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Abstract

This paperexplores the applicability ofstatic and dynamic models to capture the stylized
facts ofexchange-rate dynamics. The static models (mixture ofdistributions, compound
Poisson process, generalized Student distribution) are compatible with leptokurtosis
and can be characterized as scale-compounded distributions. The dynmic models
(GARCH, GARCH-t, EGARCH, Markov-switching model), on the other hand, are
compatible with both leptokurtosis and heteroskedasticity. In a comparison of the
candidate models, it is found that the dynamic models do indeed achieve a better fit to
the data than the static models. However, in forecasting experiments the dynamic
models can outperform,a 'naive' model of constant varianc~s only with respect to
unbiasedness but not with respect to precision. Furthermore, the paper examines the
implications of the static and dynamic models for the pricing of foreign-currency
options by simple simulations. Static models show significang option-price effect only
when the maturity is short. GARCH and EGARCH models, on the other hand, imply
options prices which are higher than Black-Scholes prices for the full range of
moneyness. Only the Markov-switching model is compatible with the observed 'smile
effects' on option markets.



1. Introduction

The concept of decision making under uncertainty is central to the theory of finance.
Therefore, the stochastic speCification of financial models is of fundamental impor
tance. It is common practice in finance to assume that rates of return and price dynamics
in speculative markets follow a normal distribution. The assumption of normality is
both convenient and natural. It is convenient because this assumption simplifies con
siderably theoretical analysis and empirical applications. It is also a natural assumption
because the central limit theorem in probability theory gives a justification for the
normal distribution under rather weak conditions. However, in the seminal papers of
Mandelbrot (1963) and Fama (1965) strong evidence against the normal distribution
was found for price dynamics in commodity markets and stock markets.

In the 1960's and in the first halfof the 1970's their findings lead to much research
on the distributional properties of stock returns and the implications for portfolio
-analysis. However, the interest into this area virtually ceased with the finding that daily
and- weekly stock returns exhibit strong non-normality but that monthly returns are
only slightly non-normal. If one uses monthly data, it was argued, one would be again
on safe grounds (see e.g. Fama (1976), Ch. 1).

More recently, a renewed interest in distributional properties of financial data
emerged. This renewed interest emerged from the scrutiny of the assumptions under
lying the Black-Scholes model of option pricing. The ubiquitous assumption of nor
mality cannot as easily be maintained in option pricing as it can be in portfolio analysis
because the natural time horizon in empirical option analysis is the short-run
corresponding to the continuous-time models, i.e. one would typically use daily or
perhaps weekly data in empirical option analysis.

Therefore, at least three questions come up in this context. First, what is the nature
of the observed non-normality? Second, which model can capture the observed non
normality? And third, what are the consequences for the pricing of options?

The data to be analysed are the exchange rates of the dollar against the German
mark, the British pound, the Swiss franc (sfr), and the Japanese yen. The data are on
a daily basis, but also weekly, monthly, and quarterly data are used. In these cases,
end-of-period data were derived from the daily exchange rates. The data range from
July 1st, 1974 to December 31st, 1987. Due to differences in bank holidays between
countries, there are different numbers of observations in the daily data: 3386 for the
mark, 3417 for the pound, 3392 for the sfr and 3365 for the yen. For all currencies, the
number of observations in the weekly series is 704, in the monthly series it is 161 and
in the quarterly series it is 53. Data source is the IMF's International Financial Statistics
and the monthly reports of the Swiss National Bank. The data are analysed in the form
of first differences in the logarithm of exchange rates, i.e. X t =~et =log Et -log Et -1'



2. Statistical Properties of Exchange-Rate Data

A natural approach to test for normality is to compare theoretical moments with
empirical ones. Since the normal distribution is symmetric, its odd central moments
are zero. Symmetry may be tested by computing the third moment of the standardized
variable Z, =(x, - x)/S , where x is the mean and S is the standard deviation of x.

This gives the Chalier measure of skewness. Extensive statistical analysis shows that
the null hypothesis of symmetry cannot be rejected (see Kaehler (1989».

The fourth moment of Z, is the kurtosis J32. It can be shown that J32 ~ 1 and that

for the normal distrbution J32 =3. With respect to the kurtosis of the normal distribution,

the excess J3; is defined as J3; =J32 - 3. Kurtosis is a location- and scale-free measure

which increases when probability mass is shifted from the shoulders of the distribution
into the tails and centre of the distribution, i.e. kurtosis measures both tail weight and
peakedness (see Balanda and MacGillivray (1988». This dual character of kurtosis is
a consequence of the fact that any movement of mass from the shoulders to the centre
of the distrbution must be accompanied by a simultaneous shift of mass into the tails
(et vice versa) if the variance, by which J32 is standardized, is to remain constant.

