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Abstract
Widespread electric vehicle adoption is considered a major policy goal in or-

der to decarbonize the transport sector. However, potential rebound effects both
in terms of vehicle ownership and distance traveled might nullify the environmen-
tal edge of electric vehicles. Using cross-sectional household-level microdata from
Germany, we identify rebound effects of electric vehicle adoption on both margins
for specific subgroups of electric vehicle owners. As our data is cross-sectional, we
resort to data-driven methods which are not yet commonly used in the economic lit-
erature. For the identification of changes in the number of cars owned after electric
vehicle adoption, we predict counterfactual car ownership using a supervised learn-
ing approach. Furthermore, we investigate the effect of electric vehicle adoption
on household mileage based on a genetic matching of households owning electric
vehicles to similar owners of conventional cars. For the selection of covariates for
matching, we contrast ad hoc variable selection based on the available literature
with a data-driven variable selection method (double LASSO). We cannot verify a
significant increase in the number of cars owned for households with one electric and
one conventional vehicle. For the subgroup of households who substitute the electric
car for a conventional vehicle, electric vehicle ownership is associated with a signif-
icant reduction in annual mileage of -23% of the sample mean. The result indicates
a strive for behavior consistent with the environmentally-friendly car choice rather
than a rebound effect. Our results are subgroup-specific and may not generalize to
the overall population. Methodologically, we find that data-driven variable selection
identifies a refined set of covariates and changes the magnitude of the estimation
results substantially. It may thus be considered a useful complement, especially in
settings with limited theoretical or empirical knowledge established.
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1 Introduction

In many countries in the Global North large-scale electric vehicle (EV) adoption has be-
come a firm political objective in order to decarbonize the transport sector where green-
house gas (GHG) emissions continue to rise steadily (EEA, 2019). However, it is a matter
of controversial debate whether EV adoption reduces overall carbon emissions or not. Be-
sides higher production emissions for EVs (Held et al., 2011) and CO2 emissions caused by
electricity generation, their decarbonization potential might be undermined by rebound
effects. Rebound effects may occur on two different margins: On the extensive margin,
households may buy an EV as an additional car in order to shift trips previously com-
pleted with zero- or low-carbon means of transport like walking, cycling or public transit
or to undertake additional trips. On the intensive margin, EV adoption may lead to a
rebound effect in terms of distance traveled by car, either as a result of the lower op-
erating costs EVs reveal compared to conventional cars (Lévay et al., 2017) or due to
moral licensing (Miller et al., 2010, for a review). Taking these potential rebound effects
into account is crucial for the comprehensive assessment of the potential EVs have for
transport decarbonization. Moreover, rebound effects would have important implications
for transportation policy in more general. As EVs use road infrastructure and induce
road-related externalities like congestion and accidents but do not pay fuel taxes, Davis
et al. (2019) discuss whether they should therefore pay a mileage tax. Externalities might
magnify if EVs were deployed as additional cars driving additional kilometers on a large
scale.

Yet empirical evidence on the existence and magnitude of potential rebound effects is
scarce. Most existing studies in the context of EV adoption make uniform assumptions
about counterfactual mileage for all EVs without empirical backing. For instance Hol-
land et al. (2016) and Davis et al. (2019) simply assume 15,000 miles/year for all EVs
considered. Demand models as in Xing et al. (2019) explicitly do not account for the
case of electric vehicles replacing non-car means of transport and may hence overestimate
the implied emission reduction. A notable exception is Klöckner et al. (2013) who docu-
ments both extensive and intensive margin rebound effects among electric vehicle owners
in Norway based on an online survey. Yet the response rate is rather low and Norway
constitutes a special case due to a particularly high share of renewable energy sources in
the power mix (NCM, 2014) and EVs in the Norwegian car fleet. By contrast, we focus
on Germany which has a substantially lower share of electric vehicles in the overall fleet.
On top of that, the share of renewable energy in the power mix in Germany has increased
but is also substantially lower than in Norway (Agora Energiewende, 2018).

We use comprehensive household-level microdata from the 2017 German national travel
survey Mobilität in Deutschland (MiD) for an empirical assessment of the potential re-
bound effects. Households report engine type and vehicle kilometers traveled (VKT) for
one year at the vehicle level as well as an extensive set of sociodemographic characteris-
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tics. Our treatment of interest is EV adoption. As treatment effects may vary conditional
on the household’s car portfolio, we restrict the analysis to a well-defined subsample. We
investigate households with one EV and one internal combustion engine vehicle (ICEV)
as our treatment group of interest as it is the largest subgroup among the EV-owning
households in the sample. We consider two possible cases: Either the EV may represent
an ICEV substitute or it may be bought as an additional car. According to this definition,
we observe 183 treated households. We first predict the treated households’ counterfactual
number of cars by means of a supervised learning approach. 23.5% of treatment house-
holds are predicted to have bought the EV as an additional car. We develop a test for
significance and assess general model performance measures. The evidence on the presence
of an extensive margin rebound effect is inconclusive. Building on the extensive margin
analysis, we restrict the analysis to 140 ICEV substituters in order to clearly disentangle
the intensive margin effect of EV adoption from the effect of buying an additional car. We
investigate the effect of EV adoption on household mileage by means of variable ratio ge-
netic matching. For variable selection, we contrast a selection based on a literature review
referred to as ad hoc with a data-driven variable selection method (double LASSO). As
ad hoc variable selection has been criticized for a lack of clear guidance on how to select
the relevant variables (as well as the functional form), data-driven variable selection is
suggested as complement for settings where identification relies on identifying the correct
set of relevant observables (Belloni et al., 2013). The direct comparison is also informative
for identifying weaknesses of the existing literature and for verifying effect sizes. We find
a significantly negative effect of EV adoption on aggregate household mileage in both the
LASSO-based and the ad hoc specification. Consequently, EV adoption seems to induce
a strive for behavior consistent with the environmentally-friendly car choice rather than
an intensive margin rebound effect among ICEV substituters. Evidently, lower annual
mileage relates to lower GHG emissions, irrespective of how the mileage is split among
the household’s cars. Lastly, we find that data-driven variable selection provides valuable
insights. It does not only identify a refined set of relevant confounders but also reveals
that the ad hoc specification underestimates the effect by a sizeable 30%.

This paper’s contribution is twofold. While the largest part of the existing literature
operates in hypothetical settings, our analysis is among the first to provide comprehen-
sive empirical evidence among actual EV owners on both extensive and intensive margin
rebound effects. Evidently, these potential effects are directly linked to the potential EVs
offer for decarbonizing the transport sector. In contrast to the previous literature, we
explicitly allow for EV adoption affecting car ownership. Secondly, the paper makes a
methodological contribution by contrasting a data-driven variable selection method with
ad hoc variable selection which provides novel insights into the potential of data-driven
methods for verifying variable selection and estimation precision.

