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Abstract

The statistical analysis of short-run exchange-rate data shows that there is strong
heteroskedasticity and serial dependence of volatility. In addition, the empirical dis­
tributions are leptokurtic. The model of generalized autoregressive conditional hete­
roskedasticity (GARCH) seems to be ideally suited to model these empirical regularities
because the model incorporates autocorrelated volatility explicity and it also implies
a leptokurtic distribution. The GARCH model does indeed achieve a reasonably good
fit to the exchange-rate data. However, the GARCH model is not able to outperform
the naive forecasts of,volatility which use the current estimate of the variance from the
past data.
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1. Introduction

In recent years, an increasing interest in the volatility of financial variables and its
implications for the pricing of derivative securities has developed. Nowadays it is so
fashionable to talk about "volatility" that this term even begins to replace the familiar
terms "standard deviation" and "variance" in the terminology of academics doing
research in financial economics. Until quite recently, however, financial economists
obstained from modelling volatility as a random variable. In the classic paper of Black
and Scholes (1973), for instance, volatility 0' (which is a synonym for the instantaneous
standard deviation) is assumed to be constant in the differential equation for the price
P of the underlying asset

(1) dP/P =W1t+O'dz]

where dz] is a Wiener process and Il denotes the instantaneous mean.

Clearly, the assumption of constant volatility is at odds with experience from
observing financial markets. However, only in the last few years have financial eco­
nomists started to develop option pricing models which treat volatility as a stochastic
variable (see Hull and White (1987), Johnson and Shanno (1987), Scott (1987), Wiggins
(1987), Chesney and Scott (1989), and Melino and Turnbull (1990)). In these models,
the diffusion process (1) is supplemented by a diffusion process for the volatility in
the form of a geometric generalized Wiener process

(2a) dO'/O' =<pdt +ydz2

or in the form of an Ornstein-Uhlenbeck process

(2b) dO' =e(S- O')dt + ydz2.

However, there are two basic problems with this approach. The first one is ana­
lytical. An explicit solution to this model which is independent of risk preferences is
only possible if there is either an asset that is instantaneously perfectly correlated with
volatility or if volatility is uncorrelated with aggregate consumption. Since both
assumptions would in general be regarded as highly unrealistic, the attractiveness of
the ingenious Black-Scholes approach to value options through a perfect hedge strategy
is lost. Volatility is not a traded asset and since volatility is an unobservable variable,
chances are not good that it will ever be traded. Therefore, there is no convincing way
to find a perfect hedge for stochastic volatility.



The second drawback of this approach is the fact that the specifications of (2a)
and (2b) are entirely adhoc (as Melino and Turnbull (1990) confess). The specifications
are not directed by theoretical considerations or by empirical evidence but rather by
analytical convenience. Both (2a) and (2b) are standard stochastic processes which are
rather straightforward to work with.

In recent years, there has been a development in the econometrics literature which
seems to be well-suited to complement the work on stochastic volatility in the finance
literature (see Taylor (1990)). Since the seminal paper of Engle (1982), a rich literature
has emerged to model heteroskedasticity (the familiar econometric term for stochastic
variance) in a way which bears some resemblance with the univariate ARIMA approach
for the mean of a time series. Engle (1982) introduced the autoregressive conditional
heteroskedasticity (ARCH) model in which the conditional variance h/ of the variable

x/ is a linear function of squared lagged realizations of X/I:

(3a)

and

(3b)

where u/ is Gaussian white noise with unit variance.

In applications of the ARCH(p) model, it often turned out that the required lag
length p was rather large. This led Bollerslev (1986) to introduce the generalized
ARCH model (GARCH for short) whose basic idea is to approximate a long polynomial
by a simple rational function, i.e.

(4)

In general, the value of p in (4) will be pmch smaller than the value of p in (3a).
There are a number of other variants of the ARCH model. Modifying and

extending the ARCH model is still a-very active research area (see e.g. Nelson (1991),
and Harvey, Ruiz and Shephard (1991)). There are also numerous applications of
ARCH-type models in finance including the modelling of risk premia and the CAPM
with varying covariances.