Table 1
Test for mesokurtosis

mark pound sfr yen

day 8.32 *** 8.36 *** 8.89 *** 8.00 ***

week 5.84 *** 7.36 *** 4.96 *** 7.03 ***

month 3.87 ** 4.15 *** 4.19 *** 3.62

quarter 2.67 2.72 2.77 2.62

Significance levels: 1 percent (***), 5 percent (**), 10 percent (*)

A test ofthe null hypothesis HO:J32 = 3 is a test for mesokurtosis with the two-sided

alternatives of platykurtic (J32 < 3) and leptokurtic (J32> 3) distributions. The values

ofJ32 are reported in table 1 for the series of X,. As the table shows, there is extremely

strong leptokurtosis in the daily and weekly series. In the monthly series, the null
hypothesis of mesokurtosis can be rejected at the 0.05 level for 3 exchange rates,
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whereas no rejection of Ho is possible for any of the quarterly series. This means that

leptokurtosis is essentially a property of short-run exchange-rate dynamics. It is only
moderately inherent in monthly series and vanishes completely in quarterly data.

The other strong statistical property of short-run price dynamics (or returns) in
speculative markets is heteroskedasticity. Here I measure heteroskedasticity by the

autocorrelation function (ACF) for the squared data Yt =xt
2

• As a summary measure, I

apply the Ljung-Box statistic
K

(1) Q(K)=T(T-2) L f2(k)/(T-k)
k=1

where f(k) is the estimated autocorrelation coefficient at lag k, i.e.
T-k T

(2) f(k) = L (Yt - y) (Yt+k - y)/ L (Yt - y)2.
t=1 t=1

The Ljung-Box test is a portmanteau test against white noise. It follows asymptotically
a X2 distribution with (K -m) degreesoffreedom, where m is the number ofestimated
parameters.

The Ljung-Box statistic for all four exchange rates at four different time horizons
each is reported in table 2. Q is estimated at lag K = 15. It is evident that there is a
strong rejection of the Ho of white noise in daily and weekly data only. In the daily

series, the ACF for squared exchange-rate movements is significant at all lags up to
15 for all four exchange rates. For weekly data, the estimated autocorrelation coeffi
cients exceed the conventional confidence limits of ±2ff at various lags k.

Table 2
Ljung-Box statistic for squared data

mark pound sfr yen

day 355.2 *** 507.3 *** 561.0 *** 432.2 ***
week 61.5 *** 123.9 *** 98.2 *** 52.8 ***
month 12.3 12.9 11.8 *** 25.0 **
quarter 12.0 7.4 12.1 5.4

Significance levels: see table 1

The results of this analysis and of a more comprehensive study of the statistical
properties of exchange rate data (see Kaehler, 1989) can be summarized as:
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i) All series ofexchange-rate dynamics show approximate serial independence and
no periodicities. The series have a constant mean at zero and a symmetric dis
tribution.

ii) Short-run exchange-rate dynamics (i.e. daily and weekly changes) are charac-
terized by heterosked~sticity as well as peakedness and fat tails in distribution.

iii) Medium-run exchange-rate dynamics show no heteroskedasticity and have a
-frequency'distribution which is approximately nonnal.

3. Stochastic Models of Exchange-Rate Dynamics

In this section I will introduce several stochastic models of exchange-rate dynamics
which are supposed to capture the main empirical regularities of short-run exchange
rate data. The models can be classified into two groups. The first group consists of four
models which are static in the sense that the conditional probability distribution for XI

is the same for all t. The four models are the mixture of nonnal distributions, the
compound Poisson process, the generalizedStudent distribution and the family ofstable
distributions. These models have very different probabilistic backgrounds but they can
all be viewed as compound nonnal distributions where an independent probability
distribution is attached to the variance of a nonnal variable. They can, therefore, be
called scale-compounded distribution models. Table 3 illustrates how these models are
usually characterized and how they can be described as scale-compounded distribu
tions.

Table 3
Static Models

Model Characterization Variance function

Mixture J Multinomial
f(x I 'P) = ,L Ph(x I fJ.,cr)

J=l

Compound Poisson XI =Ylt+ Y 21+ .... +YN 1+ Vt
Poisson

N ..., Poisson ( Adt) ,

Student d (x -a)f(x) Inverted Gamma
dxf(x) =

CO+CIX+C~2

, Stable Paretian log <I>xCu) =iou _I yu IU Positive stable Paretian
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The mixture of normal distributions is a weighted sum of normal densities with
different means and/or variances, where the weights are positive and sum to 1 (i.e. they
can be interpreted as probabilities). Here I only consider two-component mixtures with

11-1 =Il2 =O.
The compound Poisson process can be described as a sum of N random variables

where N is itself random with a Poisson distribution. The Yj,1 are independent and

identically distributed with a normal distribution and VI represents background noise

also having a normal distribution.
The generalized (two parameter) Student distribution can be derived within the

Pearson system of frequency curves which is characterized by the differential equation
for the density funtion f(x) given in table 3. The generalized Student distribution

obtains within this system for a =c1 =0 and co> 0 , c2 > 0 .

Finally, the family of stable Paretian distribution is related to a generalization of
the central limit theorem without the assumptions of finite means and variances. In
general, closed form expressions for the density ordistribution function for the members
of this family are not available but symmetric stable distributions can be described by
the log-characteristic function given in table 3.

A unifying framework for these seemingly ad-hoc models may be provided by
viewing these models as scale-compounded normal distributions. Within this frame
work, these models differ onlywith respect to the distribution function which is attached
to the variance of the normal distribution. As shown in table 3, the mixture model
attaches a multinomial distribution to the variance, the compound Poisson process
attaches a Poisson distribution, the generalized Student distribution attaches an inverted
Gamma distribution and the symmetric stable Paretian distributions attach positive
stable distributions with a < 1 to the random variance. This unifying framework of
scale-compounded distribution is also useful because it can be related to the stylized
fact of leptokurtosis. It can be shown that every scale-compounded normal distribution
is leptokurtic (see Kaehler (1993b)).