The remainder of this paper is structured as follows. In section 2, we provide background
information about the data. Section 3 describes the empirical strategy and section 4
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presents our results. Section 5 concludes.

2 Data

We draw on recent household-level micro data from the German national travel survey
Mobilität in Deutschland 2017 (MiD). The MiD is a large-scale household survey commis-
sioned on behalf of the German Federal Ministry for Transport and Digital Infrastructure
(BMVI) every few years. The 2017 edition is the first edition with a sizeable number of 410
EV households. Our unit of analysis is the household. At the car level, households report
the number of cars owned, their respective engine type which provides information on
whether a vehicle is conventional or electric as well as annual vehicle kilometers traveled
(VKT) for up to three household cars.1Household VKT is obtained by aggregating VKT
across all household cars. We consider the car-owning households who report complete
car-level information only.2 Among those households, ICEV-EV ownership is distributed
as presented in Table 1. 0.29% of all households own at least one EV. While still low, this

no. ICEV/no. EV 0 1 2 3+ Sum
0 - 0.04 0.01 0.00 0.05
1 55.20 0.15 0.01 0.00 55.36
2 35.23 0.08 0.00 0.00 35.31

3 + 9.29 0.00 0.00 0.00 9.29
Sum 99.72 0.27 0.02 0.00 100.01

Table 1: Distribution of car portfolios among car-owning households in the MiD 2017

share exceeds the 0.1% EV market penetration in the overall German car market in 2017
(Kraftfahrtbundesamt, 2017) by factor 3. Among the EV-owning households, the largest
share owns one EV and one ICEV (52%).
A rich set of socio-demographic characteristics is available at both the individual and the
household level. For variables elicited at the individual level, we aggregate the information
to the household level.3 We also summarize several reply options for dimension reduction

1The data set consists of several sub-datasets which report information at different levels. The survey
methodology is described in detail in Nobis et al. (2018). For our analysis, we draw on the sub-datasets
provided at the car level, the household level and the individual level. Some variables are included in more
than one sub-dataset. As some of the variables mismatch in different datasets and the set of households
who reported information varies between the different levels, we consider the car-level data as the main
data source. Consequently, we only cover households who report at the car level. For these households,
we then merge additional household- and individual-level information from the other sub-datasets.

2More precisely, we exclude all households who do not report engine type or valid VKT for any of
their cars reported in the car-level data. We further exclude households with hybrid or non-specified
engine types as they are not clearly identifiable as EV or ICEVs. If in a two-vehicle household one car is
found to have reported zero VKT, we interpret this as a car which is not registered or broken and thus
not available for use. In this case, we correct the number of cars to one car which is available for use.

3We define an indicator for the existence of at least one household member with (one or more)
car sharing membership(s). We elicit the maximum education level reported among the members of a
household. We compute the share of adults who regularly use environmentally-friendly means of transport
(bike, public transit), referred to as ENVI, where regular is defined as at least once a week. We compute
the share of adults, the share of adult females and the share of unemployed household members to reflect
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for some variables.4 A detailed list of the extended variable set we use with all (summa-
rized) reply options can be found in Appendix A. As information on sociodemographics
is not perfectly complete for the whole sample, we restrict the sample to complete cases if
the variable is missing for below 5% of households considered and impute missing values
otherwise.5

We are interested in the effects of EV adoption on household mobility patterns including
car ownership and mileage traveled by car. We regard EV adoption as the treatment and
hence use the terms treated household and EV household interchangeably. In general,
notice that the effects of EV adoption may vary depending on the household’s car portfolio.
Particularly, in multi-vehicle households EV adoption might be less likely to affect total
mileage as the EV’s limited range can be compensated by between-vehicle substitution.
In order to investigate a well-defined treatment effect, we restrict the analysis to specific
subgroups of EV-owning households. To compare households with identical substitution
possibilities, we restrict the set of treated households to EV households owning one EV
and one ICEV. In this restricted treatment group, we observe 183 EV households. For
the effect of EV adoption on car ownership, we allow for two plausible cases: Firstly, the
EV could have replaced a previously owned ICEV. In this case, the household had been
a two-ICEV household prior to EV adoption and no extensive margin rebound occured.
We label this case substitution. Secondly, if the household had previously owned only
one ICEV, the EV represents an additional car and induces an extensive margin rebound
effect. Importantly, for the EV households considered this implies that treated households
had been ICEV-only households prior to EV adoption. Thus, we consider the effects of
EV adoption in ICEV-only households.6

We further specify the definition of treatment for the intensive margin and extensive
margin analysis separately. On the extensive margin, as some households may replace
their previously owned ICEV while others buy the EV as additional car, the effect of
EV adoption on car ownership is potentially heterogeneous. Treatment on the extensive
margin is thus defined as the decision to adopt an EV. As a result, the subset of ICEV-only
counterparts in the data is the universe of one- and two-ICEV households. Henceforth,
we refer to this set of households as ICEV households. We observe 66,830 households

the household’s structure. We count the number of adults with a valid driving license as these are the
ones that can use the household’s car(s) independently of each other. We also count the number of adult
employees as a proxy for the number of household members most likely to be commuters. Based on
personal characteristics, we exclude minors-only households and households which do not report age for
all household members as we cannot compute all aggregate characteristics.

4We summarize home ownership into home owners and renters. We create an indicator of at least one
child below 18 (instead of using the number of kids) in the household and place of residence in East Ger-
many (instead of using the precise state). We also categorize employment status into employed full-time,
employed other than full-time, unemployed, retired and in education (traineeship, school, university).

5We use nearest neighbor imputation for the variables highest vehicle segment and share of regular
bike/public transit users.

6Hence we exclude the possible but in our opinion unlikely cases that an EV replaces more than one
car or that EV adoption leads to the adoption of an additional ICEV in households that did not own any
cars before treatment.
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extensive margin intensive margin
treatmentgroup

households with 1 ICEV and 1 EV households with 1 ICEV and 1 EV
where the EV is an ICEV substitute

n 183 140
controlgroup

households with 1 or 2 ICEVs households with 2 ICEVs

n 109.728 42.898

Table 2: Definition of treatment and control groups

owning one ICEV and 42,898 owning two ICEVs. Whether the EV represents an ICEV
substitute or an additional car determines the number of household cars post-treatment.
For households buying the EV as additional car, mileage effects may both arise from the
effect of having an additional car at disposal and from the car being an EV. In our setting,
these two effects cannot be disentangled. In order to identify a well-defined treatment
effect at the intensive margin, we further restrict the treatment group to households for
which the EV is predicted to be an ICEV substitute in the extensive margin analysis.
This reduces our treatment group to 140 EV households. On the intensive margin, the
treatment considered is the substitution of one ICEV by an EV. The observed group is
restricted to households owning two ICEVs pre-treatment. As substitution among vehicles
may occur within-household upon EV adoption, our variable of interest is the annual
household VKT which we refer to as household mileage in the following. Yet notice that
a rebound effect in household mileage does not necessarily imply a rebound effect in GHG
emissions as the effect on GHG emissions depends on how mileage is split between the
electric and the conventional car.7. Table 2 summarizes the relevant information for our
definition of treatment for both the extensive and intensive margin analysis.