I Throughout this paper I shall assume that the mean of X, is constant and zero. I shall apply
the ARCH-type models only to exchange-rate data and for those series it can be shown that the
assumption of a constant mean at zero cannot be rejected (see Kaehler (1989».
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In this paper I explore whether ARCH-type models can be used to overcome the
arbitrariness ofa volatility specification such as given in (2a) or (2b). Since ARCH-type
models are flexible enough to allow a rich dynamic structure, these models may guide
the modelling of stochastic volatility. More specifically, I shall examine the forecasting
performance of ARCH-type models for foreign exchange-rate series. There are two
reasons for looking at forecasting performance. First, an out-of-sample test of a model
provides a strong test and is very sensitive to structural instability. Second, from a
practical point ofview, the main interest of financial management lies in the forecasting
of financial variables. For the pricing of foreign-currency options, for example, -it is
the future volatility of the exchange rate which is the relevant variable.2

I shall only analyse the models with exchange-rate data but the approach taken
here is readily extended to other financial variables such as prices of stocks, commo­
dities or bonds. It is a very remarkable fact that there are strong similarities in the
statistical properties of different financial variables. This permits to apply the same
models to different financial data (see e.g. Taylor (1986)). Before ARCH-type models
are-estimated and used to forecast volatility ofexchange rates, I shall examine statistical
properties of four exchange-rate series in some detail in order to explore and quantify
the time-series structure and randomness of exchange-rate volatility.

2. Empirical Evidence on Stochastic Volatility

The data to be analysed are the exchange rates of the U.S.dollar against the German
mark, the British pound, the Swiss franc and the Japanese yen. The data are on a daily
basis but also weekly, monthly and quarterly data are IJsed. In these cases, end-of-period
data were derived from daily exchange rates. The data range from July 1st, 1974 to
December 31 st, 1987. Due to differences in bank hoI idays between countries, there are
different numbers of observations in the daily data: 3386 for the mark, 3417 for the
pound, 3392 for the franc and 3365 for the yen. For all currencies, the number of
observations in the weekly series is 704, in the monthly series it is 161 and in the
quarterly series it is 53. Data source is the IMP's International Financial Statistics,
except for the franc, whose exchange rate against the dollar from July 1974 to April
1980 was not published in the International Financial Statistics and was therefore taken
from the monthly reports of the Swiss National Bank. The exchange rate dynamics are

analysed in the form of XI =100Lle, where Lle, =el - el -1 and el is the logarithm of the

exchange rate at time t.

2 The results of this study are not directly comparable with those of Taylor (1987) since he
analysed future prices instead of spot prices. Furthermore, he used absolute returns and the spread
of daily high and low prices to forecast spreads.
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In order to provide a first snapshot of the variability of volatility, Figure 1 plots

the variances of daily exchange-rate fluctuations Xl in subperiods of length 20 (ap-

proximately monthly subperiods) and of length 120 (approximately half-year subpe­
riods) for the pound-dollar rate. The variances show indeed marked variability.
However, there does not appear to be a clear pattern in the volatility of subperiods.
Periods of turbulence and periods of tranquillity seem to follow one another in a random
way. Looking at the display of variances in Figure lb, one tends to detect a positive
trend and cyclical variation in volatility. With only 28 observations, however, this
probably reads too much into the data. It should be stressed that the other exchange
rates show very similar patterns but they are omitted to save space.

Figure 1
Variances in ~ubperiods: the pound-dollar rate

a) monthly subperiods b) half-year subperiods

0l.5 1.50

OlD
1.0l5

1.00
1.5

0.75

0.50

0.5

0.0 0.00
20 40 80 80 100 1010 140 180 230 235 240 245 0150

A more formal test ofheteroskedasticity is clearly called for in order to substantiate
the randomness of volatility. Here I apply Levene's test which is robust with respect

to the underlying distribution ofXl 3. The test is based on a one-way analysis of variance

for Wkl =1 Xkl - xk I, where xk is the median ot the XI'S in the k-th subsample4
• The null

hypothesis of equal variances in K subsam~les, Ho:cri =... =cri ,will be rejected if

the test statistic A exceeds the (1 - a) - quantile of the F-distribution with K -1 and
T - K degress of freedom, where T is the numbe'r of observations. It is difficult,
however, to test He in a rigorous way without an a-priori perception of the number and

3 As I will show later, the assumption of a normal distribution, on which most parametric tests
are based, is quite questionable for short-run exchange-rate dynamics. j

4 In Figure 1b, Wkt is plotted as a dashed line.
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the size of subsamples. Since there is no natural division of observations into K
subgroups, different divisions will be employed. The data will be subdivided into
sequences of equal length with length of 20, 60, 120 and 240, respectively. This
corresponds roughly to time intervals of a n::t0nth, a quarter, half a year and a year.

The results are reported in Table 1. For all entries of Table 1 the A -estimates fall
far into the upper tail of the corresponding F-distribution. In fact, for all 16 A -values
of this table, the empirical significance level'is at least of order 10-11

• However, apart
from indicating that there is extremely strong evidence for heteroskedasticity in the
data, the Levene test does not identify any structure for heteroskedasticity, nor does
the test identify the subsamples with abnormal variances.