However, the static models assume that draws from these distributions are
independent and, therefore, they cannot capture heteroskedasticity. Obviously, the
modelling of heteroskedasticity requires dynamic models. Research in this area has
recently been conducted along two lines. The first approach is based on the
continuous-time modelling in finance and supplements the diffusion process for the
price of the underlying asset (usually in the form of a geometric Brownian motion) by
a diffusion process for the volatility in the form of a geometric Brownian motion or an
Omstein-Uhlenbeck process. This approach is surveyed by Taylor (1992) and Clewlow
and Xu (1992).
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In this paper I will only deal with the second approach which can be called the
"econometric" approach. In recent years the modelling of financial volatility by ARCH
models, which were introduced by Engle (1982), became very popular (see the survey
of Bollerslev et al. (1992». There is now a plethora of variants of ARCH-type models.
Here I consider the following three variants: The GARCH (1,1) model is given by:

(3) x, = £,-{h;

(4) h, =UO+UIX,2_1 +~lh'_1

where £, is Gaussian white noise with unit variance and h, is the variance of x,

conditional on information available at time t.

In the GARCH-t model, the standard normal distribution of £, is replaced by a

Student t-distribution. This modification, introduced by Bollerslev (1987), was moti

vatedbythefactthatthe "residuals" £, =x/1h: ofGARCHmodelsoftenhadsignificant

leptokurtosis. The idea behind-the GARCH-t model, therefore, is to capture very high
leptokurtosis by fatter tails of the unconditional distribution.

The third variant is the EGARCH (1,1) model of Nelson (1991). It is based on
(3) but replaces (4) by

(4') h, = exp{aO+a1a£,_l +a1b(1 £1-1 I-E 1£,_1 D+b110gh,_1}·

Nelson (1991) suggested this functional form of the conditional variance equation to
deal with the problems of negative variance estimates, of asymmetric variance effects
and of non-stationary variances.

Finally, I will consider the Markov-switching model which is a simple extension
of the mixture model. Analytically, the mixture model may be decomposed into two
independent random variables where the first variable determines the component j ,

which is drawn with probability Pj' and the second variable has a conditional normal

distribution with variance ciJ. The first variable may be regarded as a state variable S,

which can take on values j = 1,... ,1 , where 1 is the number of components in the
mixture. The Markov-switching model assumes that S, follows a time-homogeneous

first-order Markov process characterized by the transition probabilities

(5) p(St=jls,_l=i)=Pij'

It should be noted that the four dynamic models do not only incorporate hetero
skedasticity but also leptokurtosis. Furthermore, they imply convergence to normality
undertime aggregation (see Bollerslev (1986), Nelson (1991), and Kaehler and Marnet
(1993».
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4. Comparison of Candidate Models

In this section, I will compare the candidate models with respect to two general prin
ciples: their ability to capture the characteristics of short-run exchange-rate dynamics,
i.e. their goodness offit,and their ability to forecast exchange-rate volatility. From the
eight candidate models, introduced in the previous section, one can dismiss the stable
Paretian distributions because it ~ not compatible with the statistical property of
convergence to normality, but also direct estimation of the model (see Kaehler (l993a))
shows that it is not appropriate for the exchange-rate data. This leaves us with seven
candidate models: the two-component scale-mixture of normal distributions (mixture,
for short), the compound Poisson process (Poisson, for short), the generalized Student
distribution (Student, for short), the two-component Markov-switching model (Mar
kov,forshort), the GARCH (1,1) model, the GARCH-t(1,I) model, and the EGARCH
(1,1) model. In addition, the Gaussian random walk (Gauss, for short) shall serve as a
benchmark model to judge the performance of the seven candidate models.

As mentioned in the previous section, all candidate models have a leptokurtic
distribution, but it is still interesting to examine whether the models underestimate or
overestimate the magnitude of leptokurtosis in the data. Table 4 shows the kurtosis of
the exchange-rate samples (as in table 1) and the implied kurtosis of the candidate
models. For daily data, the actual kurtosis is between 8.00 and 8.89, and for weekly
data it is between 4.96 and 7.36. The mixture model, the compound Poisson process,
the Markov-switching model, and the EGARCH model underestimate in general the
kurtosis of the data, the only exception being the weekly franc series where the implied
kurtosis of the estimated compound Poisson process is larger than the kurtosis of the
data. In general, the underestimation is stronger for daily than for weekly data.

The generalized Student distribution, the GARCH model, and the GARCH-t
model lead to an overestimation ofkurtosis. With the exception ofthe daily and weekly
pound, the estimates of the GARCH model and all estimates of the GARCH-t model
implied non-stationarity of variances. Therefore, kurtosis cannot be finite for those
models. Table 4 shows that the GARCH models also imply non-existing kurtosis for
the two pound series. For the generalized Student distribution, the condition for finite
kurtosis is only violated for the daily pound series but the only two series for which
the implied kurtosis has roughly the magnitude of the actual kurtosis are the daily mark
series and the weekly pourtd series.