3 Empirical Strategy

As we work with cross-sectional non-experimental survey data, we require some assump-
tions to reintroduce the temporal structure required to conduct a treatment study. Par-
ticularly, we do not know the temporal order of car adoption. Therefore, we make a first
crucial assumption:

Assumption 1: The EV is the car bought most recently.

Otherwise the car portfolio could have changed since EV adoption and we would not be
able to attribute the effects observed to EV adoption. Moreover, any information we
observe reflects the moment of survey completion and is thus post-treatment. Yet for the
analysis to be informative, we need the covariates controlled for to reflect pre-treatment

7A rebound effect on GHG emissions may not occur if the EV is used to cover a larger share of total
mileage, even if total mileage increases.
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information which is only true if they have not changed since EV adoption. Therefore,
we require the following second assumption:

Assumption 2: The observable covariates and proxy variables for unobservables used in
the intensive and extensive margin analysis have not changed since EV adoption.

Importantly, assumption 2 includes that the relevant covariates have not been affected
by the treatment itself. We believe that this assumption is innocuous for the covariates
we use. The full set of covariates used in both models can be reviewed in Table 9.
Assumptions 1 and 2 allow us to consider EV adoption as treatment, the covariates as
pre-treatment information and only the outcomes car endowment and household VKT as
post-treatment information. We discuss our assumptions in depth in section 5.

3.1 Extensive margin

Given the treatment defined above, we investigate the effect of EV adoption on the num-
ber of household cars based on the potential outcome framework as first formulated by
Rubin (1974). Households differ in terms of their treatment status Th ∈ {0, 1}, with one
indicating treatment and zero denoting the absence of treatment. We designate the set
of EV households as HEV and the set of ICEV households as HICEV . For household h

in treatment status Th we observe the number of cars Yh,T . To identify extensive margin
rebound effects, we need to evaluate if EV adoption has led to an increase in the number
of cars owned for a significant share of EV households. Under the given assumptions, the
existence of extensive margin rebound effects amounts to testing the following hypothesis:

Hypothesis 1. An extensive margin rebound effect of EV adoption defined by the event
A = {Yh,0 = 1 ∧ Yh,1 = 2} occurrs with non-zero probability.

If we had complete information on Yh,0 and Yh,1, a feasible hypothesis test for Hypothesis
1 would be

H0: P (Yh,1 = 2 ∧ Yh,0 = 1) = 0 against H1: P (Yh,1 = 2 ∧ Yh,0 = 1) 6= 0.

Yet only one of the potential outcomes Yh,T with T ∈ {0, 1} is observed. Particularly,
∀h ∈ HEV Yh,1 is observed, while ∀h ∈ HICEV we observe Yh,0. Thus, in order to assess
the extensive margin rebound effect, an estimate of the counterfactual number of cars
an EV household would have owned in absence of treatment, i.e. Yh,0 for h ∈ HEV , is
required. We address the missing information problem using a supervised learning ap-
proach. As we only allow the EV to represent an ICEV substitute or an additional car,
the outcome is binary by construction, i.e. Yh,0 ∈ {1, 2}. Furthermore, households char-
acteristics Xh represent pre-treatment information by assumption 2. We can thus predict
the counterfactual number of household cars in EV households by exploiting correlation
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between household characteristics Xh and the number of household cars Yh prevailing
among ICEV households.

We do so in three steps. First, we estimate the relationship between household charac-
teristics Xh and observed car ownership Yh,0 among the set of ICEV households HICEV

with a binary logit model. To be precise, we estimate a model classifying a household
with one ICEV as the "event" and a household with two ICEVs as the "non-event". To
be able to evaluate the models performance after model estimation, we split the ICEV
households randomly into a train set and a test set comprising 80% and 20% of the ICEV
households, respectively. The model is estimated on the train data only. Secondly, the
model performance is measured on the test data by a confusion matrix, the model’s sen-
sitivity and specificity as well as the area under the curve (AUC).8 To do so, we predict
the number of household cars for the households in test data which had not been used for
model calibration. The model estimation is supervised in the sense that we know the true
number of cars ICEV households own which we then compare to the model predictions
on test data for assessing model performance. As the set of ICEV households available
comprises a very large number of households, we are able to estimate the model with
high confidence. By construction, EV households would have been one- or two-ICEV
households in absence of treatment. Thus, the model’s predictive ability on test data can
be considered an estimate for the predictive ability on EV households. In a third step,
we predict the number of cars EV households would have owned in absence of treatment
based on the model estimated in the first step. Using the estimate for the share of EVs
predicted to be substitutes for a previously owned ICEV from the treatment sample and
the estimate for the model’s specificity on the test data, we develop a feasible way to test
Hypothesis 1. Details on the derivation can be found in Appendix C.

More details on steps 1 and 3 are provided below. We have a large set of observables
χh. In the first step, we use the training data subset of ICEV households to estimate
the relationship between the observables χh and the number of cars Yh,0 in a household
without EVs in a binary logit model with Yh,0 ∈ {1, 2}. As not all observables χh may
be relevant predictors of Yh,0, we exploit approximately linear relationships between the
relevant subset of observables Xh and the logit of the outcome Yh,0 = yh,0.9

ln( P (Yh,0 = yh,0)
1− P (Yh,0 = yh,0)

) = X ′hβ + εh

8The confusion matrix lists the two dimensions predicted versus actual number of cars for the set of
classes, in our case one or two vehicles. Sensitivity and specificity report the true positive rate and true
negative rate, respectively. The AUC summarizes the area under the Receiver Operator Curve (ROC)
which plots the share of true positive predictions against the share of false positive predictions. In our
case, the classifications are based on the predicted propensity scores for Yh,0 from the logit model and
a cutoff probability to predict Yh,0. This cutoff probability again is found by minimizing the model’s
misclassification error rate on the test data. The ROC is plotted for each cutoff level. An AUC between
0.5 corresponds to random guessing, an AUC of 1 to perfect predictions. For a more detailed discussion
of the AUC for model evaluation refer to Bradley (1997).