Table 1
Levene's test for homogeneity of variance

mark pound franc yen

month 5.2 5.7 6.1 6.5
quarter 11.0 13.3 10.4 13.3

half-year 15.6 19.0 14.1 22.9
year 25.8 32.7 21.8 42.8

On the other hand, it is often claimed that there is positive correlation ofvolatitily
in financial markets. As Mandelbrot (1963, p. 418) put it in his seminal paper: "Large
(price) changes tend to be foilowed by large (price) changes - of either sign - and small
(price) changes tend to be followed by small (price) changes". This assertion can be
examined in a direct way within a simple Markov-chain model.

Let the observations XI be classified in an ascending order into J quantiles where

the first quantile contains the largest depreciations of the dollar and the J -th quantile
contains the largest appreciations. The quantiles are chosen such that all quantiles have
the same number of observations. One may then count the number of times that an

observation XI falls into quantVe J i and XI + I falls into quantile Jj and denote this

number by nij' If the XI are independent and identically distributed then the expected

value is llij =(T - 1)11 2
•

A typical empirical transition matrix of nu's is displayed in Figure 2. It shows

the data of daily changes in the pound-dollar rate classified into 9 quantil~s. The height

of the three-dimensional body is proportional to nij . There are 5 main peaks; a dominant

one with n55 = 109 and 4 peaks in the comers with nll =65, n19 =66, fig) =70 and

n99 =74 . There is also a side peak with n46 =69. For all entries, the expected number

is llij = 42.2. The main peaks can be interpreted in terms of periods of tranquillity and
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is flu = 42.2. The main peaks can be interpreted in tenns of periods of tranquillity and

periods of turbulence. The dominant peak n55 gives the number of cases where a small

IXc I is foHowed by another small IXI + I I .Likewise, nIl is the number of cases where

a,strong depreciation of the dollar against the pound was followed by another strong
depreciation and n99 is the number of pairs of strong appreciation. On the other hand,

nl9 cases could be counted where a strong appreciation followed a strong depreciation

et vice versa for n91 •

Figure 2
Markov transition matrix: daily pound dollar rate
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This indicates that in turbulent periods there can be a strong reaction in the
foreign-exchange market ofeither sign, i.e. a strong exchange-rate movement in period
t lowers the probability of small or moderate movements in t+1 and increases the
probabilities both for a strong depreciation and a strong appreciation, confinning
Mandelbrot's observation.

A rigorous test of this observation is provided by a familiar Chi-squared
goodness-of-fit test applied to the empirical transition matrices. The test results for all
exchange-rate series are reported in Table 2.

For daily, weekly, and monthly series, J is equal to 5 and for quarterly series J
is equal to 3. Obviously, there is strong rejection of independence for daily and weekly
data but only very weak evidence against independence for longer-tenn exchange-rate
fluctuations. The choice of J does not seem to have an influence upon this result.
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Performing the same tests with J = 9 for daily and J = 7 for weekly data resulted in
the same rejections of independence at very high significance levels. In fact, increasing
J brought an increase in all test statistics.

Table 2
Testing for independence in Markov chains

mark pound franc yen

day 128.8 *** 316.0 *** 100.6 *** 383.0 ***
week 42.4 *** 66.9 *** 41.4 *** 90.5 *** .
month 13.5 18.9 15.4 21.3
quarter 8.8 * 5.7 4.3 12.2 **

Significance levels: * 10 percent, ** 5 percent, *** 1 percent.

The advantage of testing the transition matrix in this way for first-order serial

independence is that no strong distributional assumptions about Xt are required. The

test, however, has two drawbacks. First, classifying exchange-rate data into quantiles
wastes a lot ofinformation and, second, higher-order serial dependence is no~ examined.
The phenomenon that small fluctuations tend to be followed by small fluctuations and
large fluctuations by large ones of either sign can be measured without loss of infor-

mation by estimating the autocorrelation function (ACF) of squared observations xt
2

•

In addition, the ACF, which is familiar from time-series analysis; is able to detect a
rich pattern of dependence in variances.

Table 3 reports results from applying the Ljung-Box test to autocorrelations up
to order 15. The test statistic Q(15) for all four exchange rates at four different time
horizons each is reported as the upper number in Table 3. It is evident that there is
stwng rejection of the Ho of no serial dependence in variances for daily and weekly

data only. In the daily series, the ACF for squared exchange-rate movements is
significant at all lags up to 15 for all four exchange rates. For weekly data, the estimated
autocorrelation coefficients exceed the conventionaI confidence limits of ±2{f at
various lags. The number of significant autocorrelations·and (after the slash) partial
autocorrelations is given below the corresponding Q statistics.