The fact that some models imply infinite kurtosis raises the more fundamental
question whether the true data-generating process has a finite kurtosis. It is difficult to
answer this question from the kurtosis of the data because every empirical kurtosis is
necessarily finite. But there are some reasons to conjecture that the data-generating
process has finite kurtosis. A data-generating process with infinite kurtosis would
produce empirical values of kurtosis which would vary strongly and which would tend
to increase with an increase of observations. However, the empirical values for the
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Table 4
Kurtosis and implied kurtosis of candidate models

mark pound sfr yen

day sample 8.32 8.36 8.89 8.00
mixture 5.81 4.86 6.60 5.65
Poisson 4.84 5.07 5.76 4.74
Student 8.62 00 16.41 860.14
Markov 5.28 4.49 4.72 7.28
GARCH 00 00 00 00

GARCH-t 00 00 00 00

EGARCH 5.32 4.35 5.21 4.20

week sample 5.84 7.36 4.96 7.03
mixture 4.32 5.86 4.80 5.76
Poisson 4.77 4.99 5.08 4.92
Student - 13.31 8.90 9.34 22.21
Markov 3.65 3.70 4.39 3.78
GARCH 00 00 00 00

GARCH-t 00 00 00 00

EGARCH 4.16 4.03 4.19 4.63

daily and weekly data are all in the same order of magnitude. Furthermore, other
empirical studies of exchange-rate data produced the same order of magnitude for
kurtosis statistics.

Besides leptokurtosis, heteroskedasticity is the other strong empirical regularity
of short-run exchange-rate dynamics. Of course, only the dynamic models can depict
heteroskedasticity but the question is: how much of the heteroskedasticity do these
models capture? Table 5 summarizes the results on the residual heteroskedasticity and
compares it to the heteroskedasticity of the data. Residual heteroskedasticity is here

measured as the Ljung-Box statistic at lag 15 of the standardized data x,l-{h;. As table

5 shows, the dynamic models exhibit residual heteroskedasticity which is drastically
lower than the one in the data. It is only the Markov-switching model thathas significant
residual heteroskedasticity for all daily series. The ARCH-Type models capture
heteroskedasticity in all series very well, with the exception of the daily sfr series. One
may conclude, therefore, that the GARCH, the GARCH-t and the EGARCH models
are superior to the Markov-switching model in depicting heteroskedasticity.

As a final criterion to judge the goodness of fit of the candidate models, the
Schwarz information criterion (SIC) will be employed. A direct comparison of models
by the likelihood-ratio statistic is not possible because the models are not nested but
the SIC, defined by SIC = r 10gT - 2 L* (where r is the number ofparameters estimated,
T is the number of observations and L* is the value of the maximised likelihood), is
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Table 5
ACF of squared data and residual heteroskedasticity of dynamic models

mark pound sfr yen

day sample 355.2 *** 507.3 *** 561.0 *** 432.2 ***
Markov 50.0 *** 215.4 *** 132.6 *** 155.3 ***
GARCH 22.9 * 8.4 54.1 *** 3.2

GARCH-t 28.1 ** 0.4 59.0 *** 3.3
EGARCH 24.1 * 8.6 67.2 *** 4.1

week sample 61.5 *** 123.9 *** 98.2 *** 52.8 ***
Markov 14.9 94.9 *** 18.9 20.4
GARCH 29.6 ** 8.0 11.7 4.4

GARCH-t 24.0 * 8.1 13.1 4.8
EGARCH 20.1 9.7 9.7 6.3

Significance levels: see Table 2

also based on likelihoods and it corrects for the number ofestimated parameters. Table
6 reports the SIC of all candidate models together with the SIC of Gaussian white noise
as a benchmark. The ranking of the models according to SIC is given in brackets.
Several obselVations may be drawn from table 6. First, all seven candidate models are
clearly superior to the benchmark model and this is especially evident in the daily
series. Second, the dynamic models are superior to the static models for all daily and
weekly series. Within the group of static models the mixture model has in general the
highest value of SIC and hence the worst performance, whereas an overall ranking
between the compound Poisson process and the generalized Studentdistribution is not
possible. Third, within the group of dynamic models, the GARCH-t model achieves
by far the best result. It has the lowest value ofSIC for all series. The second best model
seems to be the Markov-switching model.

Finally, I will compare the candidate models with respect to their ability to forecast
volatility. There are at least two reasons why forecasting performance is important for
model evaluation in this case. First, from an econometric point ofview, poorforecasting
performance of a model which fits well within the sample would indicate a lack of
structural stability. Second, from an economic point ofview, financial markets are most
interested in good forecasts. Dealers in derivative markets often Say that they "trade"
volatility. Of course volatility is not a traded asset and, more important, it is not ~

obselVable. What is meant by "trading volatility" is the fact that dealers buy options
when the implicit volatility of the option, calculated from the Black-Scholes model, is
smaller than the expected future volatility and they sell options when the implicit
volatility is larger than the expected volatility.
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Table 6
Comparison of models by SIC

mark pound sfr yen

day Gauss 7018.3 6873.3 8298.6 6315.5
mixture 6664.5 (7) 6300.6 (7) 7811.5 (7) 5805.7 (7)
Poisson 6630.1 (6) 6207.7 (5) 7794.8 (6) 5724.9 (5)
Student 6610.0 (5) 6295.5 (6) 7765.0 (5) 5781.4 (6)
Markov 6167:2 (4) 5911.8 (2) 7365.3 (4) 5287.9 (2)
GARCH 6064.3 (2) 5981.1 (4) 7299.7 (3) 5430.1 (4)