9In an approximately linear model all regressors enter linearly or as their transformations. Small
approximation errors are permitted.
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In the given regression formula, the left-hand side of the formula gives the logit for the
number of ICEVs in a household, the regression coefficients are given by β and εh is house-
hold h’s linear projection error. As we assume the model to be approximately sparse,10

we can use the Least Absolute Shrinkage and Selection Operator (LASSO) introduced
by Frank et al. (1993) and Tibshirani (1996) to select the relevant predictors X from
the overall set of covariates χ. The LASSO regularization optimizes an objective function
based on mean squared error plus a shrinkage term λ which penalizes the size of the model
and thus leads to improved out of sample predictions in comparison to the unpenalized
model.11 Under the sparsity assumption and a set of fairly general regularity conditions,
the LASSO identifies the set of variables with non-zero coefficients and shrinks all other
coefficients to zero (cf. Chetverikov et al., 2016). Yet in our data the majority of ob-
served covariates is scaled ordinally or nominally. As categorical variables are included as
separate dummy variables, the LASSO is likely to exclude single categories of a variable
without excluding the entire covariate (Meier et al., 2008). The modified group LASSO as
first introduced by Bakin (1999) and later generalized by Yuan et al. (2006) summarizes
these dummy variables into a group which can only be exempt as a whole. The group
LASSO optimizes the following penalized regression formula:

β̂ = arg min β 1
2 ‖y − χβ‖

2
2 + λ

G∑
g=1

√
pg

∥∥∥β(g)
∥∥∥

2

where λ ≥ 0 controls the degree of penalization,
∥∥∥β(g)

∥∥∥
2
is equal to

√∑
j∈Ig

β2
j ,12 G is

the number of non-overlapping groups Ig of covariates in χ and pg is the number of
covariates in group g (Yang et al., 2015). By shrinking the coefficients of the irrelevant
covariates in χ to zero, the group LASSO selects the relevant covariates X for our logistic
regression model. We apply a group LASSO and group dummy regressors with respect
to the underlying categorical variable as suggested by Yang et al. (2015).13 To obtain the
optimal rate of convergence, λ is chosen via K-fold cross-validation (cf. Chetverikov et al.,
2016).14 We use K = 10 and choose the value of λ corresponding to the highest amount
of shrinkage which is still within a one standard error range of the lowest cross-validated
average misclassification error rate, referred to as λ1se, with the missclassification error

10Among all available confounders χ, only s variables X have non-zero coefficients, with s << N , N
being the number of observations.

11Out of sample predicion performance becomes relevant when a prediction model is estimated on one
data set, and then used to make predictions on another data set. Without the penalty term, there is a
risk of over-fitting the model to the data used for model estimation.

12It is important to note that all covariates in χ are standardized before model estimation, such that
the scale of a covariate does not matter for the degree od penalization.

13We use the R-package "gglasso" to implement the group LASSO.
14For K-fold cross-validation, the data set is partitioned into K subsets and a LASSO-regression fitted

for each subset and each candidate value of the penalty term λ. For a more detailed discussion, see for
instance Chetverikov et al. (2016). In each cross-validation step, the group LASSO formula is optimized
over a grid of 100 different lambda values. For details on how the grid is chosen refer to Yang et al. (2015).
The average cross-validated error for each λ and the corresponding standard deviation are retrieved.

8



rate being Error = 1
n

∑
i I(yi 6= ŷi). λ1se is a heuristic choice of λ in cross-validated

LASSO models aiming to produce a less complex but statistically equally good model.

In the third step, the model is applied to the EV households to predict the counterfactual
number of cars in these households in absence of treatment, i.e. Ŷh,0. Using the predic-
tions Ŷh,0 ∀h ∈ HEV and estimates of the predictive ability of Ŷh,0 retrieved from the
test sample, we recover a feasible test for Hypothesis 1. As we develop in Appendix C,
under H0 and given the channels addition and substitution for EV adoption, the model’s
specificity E(I(Ŷh,0 = 2)|Yh,0 = 2) is equal to the probability of an EV being classified
as an ICEV substitute E(I(Ŷh,0 = 2)|Yh,1 = 2). This is because the only channel left for
EV-adoption under H0 is the substitution of a previously owned ICEV. Thus, the number
of cars on a household pre- and post-treatment are equal under H0, Yh,0 = Yh,1.
We can estimate the share of households with Ŷh,0 = 2 for h ∈ HEV as 1

|HEV |
∑|HEV |

h=1 I(Ŷh,0 =
2). A sample analogue for E(I(Ŷh,0 = 2)|Yh,0 = 2)) is captured by the model’s specificity
estimated on the ICEV test data. Assuming that Ŷh,0 are independent and identically
distributed over households15, we find

1
|HEV |

|HEV |∑
h=1

I(Ŷh,0 = 2) d→ N (E(I(Ŷh,0 = 2)|Yh,1 = 2), σ1)

Specificity
d→ N (E(I(Ŷh,0 = 2)|Yh,0 = 2), σ2)

Taken together, this allows us to test Hypothesis 1 by testing

H ′0 : E(I(Ŷh,0 = 2)|Yh,1 = 2) = E(I(Ŷh,0 = 2)|Yh,0 = 2) against

H ′1 : E(I(Ŷh,0 = 2)|Yh,1 = 2) 6= E(I(Ŷh,0 = 2)|Yh,0 = 2)

using Welch’s two-sample t-test (unpaired, two-sided).16 The validity of testing H ′0 to
potentially reject H0 is derived in Appendix C.

3.2 Intensive margin

Building on the extensive margin analysis, we investigate the effect of EV adoption on
household mileage for ICEV substituters in a second step. Again we base our analysis on
the potential outcome framework (Rubin, 1974). We are interested in household mileage
completed by EV households in the absence of treatment which is unobserved. The house-
holds considered would have been two-ICEV households in absence of treatment. Hence
the universe of two-ICEV households represents the relevant set of potential control house-
holds. We use a genetic matching approch to identify the subset of households which is
most similar to the treatment households in all relevant pre-treatment characteristics.

15Given the model estimated in step 1, drawing Ŷh,0 is equivalent to drawing Xh, which we assume to
be an independent and identically distributed (iid) random vector. Thus, Ŷh,0 is iid as well.

16Notice that E(I(Ŷh,0 = 2)|Yh,0 = 2)) and E(I(Ŷh,0 = 2)|Yh,1 = 2) are expectations over different
sub-populations. Thus, the validity of testing H ′

0 instead of H0 is not trivial.
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Thus, the set of relevant pre-treatment characteristics needs to be established in a first
step. We refer to this step as variable selection. In this paper, we contrast an ad hoc
variable selection based on existing theoretical and empirical evidence with a data-driven
variable selection procedure (double LASSO). We compare the sets of variables selected
with respect to congruence. The methods are described in detail in the following. The
data-driven variable selection is based on a group LASSO as described in section 3.1. We
again assume an approximately linear, sparse model. In addition to sociodemographic
factors, attitudes and preferences may play a role for the adoption decision. As the MiD
does not elicit attitudes directly, we additionally assume the following for the conditional
independence assumption (CIA) to hold:

Assumption 3: All relevant attitudinal determinants of EV adoption and VKT can be
proxied by observables.