According to Bollerslev (1988), the,ACF and the partial ACF for squared data
can be used in the same way as in conventional ARIMA models to identify the order
of the autoregressive (AR) component and of the moving-average (MA) component
in corresponding models for variances. The great number of significant autocorrelation
and partial autocorrelation coefficients suggests that there is some structure in the time
pattern of variance which is worth modelling and that a mixed AR and MA process
might be adequate.
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Table 3
Results from the ACF of squared data

mark pound franc yen

day 355.2 *** 507.3 *** 516.0 *** 432.2 ***
15/6 15/9 15/10 15/7

week 61.5 *** 123.9 *** 98.2 ** 52.8 ***
5/4 7/7 8/3 6/3

month 12.3 12.9 11.8 25.0 **
1/1 1/1 1/0 2/1

quarter 12.0 7.4 12.1 5.4
0/0 0/0 0/0 0/0

Significance levels: see Table 2.

To sum up, the statistical analysis of volatility reveals that there is strong hete­
roskedasticity in the data and that volatility is positively autocorrelated up to large lags.
These properties, however, apply to short-run exchange-rate dynamics only. There is
no strong evidence for random volatility in monthly or quarterly data.

Another strong empirical property, which is common to speculative prices, is the
non-normality of short-run price dynamics (see e. g. Taylor (1986». It has repeatedly
been found that these variables have excess kurtosis, i. e. kurtosis which is significantly

greater than 3 (the value for a normal distribution). Since kurtosis ~2 , defined as the

fourth central moment divided by the square of the variance, measures both tail-weight
and peakedness, excess kurtosis indicates excessive mass in the tails or at the centre
of the empirical distribution. A test of Ho:~2=3 is a test of mesokurtosis with the

two-sided alternatives of platykurtic (~2 < 3) and leptokurtic (~2 > 3) distri15utions.

The values of ~2 are reported in Table 4 for each series of XI and test statistics, which

have an approximate normal distribution under Ho , are given below in brackets. As

the table shows, there is extremely strong leptokurtosis in the daily and weekly series.
In the monthly series, the Ho of mes'okurtosis can be rejected at the 0.05 level for 3

exchange rates, whereas no rejection of Ho is possible for any of the quarterly series.

This means that leptokurtosis is essentially a property of short-run exchange-rate
dynamics. It is only moderately inherent in monthly series and vanishes completely in
quarterly data.
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Table 4
Test for mesokurtosis

mark pound franc yen

day 8.32 *** 8.36 *** 8.89 *** 8.00 ***
(19.93) (20.07) (20.70) (19.93)

week 5.84 *** 7.36 *** 4.96 *** 7.03 ***
(7.21) (8.73) (5.93) (8.45)

month 3.87 ** 4.15 *** 4.19 *** 3.62
(2.01) (2.39) (2.45) (1.61)

quarter 2.67 2.72 2.77 2.62
(-0.22) (-0.11) (-0.02) (-0.33)

Significance levels: see Table 2.

The results of the statistical analysis can succinctly be summarized as follows:
Short-run exchange-rate dynamics (i.e. daily and weekly changes) are characterized
by a time pattern in heteroskedasticity as well as peakedness and fat tails in distribution
whereas medium-run exchange-rate dynamics (i.e. monthly and quarterly changes)
show no heteroskedasticity or serial dependence and have a frequency distribution
which is approximately normal.

The relevant time span for the modelling of financial volatility along the lines of

(2a) or (2b) would be the very short run since dZ2 is a continous-time variable and cr

is the instantaneous standard deviation. A discrete-time approximation of (2) should,
therefore, use a time-interval as short as possible. Thus, the relevant statistical properties
should be those of the short-run exchange-rate dynamics. In the next section, a number
of models will be considered which are able to capture some or all of these statistical
properties.

3. Modelling Stochastic Volatility

The early contributions to the stochastic modelling of price dynamics in financial
markets aimed to capture leptokurtosis in their model. This research was initiated by
Mandelbrot (1963) and Fama (1965). Mandelbrot (1963) suggested to apply the family
of stable distributions which leads to a very general model since this family is derived
from a generalization of the central limit theorem. If one drops the assumption of finite
variance in the conditions of the central limit theorem, one gets stable Paretian dis­
tributions as the only possible limit distributions for sums ofindependent and identically
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distributed random variables. The drawback of stable Paretian distributions, however,
is their lack of closed forms for the density function (with only a few exceptions) and
hence their analytical awkwardness.