GARCH-t 5937.1 (1) 5303.3 (1) 7103.1 (1) 4725.7 (1)
EGARCH 6071.6 (3) 5966.1 (3) 7297.0 (2) 5355.1 (3)

week Gauss 2547.7 2512.7 2770.0 2358.1
mixture 2482.0 (7) 2448.6 (7) 2715.2 (3) 2271.2 (7)
Poisson 2467.1 (5) 2443.4 (6) 2714.4 (5) 2266.8 (6)
Student -2476.4 (6) 2433.8 (5) 2716.9 (7) 2263.3 (5)
Markov 2414.7 (2) 2410.6 (3) 2653.8 (2) 2189.8 (2)
GARCH 2442.4 (4) 2422.7 (4) 2663.0 (3) 2237.4 (4)

GARCH-t 2404.1 (1) 2336.4 (1) 2631.1 (1) 2141.0 (1)
EGARCH 2439.2 (3) 2408.5 (2) 2664.7 (4) 2219.6 (3)

Since this study has concentrated on the modelling of variance effects and has
neglected mean effects, the forecasting preformance will only be evaluated with respect
to volatility. The benchmark of the forecasting performance is provided by a simple
model which extrapolates the volatility of the past as a constant into the future, Le. the
"naive" volatility forecast at time 't for the next k periods is given by

:::..2 1 't 2
(6) 0't+k =- L x, k = 1, ... ,K,

't,=1

where x, is the first difference in the logarithm of the exchange rate at time t. Note

that it is assumed throughout that the mean is zero. These naive forecasts also serve to
represent volatility forecasts from the static models which would also produce constant
volatility forecasts. It would be possible ~o estimated each static model up to time t
and to compute the implied variances from the parameter estimates; It will show,
however, in the next section that the implied variances of the static models are very
close to the historical variances as defined in (6).
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Volatility forecasts from the dynamic models, on the other hand, are non-trivial.
For the Markov-switching model, they can be derived along the following lines. The
volatility forecast at time t for the k.;th period in the future is given by

(7) crHk =crip (SHk =1 Ix't) +d2P (SHk =2 Ix't)

=(cri-~)p(sHk=llx't)+~

where cri and ~ are the variances in states I and 2, respectively, and P(SHk = 1 Ix't)

is the probability of being in state 1 in t +k given X't. This probability may be

decomposed into

(8)
2

P(SHk =11 x't) = L P(SHk =11 s't =i)p(s't =i Ix't)
;=1

where P(s't =i Ix't) is the filter probability of being in state i and P(SHk =1 IS't =i)

is a_ k-step transition probability. From the Markov-chain structure, one can compute
this transition probability (see e.g. Chiang (1980), p. 160) to get after some arithmetic

(9) P(SHk =1 Ix't) ={p (s't =1 Ix't)(2 - Pll - P22)(Pll +P22 - 1t

+ (1 - P22) - (1 - P22) (Pl1 +P22 - 1t }/(2 - Pl1 - P22)

where Pll and P22 are the estimated elements of the transition matrix.

The volatility forecasts of the three GARCH(1,l) variants can be derived in a
simple recursive way. From the conditional variance equation

(10) h't=aO+a1xLl +b1h't_l

one gets the first-period forecast

(11) hHl=aO+alx;+blh't

which involves only observable variables. For the periods k ~ 2, the forecasts are

(12) h Hk =ao+alE(x;+k_l)+blE(hHk_l)

=aO+(a1+b1)hHk - 1·

Only minor changes to the first-period forecasts are necessary in the case of the
EGARCH model.

The forecasting experiments were conducted by estimating the dynamic models
on a "rolling basis". For the daily data, the models were first estimated for the obser
vations from t= 1 to t = 1000. Volatility forecasts were made for the next 20 days

and the forecasts were compared with X;+k. In the next step, 100 observations were

added, parameters were re-estimated and forecasts were again compared with obser
vations. In this way, parameters and forecasts were computed 23 times for each daily
series. For weekly data, the first estimation period includes observations up to t = 220
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and on each step 20 observations were added to the previous subsample. This gives 24
forecast experiments for each of the weekly series. The forecast horizon includes each
of the next 20 weeks for every forecast experiment.

The volatility forecasts of the dynamic models and of the "naive" model are
compared with respect to mean errors and with respect to root mean square errors
(RMSE). The mean error measures the bias of forecasts and RMSE measures the lack
of precision of forecasts. The results are summarized in tables 7 and 8. Note that the
mean errors and RMSE are averaged over all 20 forecast horizons.

Table 7 shows that the naive model and the Markov-switching model tend to
underestimate future volatility since the entries for all eight series in the case of the
naive model and for seven series in the case of the Markov-switching model are
negative. The GARCH model and the GARCH-t model, on the other hand, tend to
overestimate future volatility since all eight entries for GARCH models and seven
entries for the GARCH-t models are positive.