Our equation of interest reads as follows. For household h,

V KTh = αEVh +Xhθ + rh + ζh (1)

with outcome V KTh, treatment EVh, the set of relevant control variables Xh, approxi-
mation error rh and error term ζh with E[ζh | EVh, xh, rh] = 0. α is the treatment effect
of interest. However, running group LASSO on this single equation is problematic as
the LASSO may shrink α to zero if the treatment is correlated with the confounders.
Moreover, regularization tends to underestimate non-zero coefficents and may erronously
exclude variables with moderate non-zero coefficients. The CIA posits that treatment
assignment becomes ignorable only after controlling for all relevant confounders which
are related to both treatment status and outcome. Hence, if the mentioned variables are
predictors of treatment, omitted variable biases may arise. In order to safeguard against
such biases, it is necessary to split the analysis into two separate LASSO estimations
as suggested by Belloni et al. (2014). The so-called double LASSO procedures subjects
both treatment and the outcome variable of interest to a separate LASSO.17 We first fit
a group LASSO to predict the outcome variable household mileage with the observables
(henceforth VKT LASSO).18

V KTh = x′hθV KT + rV KT,h + νh (2)

We retrieve the set of θV KT predictors. Secondly, we fit a group LASSO to predict EV
ownership with the available observables in order to capture the relationship between
treatment and controls (henceforth EV LASSO). As the outcome variable is binary, we

17An easy-to-read guideline can be found in Urminsky et al. (2016).
18For the VKT LASSO, we run OLS. We use the R package gglasso and choose the L2 norm as loss

function for the cross-validation. Note that we cannot directly infer effect magnitudes as standard errors
are incorrect (Belloni et al., 2013).
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use logistic regression for the classification problem. In both cases, we again split our
data into 80% used to train the model and 20 % for model evaluation. In the model
selection step, we use 10-fold cross-validation on the train data to choose the optimal
penalty parameter λ. Choosing the tuning parameter is less straightforward for variable
selection (Kirkland et al., 2015). We again choose λ1se as tuning parameter. Yet as
EV ownership is a rare event, defined as the minority class comprising less than 5% of
the sample, the data is imbalanced with respect to class. Resampling can be applied to
reduce class imbalance (see e.g. Kotsiantis et al., 2006, for a review). We apply under-
sampling, i.e. we randomly draw as many households from the set of potential control
group households as we have treated households and discard all other control households
so that both treatment and control group have the same class size. We then run the group
LASSO on the re-sampled train set of treated and control households. Instead of a least
squares error, we use the misclassification error rate as the loss function to be optimized
in cross-validation for the EV LASSO. We repeat this procedure 100 times. In each of
the 100 iterations, for household h we have

EVh = x′hθEV,i + rEV,h,i + νh,i (3)

In each iteration i, we retrieve the set of θEV,i predictors. We count in how many iterations
a variable is selected and choose those selected in at least 75 iterations, θEV = ∪ θEV, c≥75

for count c. This threshold is chosen ad hoc. As robustness checks, we choose 60 and
90 as alternative cutoffs. After fitting the Logit-estimator with the selected set of covari-
ates to the entire train set, we evaluate the model’s predictive ability on the test data.
The matching is then conducted based on the union of variables selected from the double
LASSO, θDL = θV KT ∪ θEV . θDL represents the set of matching variables. For the alter-
native ad hoc specification, we follow the same logic and select variables related to EV
adoption and household mileage based on a review of the available empirical literature.19

Assumption 2 guarantees that we do not face endogenous control problems. Nonetheless,
an additional assumption is required for the matching procedure to be interpretable. As
the survey questions do not provide information on when a vehicle was bought, we cannot
differentiate EV households based on the duration of EV ownership. Instead, we observe
the average effect in a population with unknown distribution in duration of EV ownership.
The effect observed in the sample reflects the actual treatment effect only in the special
case of constant treatment effect over time. For ease of interpretation, we posit that the
treatment effect unfolds upon adoption and does not amplify or perish over time.

Assumption 4: The treatment effect is constant over time.
19Yet notice that the LASSO detects the relationship between the outcome variable and the charac-

teristics for one- and two-vehicle households only while the literature considers EV adoption across all
types of households and does not allow for further differentiation based on car portfolio. If the chosen
subsample differs significantly from the overall population, the ad hoc variable selection may not precisely
reflect the subsample of interest.
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Given this assumption, we use EV adoption and EV ownership interchangeably. Based
on the respective set of matching variables, we apply variable ratio genetic matching with
replacement as introduced by Diamond et al. (2013).20 The genetic matching algorithm is
a multivariate matching method based on a search algorithm to optimize post-matching
covariate balance. The algorithm matches treated and control households based on a
generalized Mahalanobis distance

GMD(Zh, Zh|W ) =
√

(Zh − Zh)T (S− 1
2 )TW (S− 1

2 )(Zh − Zh)

with Zh =
 Xh

PSh

, the set of covariates X and propensity score PS. In extension of a

standard Mahalanobis distance, the weights W of the individual variables are optimized
by minimizing the largest individual discrepancy based on p-values from a Kolmogorov-
Smirnov test and paired t-tests for all variables chosen for matching. This procedure is
particularly flexible, as it allows for dimensionality reduction by assigning potentially all
weight to the propensity score but also for enhancing post-matching balance by including
further variables to match on (Diamond et al., 2013). Finally, we investigate the average
treatment effect on the treated (ATT) in the matched sample. We now estimate the
equation of interest (1) outlined above on the matched subsets, with θ being the set of
selected control variables θDL, respectively. Weighted OLS is used to reflect the fact that
different controls assigned to the same treated households may have different values for
some covariates.