The family of stable distributions was later supplemented by other probability
models which share the property that they can be described as compound distributions.s

They all assume that the v~riable XI follows a normal distribution with a stochastic

variance. The mixture ofnormal distributions assumes that the variance has a Bernoulli
distribution (see Ball and Torous (1983», Student's distribution attaches an inverted
gamma distribution to the variance (see Praetz (1972», Clark (1973) assumes that the
variance has a log-normal distribution and the model of Press (1967) can be refor­
mulated in a way such that it implies a Poisson distribution for the variance. Even the
class ofsymmetric stable distributions can be derived as a compound distribution where
the variance follows a sub-class of stable distributions.

The application of these compound distributions can be motivated by the fact that
they imply leptokurtosis 6 and are, therefore, consistent with a strong and robust
empirical property of speculative price. Although these models specify the variance as
a random variable, they are not able to explain heteroskedasticity or serial dependence
in variances. On the otherhand, serial dependence in variances is explicitly incorporated
in the ARCH(p) and GARCH(p,q ) models of(3) and (4). Furthermore, Milhoj (1985)
showed for the ARCH(p) model and Bollerslev ( 1986) showed for the GARCH(1,I)
model that these models imply leptokurtosis of)( Thus, the ARCH-type models are

consistent with the major stylized facts of short-~nprice dynamics in financial markets
and appear to be ideal candidates to model these price dynamics.

A priori nothing can be said about the number of lags p which need to be included
into the specification of (3). The results from the empirical autocorrelation functions
for squared data, however, indicate that high order dependence is present in short-run
dynamics. Therefore, it is best to choose the lag-length with a model selection criterion
and I applied the Schwarz information.criterion (SIC), defined by SIC =rlogT - 2L·
where r is the number of parameters and L· is the logarithm of the maximised
likelihood.

I estimated ARCH models up to order p=25 and identified models with lags
between 11 and 20 for daily data ,and with lags between 3 and 12 for weekly data. This
suggests to find a more parsimonious parametrization of the model. There are basically

two possibilities. First, one can impose a restriction on the a/s in the form of linearly

or geometrically declining weights (or some other functional form) as suggested by
Engle (1982). Hsieh (1989), however, found that the restrictions of linearly and of

5 Clark (1973) calls these kind of models "subordinated stochastic processes".
6This general result follows from Beale and Mallows (1959) in which they showed that scale

mixtures of normal distributions are leptokurtic.
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geometrically declining weights were rejected by likelihood ratio (LR) tests for daily
exchange-rate data. The alternative is to find a more parsimonious parametrization by
applying the GARCH (p,q) model. I chose the simple specification p=1 and q=l.

The choice between the ARCH(p), where p is determined by SIC, and the
GARCH( 1,1) model can again be made by applying information criteria. Table 5 reports
the comparison between ARCH and GARCH for the exchange-rate data by SIC 7.

Only in one out of 8 cases is SIC lower, and hence better, for the ARCH model than
for the GARCH model and this result would clearly favour the GARCH model. In the
following, I will therefore only report results from the GARCH model.

Table 5
Comparison between ARCH( p) and GARCH(1, I) models by SIC

- mark pound franc yen

day ARCH 6097.5 (11 ) 6030.6 (20) 7323.9 (12) 5427.1 (11)
GARCH 6064.3 5981.2 7299.7 5430.1

week ARCH 2463.5 (3) 2454.5 (4) 2701.6 (6) 2300.3 (12)
GARCH 2442.4 2422.7 2663.0 2237.4

Estimation of the GARCH(l,I) model by Maximum Likelihood methods is quite
straightforward. The estimates are shown in Table 6 and standard errors are given in
brackets. The parameters a\ and b l can be estimated with quite high precision,

especially in daily data. In most cases, a\ is close to 0.1 and b l is close to 0.9. Since

the mean lag of conditional variance effects is given by (1 - bIt!' the high value of

b l implies that there is strong persistence in variances.

The fact that the sum of a l and b l is close to lleads to the issue of stationarity.

Bollerslev (1986) showed that a GARCH( p, q ) process is second-order stationary if
and only if

(5)

According to Table 6, there are several series for which at +b l > 1. This violation

ofthe stationarity condition has been observed repeatedly in applications ofthe GARCH

7 The lag p of the ARCH models is given in brackets.
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Table 6
Estimates of the GARCH(1,1) model

mark pound franc yen

day °0 0.656 (0.128) 0.675 (0.109) 0.856 (0.179) 0.766 (0.120)

°1 0.169 (0.015) 0.135 (0.013) 0.143 (0.013) . 0.190 (0.021)

hi 0.833 (0.013) 0.864 (0.011) 0.857 (0.012) 0.820 (0.017)
LR 970.3 *** 908.5 *** 1015.1 *** 901.6 ***
~2 4.80 (11.92) 10.58 (22.63) 6.29 (16.31) 17.44 (26.87)

