the first time-sharing computer, the PDP-6, in 1964, and a
powerful but inexpensive minicomputer, the PDP-8, in 1965. An initial public offering of
DEC's common stock was floated on the New York Stock Exchange in 1966.

From the history of ARDC, we see considerable skewness in the returns from high­
technology investments and the volatility such skewness can impart, despite venture
investors' attempts to hedge against risk by forming sizeable portfolios. To determine
how well the history ofARDC generalizes, two additional data sources were tapped.

One study of venture capital performance was conducted by the leading source of
information on U.S. venture funds, Venture Economics, Inc. (1988, Chapter II). Venture
Economics analyzed the success of 383 individual startup company investments made by
13 U.S. venture portfolios between 1969 and 1985 whose investment cycles had been
largely completed by 1986.9 Figure 10 arrays the individual investments by tlte multiple
of terminal value relative to original investment outlays. The 26 individual startups
returning ten times or more the funds' initial stakes accounted for 49 percent of total
terminal portfolio values. More than a third of the ventures returned less than their

9 During the early 1980s, venture capital funds began to invest in real estate deals, leveraged
buyouts, and other targets as well as high-technology startups. The fraction of the investments
attributable to genuinely high-technology startups in the portfoliQs analyzed here was not
disclosed.

8



original fund investments. Figure 11 plots the distribution function on double log
coordinates in two ways, one (solid line) using interval average values per portfolio
investment as the horizontal axis variable (and assuming "total losses" to return 10
percent of the initial investment); the other using the lower threshold values for the
intervals. Since the average return in the highest-return interval was reported 'to be 21.6
times original 'investment values, the threshold approach suppresses important
infonnation on the distribution's upper tail. With both methods, the distribution function
is concave, not linear as implied by the Pareto-Levy hypothesis. If a linear function is
forced upon the full centered observation data set by least squares, the implied a value is
0.60. However, if the regression is limited to the four highest-value (i.e., right-hand tail)
interval means, the fitted a is 0.974, with standard error of0.044 and? of0.996.

Figure 12 summarizes the results of a similar study by a San Francisco venture capital
house, Horsley Keogh Associates (1990). Included in the analysis were 670 distinct
investments (totalling $496 million) in 460 companies made between 1972 and 1983 by
16 venture capital partnerships. The ultimate portfolio value was calculated as of
December 1988, at which time the funds had distributed to their partners $822 million
and retained assets of $278 million. The 34 investments that yielded ten times or more
their original value contributed 42 percent of the portfolios' total terminal value. Slightly
more than half of the investments entailed some loss. Figure 13 plots the distribution
function on 'double-log coordinates, again using both mean values (solid line) and interval
threshold values (dotted line). (Investments in the most lucrative interval returned on
average 19.25 times their initial value.) Again we find concavity over the full range of
observations, but near linearity in the right-hand tail. For all centered data points, the
fitted least-squares line has an a. of 0.77. However, for the four highest-value centered
observations, a. = 0.998, its standard error = 0.083, and? = 0.986.

5 Ongoing Empirical Research

To supplement the insights achieved through the studies summarized above, two
additional empirical research projects are underway.

One analyzes the stock price histories of 131 U.S. high-technology companies, initially
backed by venture capital funds, that floated initial public stock offerings between 1983
and 1986. The 131 companies are believed to be an exhaustive sample of such IPOs in
the relevant time fram~. Monthly changes in their common stock values will be tracked
to the end of 1995. It is evide~t from preliminary work that the distribution of returns is
highly skew. lO

10 For similar research on the 13 most merger-prone U.S. conglomerate corporations' common
stock price performance between 1965 and 1983, see Ravenscraft and Scherer (1987, pp. 38­
44). The fitted a for gains in those companies' stock values was 0.58.
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A second project probes the tail of the distribution of values associated with the
approximately 21,000 patents applied for in 1977 and eventually issued by the Gennan
Patent Office. l1 From that population 4,349 patents, including 1,435 patents of domestic
German origin, paid all renewal fees and expired after running their full statutOI)' 18-year
term in 1995. The German renewal fees, it is worth noting, are among the highest and
most progressive in the world. Through a mail and telephone survey, rough preliminary
value estimates will be obtained from companies holding-the full-term patents ofdomestic
origin. During the swmner of 1996, officials of companies holding the 250 patents found
to be most valuable within that larger surviving cohort will be interviewed face-to-face to
obtain detailed information on profitability, invention characteristics, and the role patent
protection played in appropriating the returns from innovation.

6 Behavioral Implications

With the completion of that essentially descriptive research, attention will shift to another
question: what behavioral processes give rise to the observed distribution of returns from
technological innovation? It is already clear that there are important regularities in the
distribution of returns. The distributions are almost uniformly concave to the origin on
doubly logarithmic coordinates, 'illId not linear, as postulated by the Pareto-Levy
hypothesis. They are highly skewed, however, with long tails approximately linear on
log:"log coordinates. Values of a. fitted to tail observations indicate that it is most difficult
to achieve high predictability through portfolio averaging strategies.