4 Results

4.1 Extensive Margin Analysis

The model developed in section 3.1 predicts household car ownership to consist of one
ICEV before treatment for 23.5% of the observed EV households.21 As all EV households
studied own two vehicles post-EV adoption, the EV is predicted to represent an additional
car for these households. Conversely, the model predicts 76.5% of EV households to have
substituted an ICEV. The model’s specificity, i.e. the rate of true substitution predictions
estimated on test data, is moderate. Only 75.3% of all test households owning two ICEVs
were also predicted to own ICEVs. The remaining 24.7% were falsely predicted as one-
ICEV households. Table 3 displays the results of testing Hypothesis 1 usingH ′0. According
to the developed test, the share of EVs bought as ICEV substitutes is not significantly
different from the model’s specificity (t(190) = 0.39, p = 0.70). Hence, we cannot reject
the feasible hypothesis H ′0 which implies we cannot reject H0 either. Based on this test we

20For implementation, we use the MatchIt R package (Ho et al., 2011).
21The variables selected for the model can be found in Table 9 in Appendix A.
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conclude that the share of EVs bought as additional cars is not significantly different from
zero. Yet notice that the test reveals reduced power of testing hypothesis H ′0 compared
to testing H0 which is infeasible in the potential outcome framework given, which may
also explain the insignificance. Further model evaluation measures as reported in Table
3 suggest that the prediction is relatively precise. The sensitivity of 83% estimated on
the test data shows that, given the model applied for the prediction of the counterfactual
number of ICEVs in the treated households, we can expect that 83% of the EVs bought
as an additional car are also predicted to be additional. The confusion matrix in Table
4 reveals that the share of ICEV households predicted to own one car is very close to
the actual share of two-ICEV households in the test data. Given the AUC of 0.88, the
model’s prediction performance can be considered medium to high. Taken together, the
evidence on whether an extensive margin rebound effect exists for the subsample of EV
owners considered is inconclusive. While the test developed does not indicate the share of
additional EVs to be significant, other performance measures suggest that a substantial
share of additional EVs exists in the sample.

Measures of Prediction Performance
Sensitivity 0.8296
Specifity 0.7527
AUC 0.8801
Test Results
Share of substitution EV households 0.7650
Specificity 0.7527
Difference 0.0124
Confidence Interval [-0.0503, 0.0750]
t-Statistic 0.3894
p-Value 0.6974
Degrees of Freedom 190.0993

Table 3: Measures of Prediction Performance and Test for Extensive Margin Rebound
Effects

Yh,0 = 1 Yh,0 = 2 Share
Ŷh,0 = 1 11103 2118 60.24
Ŷh,0 = 2 2280 6445 39.76
Share 60.98 39.02 100.00

Table 4: Confusion Matrix

4.2 Intensive Margin Analysis

We first elaborate on how the ad hoc variable selection is built and then compare it to the
data-driven variable selection results. In a second step, we run the respective matching
algorithms and report the results. Table 5 provides an overview of the sociodemographic
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Study Country Sample size Socio-demographics
EV adoption
Anable et al. (2011) UK N=2,729 gender, income
Hidrue et al. (2011) U.S. N=3029 age, education
Plötz et al. (2014) Germany N=969/N=210 full-time employment, re-

gional type, household size
Vassileva et al. (2017) Sweden N=247 gender, education, income
Sovacool et al. (2018) Nordic

countries
N=5,067 gender, education, full-time

employment, age
VKT
Büchs et al. (2013) UK N=24,446 income, household size, re-

gional type, education, age
structure

Munyon et al. (2018) U.S. N=82,485 income, regional type, home
ownership, household size,
number of drivers, number
of workers

Sovacool et al. (2018) Nordic
countries

N=5,067 household size, age struc-
ture, employment

Table 5: Literature review on sociodemographic factors related to EV adoption

factors related to EV adoption or VKT identified in the existing literature. As there
are important caveats in the literature, little causal knowledge is yet established. Impor-
tantly, the evidence on EV adoption is almost exclusively survey-based. Except Vassileva
et al. (2017), none of the studies is conducted among actual EV owners. Instead, re-
spondents face a hypothetical choice setting or report their intention to adopt. However,
an intention-behavior-gap is well established in the psychological literature (e.g. Sheeran,
2002, for an overview). The surveys may thus not necessarily reveal the characteristics of
actual early adopters. Moreover, the studies were conducted in different countries with
heterogeneous institutional arrangements for EV adoption. Country-specific results may
not be generalizable. In addition, most studies date back several years while conditions
for EV adoption and usage have improved in many countries in recent years. As results
are inconsistent among the different studies, we mainly build on Plötz et al. (2014) to
capture the German context as closely as possible. As Plötz et al. (2014) do not elicit
income-related information, we add economic status as socioeconomic drivers which early
adoption theory has pointed out as relevant (Rogers, 2003) and which is univocally con-
firmed in other empirical studies (Anable et al., 2011; Hidrue et al., 2011). Moreover,
more recent studies reveal that home ownership is important for EV adoption (Vassileva
et al., 2017; Davis, 2019). Given the German legal context, the lack of home ownership
represents a plausible impediment to EV adoption, particularly for tenants in apartment
buildings, and we hence include home ownership status as a matching variable.22 With re-

22According to German law (Wohnungseigentumsgesetz, §22, Abs. 1), all owners of a building have to
agree to the installation of a charging facility for electric vehicles. Renters living in an appartment thus
need to seek approval from all other apartment owners and convince the landlord to cover the installation
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spect to attitudinal determinants, Plötz et al. (2014) find that pro-environmental attitudes
and affinity to technology play an important role for intended EV adoption.23 As the MiD
does not elicit attitudinal variables, we use the share of retirees as proxy for openness to
technology and the level of household education as proxy for pro-environmental orienta-
tion as e.g. found in Meyer (2015). With respect to household mileage, we follow Munyon
et al. (2018) which represents the most comprehensive analysis but add the share of the
household’s retirees as well as the share of adults as indicators of age structure identified
to be relevant in both Büchs et al. (2013) and Sovacool et al. (2018). We again use educa-
tion as a proxy for environmental awareness as the relevance of environmentally-friendly
attitudes for car mobility is demonstrated in e.g. Kahn (2007). Table 9 in Appendix A
presents the variables selected ad hoc alongside the LASSO results. With respect to EV
adoption, the LASSO confirms only the subset of ad hoc variables reflecting economic
status and age structure. As can be seen in Table 9, the variable selection is relatively
robust across the three cut-offs. Therefore, we use the intermediate cut-off of 75 for
further analysis.24 With respect to household VKT, the LASSO confirms all variables
identified ad hoc except household size but also adds an extensive set of additional vari-
ables. Among others, the additional variables again reflect economic status (highest car
segment, share unemployed) and age structure. Moreover, access to and habit to use
different (environmentally-friendly) means of transport as reflected in mobility portfolio
and the share of respondents who use low- or zero-carbon transport on a regular basis is
plausibly indicative of household VKT. Taken together, home ownership and household
composition in terms of age and gender reveal extraordinary importance across outcome
variables and thus for mobility behavior in general.

To sum up, the data-driven LASSO is only partially congruent with the ad hoc selection.
While too many variables have been identified for EV adoption ad hoc, a substantial set
of factors relevant for VKT goes unnoticed. It is yet unclear whether this indicates a
weakness of the literature or whether this results from the different subsets of households
considered.

In the extensive margin analysis, we identified 140 EV households for which the EV is
predicted to be an ICEV substitute. For these households, we match on the union of
variables identified, respectively. Based on the ad hoc variable selection, the matching
algorithm finds 9838 suitable control households among all two-ICEV households. As a
result of the more comprehensive list of matching variables, the LASSO-based matching
algorithm finds 355 control households only. While substantial imbalances exist prior
to matching, the genetic matching strongly improves balance such that the standardized
difference in means is close to zero for all variables in both specifications, as Table 6
costs.