Table 7
Volatility forecasts of dynamic models: mean error

mark pound sfr yen

day Naive -0.217 (5) -0.184 (4) -0.005 (1) -0.269 (4)
Markov -0.086 (3) -0.142 (2) 0.100 (3) -0.198 (2)
GARCH 0.116 (4) 0.165 (3) 0.464 (5) 0.144 (1)

GARCH-t -0.060 (2) 0.364 (5) 0.127 (4) 0.327 (5)
EGARCH 0.002 (1) -0.050 (1) 0.046 (2) -0.233 (3)

week Naive -1.193 (5) -1.060 (3) -0.615 (3) -0.765 (5)
Markov -1.014 (4), -0.957 (2) -0.108 (1) -0.609 (4)
GARCH 0.077 (1) 2.571 (4) 0.985 (5) 0.188 (1)

GARCH-t 0.101 (2) 6.296 (5) 0.913 (4) 0.257 (2)
EGARCH -0.389 (3) -0.453 (1) 0.129 (2) -0.277 (3)

It is also interesting to compare the models with respect to the absolute mean error
for each series. The resulting ranking is given in brackets. The EGARCH model seems
to dominate the other models since it finishes first in three out of eight cases. If the
rankings are aggregated over all eight series, the EGARCH model obtains an overall
ranking of 16,1 followed by the Markov-switching model with 21, the GARCH model
with 24, the GARCH-t model with 29, and the naive model with 30.

1 It is three times the best model, twice the second best, and three times the third best.
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Table 8 reports the results for the RMSE criterion. The ranking among models is
quite different. The Markov-switching model obtains the highest precision, Le. the
smallest RMSE, of volatility forecasts for five of the eight series and finishes twice in
second place, whereas, quite surprisingly, the naive model is once the best model and
five times the second best. With respect to the overall rank sums, the EGARCH model
is the third best model with a sum of 20 followed by the GARCH model with 34 and
the GARCH-t model with 37.

The overall picture, which emerges from these forecasting experiments, is that it
is indeed possible to beat the naive model in the forecasting of volatility but the naive
model is only clearly dominated with respect to the mean error where the EGARCH
and Markov-switching model have smaller average biases. With respect to the RMSE,
only the Markov-switching model performs better than the benchmark model of static
variance but numerically this improvement is rather small. It is interesting to note that
these results parallel in a way the results ofMeese and Rogoff (1983) on the forecasting
of exchange-rate levels. Meese and Rogoff (1983) found that asset-market models are
not able to outperform a random-walk model in forecasting exchange-rate levels but
this was more obvious with respect to the RMSE than with respect to mean errors.
Since tables 7 and 8 show that it is less clear with respect to RMSE that the naive
volatility model can be outperformed by the dynamic model than with respect to mean
errors, there is some correspondence between their results and the results reported here.

TableS
Volatility forecasts of dynamic models: RMSE

mark pound sfr yen

day Naive 1.207 (2) 1.021 (2) 1.274 (2) 1.199 (3)
Markov 1.191 (1) 1.025 (3) 1.268 (1) 1.183 (1)
GARCH 1.322 (5) 1.156 (4) 2.165 (5) 1.355 (4)

GARCH-t 1.210 (3) 1.597 (5) 1.449 (4) 1.623 (5)
EGARCH 1.218 (4) 1.020 (1) 1.280 (3) 1.190 (2)

week Naive 4.747 (2) 4.947 (3) 5.390 (1) 3.656 (2)
Markov 4.713 (1) 4.933 (2) 5.411 (2) 3.625 (1)
GARCH 5.088 (4) 7.633 (4) 6.079 (4) 3.872 (4)

GARCH-t 5.234 (5) 13.084 (5) 6.346 (5) 3.951 (5)
EGARCH 5.061 (3) 4.861 (1) 5.419 (3) 3.779 (3)

In order to gain more insight into the forecasting performance, figure 1 plots the
mean errors and RMSE at forecast horizons 1 to 20 for the daily Swiss franc. It is quite
striking how similar the patterns ofmean errors and RMSE are across forecast horizons.
The plot ofmean errors shows how the GARCH models tend to overestimate volatility.
Recall from the previous chapter that the GARCH model of the daily Swiss franc
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implied non-stationarity of variances. The same is true for most subperiodsand, the
refore, the GARCH model tends to overestimate volatility, especially for longer forecast
horizons. On the other,hand, the naive model produces the smallest forecast errors for
all forecast horizons and 9 of its 20 forecast errors are negative.

Figure 1
Forecast errors of volatility at different time horizons: daily sfr

a) mean errors
1.0,--------- ---,
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b)RMSE
6-r-------------------,
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Figure 1 also shows that all models underestimate the volatility of 12 days in the
future. This, however, is caused by a single outlier at t= 1113 in the second forecast
experiment. On Monday, 20th November 1978, the Swiss franc depreciated against
the dollar by 5.1 percent. This depreciation came quite unexpectedly and all models

underestimate the value of X;113 =25.85. The historical variance at t= 1100 is 0.68,

the Markov-switching model produces a volatility forecast of 1.40, the GARCH model
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predicts 10.10, the GARCH-t model predicts 1.61, and the EGARCH model predicts
2.31. The plot of RMSE also illustrates that the non-stationary GARCH model tends
to give small precision ofvolatility forecasts but if an outlier occurs, the non-stationary
model tends to perform better than stationary models.