Q(15) 22.86 * 8.43 54.08 *** 3.19

week °0 1.71 (1.34) 4.16 (1.68) 1.83 (1.22) 0.52 (0.38)

°1 0.095 (0.027) 0.114 (0.029) 0.095 (0.017) 0.076 (0.013)

hi 0.906 (0.027) 0.878 (0.025) 0.907 (0.016) 0.932 (0.011)
LR 111.4 *** 103.0 *** 119.3 *** 133.8 ***
~2 4.29 (4.63) 7.03 (8.45) 4.26 (4.56) 9.81 (10.31)

Q(15) 29.56 ** 8.03 11.66 4.43

Significance levels: see Table 2. The values of CXo and their standard errors are multiplied by 100.

model to financial data. This lead Engle and Bollerslev (1986) to extend the GARCH
model to the case where variances are non-stationary. The integrated GARCH model,
IGARCH for short, obtains if the polynomial equation

(6)

has at least one unit root, whereas the GARCH model requires that all roots lie outside
the unit circle of the complex plane. I do not want to pursue the idea of integration in
variance here further because the statistical properties of the IGARCH model are not
yet fully developed (see also the discussion of the Engle-Bollerslev paper in volume
5 of Econometric Reviews).

I also perfomled a LR test for the GARCH( 1,1) model against the Ho of a simple

nOmlal distribution, i.e. the Ho implies that p =0 and q =O. The LR test rejects

Gaussian white noise very strongly against the GARCH(I,l) model for all series (see
Table 6). This result, of course, casts serious doubt on the appropriateness of the dif­
fusion process in (I) which is part of the Black-Scholes model and of the standard
currency-options model (see e.g. Gamlan and Kohlhagen (1983)).

It is also instructive to analyse the "residuals" at =x/fz~/'2 in order to see whether

the GARCH( 1,1) model fits the data. According to the model, Ut has a standard nOmlal

distribution. Table 6 reports the kurtosis of the residuals and in brackets the value of
the test statistic for a test of mesokurtosis. The Ho of mesokurtosis can be rejected at
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very high significance levels for all series. Even more surprisingly, leptokurtosis

increases substantially in al as compared with XI for both yen series and the daily

pound series (cf Table 4). For the daily yen series, kurtosis more than doubles. This
points to a weakness of this model which might be due to a wrong distributional

assumption about UI or other misspecifications.

Table 6 also reports the Ljung-Box statistic Q for squared residuals at lag 15. As
compared with the same statistics for the raw data (see Table 3), there is a dramatic
drop in Qfor the residuals of the GARCH( 1,1) model. In all cases, the Qfor the residuals
is less than 10 percent of the Q for the raw data. Only for the daily franc series is the
Qof the residuals significant at the 1 percent level. One may conclude, therefore, that
the GARCH(l,l) model captures the empirical volatility dynamics well.

Figure 3
Squared data and conditional variance: weekly pound-dollar rate

a) Squared data b) Conditional variance

80 l60 240 320

Figure 3 displays the series xt2 and lit fot the weekly pound series in order to

give a more datailed picture of the fit the GARCH model achieves. The comparison
between the two series shows that their patterns are very similar but the amplitude of

iiI is much smaller than the amplitude of xt
2

• This explains why the kurtosis of the

residuals is very high.

4. Forecasting Volatility

From the point ofview offinancial management, there is, for obvious reasons, a special
interest in the forecasting of financial-market prices. Forecasting experiments with the
estimated GARCH models can, in addition, shed some light on the structural stability
of the models. The compound distribution models referred to in the last1section do not
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imply any serial correlation of volatility. Hence, these models would predict a constant
volatility and the best predictor from these models would simply be the volatility from
past realizations. These models serve as a benchmark for the GARCH model. On the
other hand, the GARCH model provides non-trivial forecasts of future variances.

I applied the same strategy for measuring forecasting performance as was used
by Meese and Rogoff (1983) in their comparison with respect to the forecastability of
the mean. Thus, I estimated the models, on a "rolling basis" as in Meese and Rogoff
(1983). For the daily data, the GARCH model was first estimated for the observations
from t =1 to T =1000. Forecasts were made for the next 20 time periods and the

forecasts were compared with xi+ i • In the next step, 100 observations were added,

parameters were re-estimated and forecasts were again compared with observations.
In this way, parameters and forecasts were computed 23 times for each daily series.
For weekly data, the first estimation period includes observations up to T =220 and
on each step 20 observations were added to the previous subsample. The forecast
horizon includes each of the next 20 weeks. This gives 24 forecast experiments for
each of the weekly series.