23This is in line with previous literature which has established a strong link between pro-environmental
attitudes and intentions towards pro-environmental behavior (e.g. Bamberg et al., 2007). However, the
relationship between attitudes and actual behavior is less clear due a widely observed attitude-behavior-
gap (e.g. Heslop et al., 1981; Gatersleben et al., 2002).

24For a model using all variables selected at c = 75, the AUC is 0.83.

15



demonstrates. Figure 1 plots the distribution of household mileage by treatment status

Figure 1: Household mileage by treatment status

post-matching. In both specifications household mileage is more concentrated and reveals
a lower mean among EV households than among ICEV households. The regression results
in Table 7 confirm this finding.25 When controlling for all relevant confounders, house-
hold mileage is significantly lower among EV households than among ICEV households
in both specifications. The difference amounts to -16.8% of the sample mean VKT in the
ad hoc specification. In the LASSO-based specification, EV ownership is associated with
a reduction in annual VKT of -23.3% compared to the sample VKT average which is even
more pronounced than in the ad hoc case. Overall, we do not find statistical evidence
for an intensive margin rebound effect for the subgroup of ICEV substituters irrespective
of the specification. Instead, EV adoption is consistently related to significantly lower
household VKT in two-vehicle households. The negative relationship may be explained
by the strive for behavior consistent with the environmentally-friendly car choice. Adopt-
ing an environmentally-friendly car may induce households to reconfigure their mobility
patterns, particularly to reduce the mileage traveled by car. In any case, lower household
mileage post EV adoption is associated with lower GHG emissions from driving the car,
irrespective of the split in mileage between the household’s EV and ICEV.

However, we treat our results with caution due to the strong assumptions required for
tractability. Also note that the adjusted R2 of the LASSO-based model is overall rather
low. It is even slightly lower in the LASSO-based regression than in the ad hoc model

25We only report the coefficient of interest due to the extensive list of control variables.
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prior post
ad hoc LASSO

household size 0.27 0.00
no. employed 0.28 0.00
no. adults with driving license 0.03 0.00 0.02
regional type 0.19 0.00 -0.02
home ownership 0.69 0.00 0.00
economic status 0.62 0.01 0.00
share retirees -0.52 0.00 0.00
share adult females -0.06 0.00 0.00
highest educational level 0.47 0.00 0.00
share adults -0.32 0.00 0.00
income (eq) 0.37 0.01
mobility portfolio 0.25 0.04
highest car segment -0.09 0.00
log income (eq) 0.49 0.01
share ENVI users 0.01 0.00
share unemployed 0.02 0.00

Table 6: Standardized Mean Differences prior and post-matching

household VKT
ad hoc LASSO

EV household −5425.8∗∗∗ −7744.0∗∗∗
(3266.2) (2072.0)

. . .
R2 0.14 0.21
Adj. R2 0.13 0.12
Num. obs. 9978 495
RMSE 17877.60 20173.19
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table 7: Regression results

which is likely an outcome of the higher number of regressors but lower sample size.
Although sign and significance level are identical across specifications, the magnitude of
the effect differs. The ad hoc specifications underestimates the effect by 30% compared to
the LASSO-based results. Methodologically, the analysis shows that data-driven variable
selection is a useful complement for literature-based variable selection: As results differ
among ad hoc and LASSO selection, data-driven approaches allow the verification of
confounder selection and estimation precision established ad hoc. They can be considered
particularly (but not exclusively) useful when little theoretical or empirical knowledge
is yet established and if the specific subsample of interest may differ from the overall
population.
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5 Discussion

This paper uses recent household-level micro data from the national travel surveyMobilität
in Deutschland 2017 to investigate the potential rebound effects EV adoption may induce
both at the extensive and the intensive margin. In contrast to most previous studies, we
were able to analyze the mobility behavior of actual EV owners based on data from a
large-scale national travel survey. For a well-defined extensive margin analysis, we restrict
the treatment group to the subset of households owning one EV and one ICEV which is
the largest subgroup of EV households in the data set. We observe 183 treated households.
At the extensive margin, the EV is predicted to represent an additional car for 24% of
the EV households by means of supervised learning. We cannot conclusively assert the
extensive margin rebound effect to be significant effect among the subgroup of EV owners
considered. More generally, note that we only investigate a specific subgroup of EV
owners. Evidently, the results may vary for other subgroups and are thus not conclusive
for policy advice. Particularly, households without a car but high environmental awareness
may be particularly prone to buying an EV as additional car.

For intensive margin analysis, we focus on the subset of treated households who adopted
an EV as an ICEV substitute which reduces the size of the treatment group to 140
households. Technically, treatment of interest becomes the substitution of one of two
household ICEVs with an EV. In a genetic matching approach, we recruit a control group
for the treated households from a large set of 42,898 two-ICEV households. For matching
variable selection, we contrast ad hoc variable selection based on the limited empirical
and theoretical literature with a data-driven variable selection algorithm (double LASSO).
Overall, we do not find a significant rebound effect of EV adoption on household mileage
for the subset of EV households considered. Instead, household mileage significantly
lower among EV households than in the control sample which is indicative of a strive for
behavior consistent with the environmentally-friendly car choice rather than a rebound
effect. Lower annual mileage is related to a decrease in GHG emissions, irrespective of
how mileage is divided among the household cars. The data-driven variable selection
identifies a refined set of variables and suggests a 30% higher effect size than the ad hoc
selection. It can thus be considered a useful complement to literature-based selection.

However, there are several limitations to our analysis. Most importantly, we cannot rule
out reverse causality. Households may select into EV ownership based on the mileage
required to satisfy their mobility demand. This selection may on the one hand be driven
by the lower variable cost per km. Vassileva et al. (2017) find this consideration to be
a relevant aspect for EV adoption among EV owners. On the other hand, the limited
driving range of EVs could play a role for car purchase decisions and household VKT. For
the household VKT, we argue that the limited driving range is likely to play a minor role
in the multi-vehicle households considered. Firstly, even moderate driving ranges of EVs
available today are sufficient to capture the daily mobility demand of most households
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(Pearre et al., 2011; Habla et al., 2020). Additionally, as we restrict the analysis to multi-
engine households, between-vehicle substitution is possible if the required distance cannot
be completed with the EV. Thus, EV range restrictions are not likely to affect annual
household mileage substantially in the EV-owning households considered. Nonetheless,
an EV’s limited driving range might psychologically deter households with high mobility
demand from adoption (Franke et al., 2012). If causality works in this direction, the
lower household mileage found among EV households may rather reflect a selection effect
instead of a treatment effect. Moreover, although the survey is large-scale overall, the
number of EV households both in the sample as well as in the overall population is still
low. Consequently, one can assume that EV households still constitute early adopters. As
early adopters are a highly selected subsample of the overall population (Rogers, 2003),
the effects established may differ from the overall population once market penetration
increases and are thus not generalizable.