To summarize, the three static models and the four dynamic models are clearly
superior to a simple random-walk model of the exchange rate with Gaussian increments
with respect to goodness-of-fit criteria. Furthermore, the dynamic models have anatural
advantage over the static models because they do not only capture leptokurtosis but
also heteroskedasticity. However, only the Markov-switching model and the EGARCH
model, which do not violate stationarity conditions, are able to outperfonn a naive
model in the forecasting of volatility, but this superiority holds only with respect to
unbiasedriess and not with respect to precision of forecasts.

S. Implications for the Pricing of Foreign-Currency Options

As noted before, the approaches to modelling stochastic volatility can be grouped under
the headings "continuous-time-fmance approach" and "econometric approach". The
aim of the econometric approach is to find a specification ofthe volatilityprocess which
adequately represents the stylized facts of the financial data. A problem with this
approach is that it is unclear under which conditions the specified volatility process is
compatible with the risk-neutral valuation principle. Duan (1991), however, has
established such conditions for the GARCH model.

In this section, I follow the econometric approach to study the impact of lepto
kurtosis and heteroskedasticity on option pricing. More specifically, I computed call
option prices which would obtain under three static models (mixture of distributions,
compound Poisson process and Student distribution) and under three dynamic models
(Markov-switching model, GARCH model and EGARCH model). The GARCH-t
model had to be dismissed from this list because parameter estimates of this model
were numerically unstable and implied strong nonstationarity. The GARCH-t model
produced also very erratic option prices. It should be stressed, however, that the results
should be regarded as preliminary since it is not clear for all models at this stage how
option pricing in the framework of the risk-neutral-valuation principle is possible.

Option prices were ~omputed by simulation based on the expected value of the
boundary condition, i.e. call option prices were computed as

1 R
(13) C =- L max{Er-B;O}

R r=l

where B is the exercise price and R = 20,000 is the number of repetition in every
experiment. The simulations were based on the parameter estimates of the daily pound
series which are shown in table 9 along with the stationary variances of the estimated
models. It is noteworthy that the implied variances of the static models and the
Markov-switching model are very close to the variance of the sample which is 0.437,
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but the implied variance of the EGARCH model exceeds this variance by about 20
percent and the implied variance of the GARCH model is almost tenfold the variance
of the sample data.

Table 9
Parameter estimates and implied variances: daily pound

Model Parameter estimates Stationary variance

Mixture P =0.460 0.437

cri = 0.061

cri = 0.756

Poisson A= 1.262 0.414

-
a; =0.307

~=0.027

Student 11 = 2.423 0.426

1=0.887

Markov Pll = 0.933 0.436

P22 =0.952

cri = 0.073

0-;=0.697

GARCH au = 0.007 4.299

~ =0.135

az=0.864

EGARCH ao=-o·038 0.528

ala =0.026

alb =0.300

b l =0.940

Figures 2.and 3 show the results from the simulation experiments when the current

spot rate Et is varied between 1.40 and 2.20. The time to maturity is set to 20 days

and the exercise price B is set to 1.80. For simplicity, the domestic and foreign interest
rates are assumed to be zero. Note that, for each spot rate, the computed option prices
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are based on the same realizations of the random variable (with the exception of the
Student distribution, of course) whereas the drawings are distinct for different spot
rates.

For the understanding of price differences between Black-Scholes prices and
simulated option prices, it is useful to decompose the price effects into different
components. Following Jarrow and Rudd (1982), the option price under an arbitrary
distribution A can be approximated by a generalized Edgeworth series expansion as:

(14) CA = CL +~[d(A) -d(L)lfL(B)
2e r

1 dfL(B)
--[IL(A)-IL(L)]--6e rl ~j r3 dx

1 [ 2J d
2
fL(B)

+ 24ert KiA )-KiL )+3(o;(A)-o;(L» --;[;2

+£(B)

where CL is the Black-Scholes price (based on the log-normal distribution), e-rt is

the discount factor, d(A) and d(L) are the variances of the alternative distribution
and the log-normal distribution, respectively, Jl3 is the third central moment (which is

related to the skewness ~l by Jl3 =~lcf), K4 is the 4-th cumulant, !L is the density

of the log-normal distribution, and £ is an error term. Note that K4 = 114 - 3~, where

Ilj is the j-th central moment, i.e. K4 > 0 if the distribution is leptokurtic.