The forecasts of the GARCH model and the "naive" models (constant variance)
are compared with respect to mean errors and with respect to root mean square errors
(RMSE). The results are summarized in Tables 7 and 8. Note that the mean errors and
RMSE's are averaged over all forecast horizons.

Table 7
Comparison of models by forecasting variances: mean errors

mark pound franc yen

day GARCH 0.116 0.165 0.464 0.144
d(t) -0.217 -0.184 -0.005 -0.269

week GARCH 0.077 2.571 0.985 0.188
d(t) -1.193 -1.060 -0.605 -0.765

\

mark pound franc yen

day GARCH 1.32 1.16 2.16 . 1.35

d(t) 1.20 1.02 1.27 1.20

week GARCH 5.09 7.63 6.08 3.87

d(t) 4.75 4.95 5.60 3.66

Table 8
Comparison of models by forecasting variances: RMSE
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As regards bias of the forecasts, the results are mixed. For daily data, the GARCH
model achieves in 3 cases a lower absolute mean error but for weekly data it is not
clear which forecast function is better. The most remarkable result, however, is that
the "naive" forecasts of variances are clearly better than GARCH forecasts in terms of
precision. For all daily and weekly series, the "naive" models perform better than the
GARCH models according to the RMSE criterion, sometimes quite substantially so.
In a way, these results reproduce Meese and Rogoff's results for the forecasting of
means. Here it is shown that the non-forecastability extends to variances. It is also
interesting to note that the superiority of the random walk model over asset market
models in forecasting the mean is more obvious with respect to the average (over all
20 forecast horizons) RMSE than with respect to the average mean errors (see Meese
and Rogoff (1983)). Thus, there is another correspondence between their results and
the results on variances presented here.

In order to gain more insight into the forecasting performance, Figure 4 plots
mean errors and RMSE at forecast horizons 1 to 20 for the weekly pound series. As
regards bias, the mean errors of the GARCH model are generally positive whereas they
tend to be negative for the naive model. In the case of the weekly pound series, GARCH
mean errors are only negative for I-step and 4-step ahead forecasts while the mean
errors ofthe naive model are only positive for forecast horizons from 8 to 10. However,
the pattern of mean forecast errors in Figure 4a is very similar for both models.

Figure 4
Forecast errors of variances at different time horizons: weekly pound-dollar rate

a) mean errors b) RMSE

20,--------------------,

15

10

As regards precision of the forecasts, the RMSE of the GARCH model tends to
be higher than the RMSE of the constant-variance model in Figure 4b. At forecast
horizons 1 to 3, both models have virtually the same RMSE and at forecast horizon 4,
the GARCH model performs better than the naive model. However, the naive model
is better at all other forecast horizons. When all daily and weekly exch,\nge-rate series
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are taken together, the constant-variance model is on average, i.e. over all forecast
horizons, better than the GARCH model as regards RMSE. However, constant variance
forecast are not better than GARCH forecasts when volatility is high.

5. Concluding Remarks

In this paper I addressed the question of how to model and forecast the volatility of
financial prices. The application was only to exchange-rate data but it should be
emphasized that the methods of analysis are readily extended to other financial-market
data. Since there is great similarity between statistical properties ofdifferent speculative
prices, one may expect to find results for these other prices which are very similar to
the results reported here.

The analysis ofexchange-rate data revealed some interesting statistical properties
of short-run dynamics. There is strong heteroskedasticity and serial dependence of
volatility. In addition, there are more very large and very small exchange-rate move­
ments than expected under a normal distribution, i.e. the empirical distributions are
leptokurtic. The GARCH model seems to be ideally suited to model these data, because
it incorporates autocorrelated volatility explicity and it also implies a leptokurtic dis­
tribution.

The GARCH model does indeed achieve a reasonably good fit to the data since
it captures serial dependence of volatilities. However, the results from the forecast
experiment are striking. The GARCH model is not able to outperform the naive forecast
which uses the current estimate of the variance from the past data. Statistically, this
result is related to the fact, that there seems to be a unit root in the variance of the data
( see equation (6) ), i.e. not only the mean of the exchange-rate level seems to be on a
random walk but also the variance of exchange-rate dynamics.

From an econometric point of view, the poor forecasting performance is a great
disappointment. But from the point of view of financial management this result is
actually good news. It implies that financial analysts should not worry too much about
stochastic volatilities. The current practice to estimate volatility by the historical
standard deviation is obviously not iJ;lferior to other, more refined approaches based
on new econometric techniques.

16



References

Ball, c.A. and W.N. Torous (1983): " A Simplified Jump Process for Common Stock Returns",
Journal ofFinancial and Quantitative Analysis, 18, 53-61.