Ifsuch regularities prevail in the distribution of outcomes, it is reasonable to suppose -that
there are more or less well-defined behavioral processes generating the outcomes. Thus,
subsequent research will focus on formulating and testing what Ijiri and Simon (1977, p.
109) call "extreme hypotheses" -- i.e., assertions that a particular specific functional
relation leads to the emergence ofa particular distribution of outcomes.

One possible extreme hypothesis is that some Supreme Power regularly strews about the
industrial landscape a distribution of raw profit potentials for technological innovation
that is highly skew, just as the distribution ofpetroleum reservoirs within a land mass, and
hence the opportunity for profiting from exploratoI)' well drilling, is believed to be log
normal. See Adelman (1972, p. 35). The profit opportunities from innovation might be
roughly proportional to the size ofmarkets, which, we know from the distribupon of sales
or value added across conventionally defined industries, is skew-distributed. However, a
plot on log-log coordinates of the distribution of value added in 450 U.S. four-digit
manufacturing industries for 1987 revealed much more concavity, and hence less
skewness, than has been observed for any of the innovation profit distributions

11 The research is being conducted jointly with Dietmar Harhoff of the Zentrum fur Europaische
Wirtschaftsforschung, Mannheim.
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investigated here. At the very minimum, something must be adding skewness to the
innovation return distributions.

An alternative extreme hypothesis is that the distribution of returns from innovation
results from some variant of a Gibrat process, under which numerous chance events
interact multi-plicatively, reducing the profits actually realized from an innovative
potenticiJ. which mayor may not be skewed initially. IfPo is the initial potential and Ei is
the ith stochastic multiplier affecting th~ amount of value that can be appropriated by an
innovator, the ultimate innovator's quasi-rent is:

(2) V = Po El ... Ej ... En;

where the typical E consists of an expected value less than unity plus an error component.
The E'S represent inter alia the initial probability of technical success, the time at which
the innovator arrives on the market with its new product and hence the strength of first­
mover advantages, the strength of the innovator's patent protection, the finesse with which
initial marketing efforts are conducted (crucial e.g. in the competition between anti-ulcer
drugs Tagamet and Zantac), and the extent to which the market is fragmented by
imitators in each subsequent year of commercial sales (which is likely to be correlated
with the strength of first-mover advantages). Taking logarithms, we have:

which, by the central limit theorem, is nonnally distributed with sufficiently large n.
Thus, under the logic ofGibrat's law, a log nonnal distribution ofV might be anticipated.

Our initial data suggest that the distribution of returns from innovation may be less skew
than log nonnal, but with a long log-linear tail. Thus, the data Illay confonn better to a
Yule distribution than the log nonnal distribution. Yule distfibutions, Simon and Jjiri
have shown, result from Gibrat-type processes'in which the initial population is not fixed,
but into which entry occurs, concentrated in the lower-value tail. That the distribution of
returns from innovation confonns more closely to the Yule than to the log normal is
therefore an alternative extreme hypothesis. Less than log nonnal skewness, Ijiri and
Simon have suggested (1977, pp. 88-93), may also result from a "splitting" process
corresponding to the ,-stochastic processes underlying Bose-Einstein statistics. In the
world of technological innovation, "splitting" may occur endogenously as the most
profitable innovations attract more competitive imitators than less profitable
innovations. 12

Thus, there are plausible theoretical links between the stochastic search, experimentation,
and market penetration processes associated with innovation and the kinds of return

12 See the reinterpretation ofMansfield's (1977) results in Scherer (1983).
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distributions observed thus far, and whose parameters anddynamic evolution we hope to
pin down more decisively through further research. When' that empirical research is
completed, simulation models will be cons~cted and tested to determine what kinds of
plausible stochastic behavioral models generate the observed profit return distributions. It
is hoped that in this way a deeper under-standing of the economics of technological
innovation will follow.
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Figure 1

Pareto Plot of Original Sanders Data
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Figure 2

Pareto Plot of Harvard Invention Bundles
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Figure 4

Pareto Plot of Six Universities' Patent Royalties by Year
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Figure 6

Pareto Plot of 19705 New Drug Entities
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Log Normal Plot of 1970s Drug Quasi-Rents
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Figure 9a

Company Investments in ARDC's Portfolio
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Figure 9b

ARDC's Net Asset Value Per Share
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Figure 10

Distribution of Gains on 383 Venture Portfolio Companies
Source: Venture Economics, Inc. (1988)
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Figure 11
Pareto Plot of Returns from 383 Venture Portfolio Investments
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Figure 12

Distribution of Gains on 670 Venture Portfolio Investments
Source: Horsley Keogh (1 988)
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Figure 13
Pareto Plot of Returns from 670 Venture Portfolio Investments
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