With reference to (14), option price biases can be decomposed into three com
ponents. First, option prices under an alternative distribution will, ceteris paribus, be
higher if d(A) > d(L) . Second, there is a skewness effect which, however, can be
neglected because all models, with the exception of the EGARCH model, have sym
metric (stationary) distributions and the asymmetry of the EGARCH model is small
and statistically insignificant. The third effect is related to kurtosis and has weights
given by the second derivative of !L which is positive for in-the-money and out-of

the-money options and negative for at-the-money options. Under leptokurtosis, the
refore, ceteris paribus CA > CL forin-the-money options and out-of-the-money options,

whereas CA < CL for at-the-money options. Statistically, the at-the-money effect is

caused by peakedness and out-of-the-money and in-the-money effects are caused by
fat tails.
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Figure 2
Spot-rate effect of biases in option prices for static models
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Figure 3
Spot-rate effect of biases in option prices for dynamic models
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Figure 2 plots the differences between computed option prices of static models
and Black-Scholes prices. A negative value indicates that the Black-Scholes price is
larger than the simulated price of the corresponding model. The dotted lines give the
95 per cent confidence interval around zero. In general, the price effects of the static
models are not very strong. Both the compound Poisson process and Student's
distribution exhibit the peakedness effect of at-the-money options but only a few
simulated biases arestatictically significant. The fat-tail effect of out-of-the-money
options shows up only for Student's distribution whereas there are no significant fat-tail
effects of in-the-money options for any of the static models. Furthennore, there are no
sizeable variance effects, because the variances of the static models are quite close to
the sample variance of 0.437, and there are no skewness effects because the models
have symmetric distributions.

Turning next to the spot-rate effects of the dynamic models in figure 3, one clearly
finds a fat-tail effect for out-of-the money options and a peakedness effect for at-the
money options in the case of the Markov-switching model. On the other hand, the
fat-tail effect for in-the-money options is rather weak since only two biases for these
options are statistically significant at the 5 per cent level. It is interesting to note that
the Markov-switching model displays roughly a "smile effect" and that these smile
effects also have been derived in the continuous-time approach of modelling stochastic
volatility by diffusion processes (see Hull and White (1987). Note, too, that the smile
effect is also a stylized fact on foreign-currency option markets. It was found that the
implied variance of foreign-currency options is smaller for at-the-money options than
for in-the-money and out-of-the-money options (see e.g. Shastri and Wethyavivorn
(1987)).

Incontrast, both the GARCH and EGARCHmodel imply that option prices should
be significantly higher than Black-Scholes prices over the full range of moneyness.
This can be attributed to the fact that both models have a stationary variance which is
much larger than the sample variance. As table 9 shows, the stationary variance of the
GARCH model is a multiple of the sample variance of 0.437 and the EGARCH's
variance of 0.528 exceeds the sample variance by about 20 percent. Since, according
to the decomposition of price biases in (14), the variance effect is weighted by the
density !L, the price effect is strongest at the money where the density has its maximum.

Results from experiments of varying the time to maturity are shown in figure 4
and 5. Call option prices were computed for at-,the-money options with a spot rate and
an exercise price of 1.80. The simulations were based on the same parameter estimates
as in the previous experiment and the time to maturity was varied between 1 and 40
days. The maturity effects of the biases of static models are plotted in figure 4. The
biases tend to be negative for the three models, i.e. Black-Scholes prices tend to be
higher than simulated prices. However, for the Mixture model and Student's distri
bution, the negative biases gradually become statistically insignificant when maturity
increases. For the compound Poisson process, the negative maturity biases become
stronger when maturity increases but the standard errors of simulation increase with
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Figure 4
Maturity effect of biases in option prices for static models
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Figure 5
Maturity effect of biases in option prices for dynamic models
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the biases. The negative biases of the three models is caused by the peakedness effect
and the convergence to Black-Scholes prices can be explained with the central limit
theorem which implies that the three static models converge to a normal distribution
under temporal aggregation.

The maturity effects for the dynamic models are shown in figure 5. As in figure
3, there is a positive bias for the GARCH model and the EGARCH model for at the
money options. As explained above, this positive bias is due to the large stationary
volatility implied by these models. The bias increases with maturity but the increase
seems to level off for longer maturities. The Markov-switching model on the other
hand, implies lower option prices, compared to Black-Scholes, for all maturities.
However, the bias becomes statistically insignificant for long maturities and this is
compatible with convergence to normality under temporal aggregation.

6. Copclusion

The three questions, raised in the Introduction, can now be answered in the following
way. First, the most important stylized facts of the exchange-rate data are leptokurtosis
and heteroskedasticity. It is important to note that leptokurtosis can be caused by fat
tails or by peakedness. Furthermore, heteroskedasticity is linked to the property of
leptokurtosis since the dynamic models, which have been introduced, imply lepto
kurtosis. It can also be shown that all scale-compounded normal distributions are
leptokurtic.

Second, it is rather difficult to choose the best model among the seven candidates
since the relative performance varies with the applied criterion. However, the dynamic
models have a natural advantage over the static models because the latter do not capture
heteroskedasticity. For practical purposes, the most important criterion ofperformance
is presumably forecasting performance. On this account one would pick the Markov
switching model as the most satisfactory model.

Third, systematic option-price effects are, in general, rather small for static models
when maturity is longer than 20 days. The convergence to Black-Scholes prices under
time aggregation is in accordance with the central limit theorem. The GARCH and
EGARCH models, on the other hand, imply a systematic and strong underpricing of
call options by the Black~Scholes formula. This, however, is caused by the near non
stationarity of the models and the resulting large stationary variances. The Markov
switching model is the only model which is compatible with the observed smile effects
on the foreign-currency option markets. It, therefore, appears that overall the
Markov-switching model is the best candidate model to capture both the stylized facts
of exchange-rate dynamics and the price biases of foreign-currency options.
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