Beale, E.M. and c.L. Mallows (1959): "Scale Mixing of Symmetric Distributions with Zero Means",
Annals ofMathematical Statistics, 30,1145-1151.

Black, F. and M. Scholes (1973): "The Pricing of Options and Corporate Liabilities", Journal of
Political Economy, 81, 637-654.

Bollerslev, T. (1986): "Generalized Autoregressive Conditional Heteroskedasticity", Journal of
Econometrics, 31, 307-327.

Bollerslev, T. (1988): "On the Correlation Structure for the Generalized Autoregressive Conditional
Heteroskedastic Process", Journal ofTime Series Analysis, 9, 121-131.

Chesney, M. and L. Scott (1989): "Pricing European Currency Options: A Comparison of the Modified
Black-Scholes Model and a Random Variance Model", Journal or Financial and Quantitative
Analysis, 24,267-284.

Clark, P.K. (1973): "A Subordinated Stochastic Process Model with Finite Variance for Speculative
Prices", Econometrica, 41, 135-155.

Engle, R.F. (1982): "Autoregressive Conditional Heteroskedasticity with Estimates of the Variance
of United Kingdom Inflation", Econometrica, 50, 987-1008.

Engle, R.F. and T. Bollerslev (1986): "Modelling the Persistence of Conditional Variances", Eco­
nometric Reviews, 5, 1-50.

Fama, E.F. (1965): "The Behavior of Stock-Market Prices", Journal ofBusiness, 38, 34-105.
Garman, M.B. and S.W. Kohlhagen (1983): "Foreign Currency Option Values", Journal of Inter­

national Money and Finance, 2, 231-237.
Harvey, A., E. Ruiz and N. Shepard (1991): "Modelling Volatility: Some Alternatives to ARCH",

mimeo, London School of Economics, Statistical Department.
Hsieh, D.A. (1989): "Modeling Heteroscedasticity in Daily Foreign-Exchange Rates", Journal of

Business and Economic Statistics, 7, 307-317.
Hull, 1. and A. White (1987): "The Pricing of Options on Assets with Stochastic Volatilities", Journal

ofFinance, 42, 281-300.
Johnson, H. and D. Shanno (1987): "Option Pricing when the Variance is Changing", Journal of

Financial and Quantitative Analysis, 22, 143-151.
Kat'hler, J. (1989): "Statistical Properties of Exchange Rates", Universitat Mannheim, Institut fUr

Volkswirtschaftslehre und Statistik, Discussion Paper No. 286-89.
Mandelbrot, B. (1963): "The Variation of Certain Speculative Prices", Journal of Business, 36,

394-419.
Meese, R. A. and K. Rogoff (1983): "Empirical Exchange Rate Models of the Seventies: Do They

Fit Out of Sample ?", Journal ofInternational Economics, 14,3-24.
Melino, A. and S. M. Turnbull (1990): "Pricing Foreign Currency Options with Stochastic Volatility",

Journal ofEconometrics, 45, 239-265.
Milhoj, A. (1985): "The Moment Structure of ARCH Processes", Scandinavian Journal ofStatistics,

12,281-292.
Nelson, D. B. (1991): "Conditional Heteroskedasticity in Asset Returns: A New Approach", Eco-

nometrica, 59, 347-370.
Praetz, P.D. (1972): "The Distribution of Share Price Changes", Journal ofBusiness, 40, 317-335.
Press, S.J. (1967): "A Compound Events Model for Security Prices",JournalofBusiness, 40, 317-335.
Scott, L. O. (1987): "Option Pricing when the Variance Changes Randomly: Theory, Estimation and

an Application", Journal ofFinancial and Quantitative Analysis, 22,419-438.

17



Taylor, S. 1. (1986): "Modelling Financial Time Series". Chichester: Wiley.
Taylor, S. J. (1987): "Forecasting the Volatility of Currency Exchange Rates", International Journal

ofForecasting, 3, 159-170.
Taylor, S. 1. (1990): "Modelling Stochastic Volatility", mimeo, University of Lancaster, Department

of Accounting and Finance.
Wiggins,1. B. (1987): "Option Values under Stochastic Volatility: Theory and Empirical Estimates",

Journal ofFinancial Economics, 19,351-372.

18


	324656130_0000
	324656130_0001
	324656130_0002
	324656130_0003
	324656130_0004
	324656130_0005
	324656130_0006
	324656130_0007
	324656130_0008
	324656130_0009
	324656130_0010
	324656130_0011
	324656130_0012
	324656130_0013
	324656130_0014
	324656130_0015
	324656130_0016
	324656130_0017
	324656130_0018
	324656130_0019