Several challenges for identification are posed by the temporal structure of the data and
the scope of the variables contained in the survey. We rely on four crucial assumptions for
which validity cannot be assessed directly. In the following, we discuss their plausibility.
Due to the absence of a panel data structure, we are required to make three assumptions
to recover sufficient temporal information for estimation. Assumption 1 posits that the
EV is the last car the household has added to its car portfolio. This is a largely plausible
assumption as EV market penetration has only taken off in recent years in Germany.
Therefore, most EV households are likely to have bought the EV only recently at the
time of survey in 2017 . However, it may not hold for all cases and evidently represents
a generalization. As the analysis requires observables to reflect pre-treatment informa-
tion, assumption 2 states that the covariates controlled for have not changed since EV
adoption. If the EV was adopted long ago, it is conveivable that household characteris-
tics may have changed since adoption. In this case, we observe household characteristics
with measurement error. Given that EVs are overall a rather new phenomenon and sub-
stantial adjustments to living circumstances are likely to occur in the long-run, if at all,
we argue that assumption 2 can still be defended as we mostly rely on socio-economic
information about the household. However, the treatment may also directly influence the
control variables. In this case, we face a problem of endogenous controls in the intensive
margin analysis. Most plausibly, EV adoption may induce changes in the use of other
means of transportation that are considered environmentally-friendly like cycling, pub-
lic transport and walking, which would invalidate the LASSO-based matching where the
share of regular users of environmentally-friendly means of transportation is selected as
a matching variable. Even more critically, the lack of information on when a particular
car was adopted also requires us to presume in assumption 4 that the treatment effect is
constant over time. We therefore implicitly exclude learning over time or lagged effects.
If the rebound effect in mileage was predominantly driven by an income effect, it seems
possible that the effect does not occur instantly as households may take some time to
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realize the cost differences in their expenses. Lagged effects would imply that the mea-
sured effect represents a lower bound if a substantial share of treated households adopted
the EV only recently. By contrast, if the effect is primarily driven by moral licensing, it
does not seem implausible to assume immediate effect occurence. However, also in this
case adaptation and learning over time may amplify or weaken effect size over time. All
in all, the assumption of homogenous effect size over time is a strong assumption with-
out empirical or analytical backing. The second threat to identification arises from the
limited scope of variables elicited. Most importantly, only sociodemographic variables
are elicited while attitudes are unobserved. In order to plausibilize the conditional inde-
pendence assumption required for the matching to be valid, we assume that attitudinal
variables relevant for EV adoption are captured to a sufficient extent by the given observ-
able proxy variables (assumption 3). While the positive correlation between education
and pro-environmental attitudes has been demonstrated repeatedly, the age proxy seems
rather weak as it is unable to capture heterogeneity in openness towards technology within
age groups. On the other hand, the list of observeable matching variables is substantive
in scope so that similarity in unobservables becomes likely (cf. Altonji et al., 2005). More-
over, the evidence with respect to the role of attitudes for EV adoption primarily bases on
the relationship between attitudes and intention to adopt with Vassileva et al. (2017) as
an exception. If the link between attitudes and actual adoption is weak as the presence of
a well-documented intention-behavior-gap may suggest, the attitudinal variables we need
to proxy for may not even be relevant drivers of EV adoption. As a consequence, the
quality of the proxy variables may be of limited concern. However, if we have insufficient
control over relevant attitudinal drivers of both EV adoption and VKT, the results may
rather evidence a selection instead of a treatment effect. Especially pro-environmental
attitudes could lead to both lower mileage and higher propensity to adopt an EV (cf.
Kahn, 2007). Given these caveats, we caution against strong causal interpretation.

Future research is needed to provide clear causal evidence with respect to the effects of EV
adoption on car ownership, household mileage as well as on GHG emissions taking both
emissions from vehicle production and operation into account. In order to address the
limitations we face, micro-level data with an even more comprehensive scope and temporal
dimension are required. As decarbonizing the transport sector becomes an increasingly
important policy goal, highly granular data is required to allow researchers and policy
advisors to develop scientific guidelines for effective policies and regulations.
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A Variable List

Variable Characteristic Description
household size categorical ∈ [0, 8]

home ownership
1 rent
2 property

car sharing
membership

0 no
1 yes (with at least one provider)

type of household
1 young household (under 35 years)
2 family
3 adult-only household
4 household with persons over 65

years

mobility portfolio

1 car
2 car and bicycle
3 car and carsharing
4 car, bicycle and carsharing
5 bicycle
6 bicycle and carsharing
7 carsharing
8 without car, bicycle and carshar-

ing

highest car segment

1 small
2 compact
3 mid-range
4 large

regional type

51 metropolis
52 regiopolis/ large city
53 medium-sized town
54 urban area
55 small town, rural area

number of
motorbikes/mopeds in
household, grouped

0 no motorbike/moped
1 1 motorbike/moped
2 2 motorbikes/mopeds
3 3 motorbikes/mopeds
4 4+ motorbikes/mopeds

number of electric
bicycles/pedelecs in
household, grouped

0 no pedelec/electric bicycle
1 1 pedelec/electric bicycle
2 2 pedelecs/electric bicycles
3 3pedelecs/electric bicycles
4 4+ pedelecs/electric bicycles

number of bicyles in
household, grouped

1 1 bicyle
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2 2 bicyles
3 3 bicycles
4 4+ bicycles

secondary residence
0 no
1 yes

kids (< 18)
0 no
1 yes

highest reported
educational level

0 no degree (yet)
1 lowest educational degree (Volks-

or Hauptschulabschluss)
2 medium educational degree (Re-

alschulabschluss)
3 A-levels
4 university degree

Eastern Germany
indicator

0 Western Germany
1 Eastern Germany

number of employed adults categorical ∈ [0, 8]
number of adults with driv-
ing license

categorical ∈ [0, 8]

share of unemployed house-
hold members

continous ∈ [0, 1]

share of regular ENVI
(bikes and public transit)
users

continous ∈ [0, 1]

share of adult household
members

continous ∈ [0, 1]

share of adult females continous ∈ [0, 1]
share of retired household
members

continous ∈ [0, 1]

equivalized income (OECD-
scale)

continuous
∈ [0.8, 9, 000]

logarithm of eq. income
eq. income squared

economic status
categorized

1 very low
2 low
3 medium
4 high
5 very high
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B Additional Figures

Variable Selection

Variable extensive margin intensive margin
EV ownership VKT

ad hoc LASSO ad hoc LASSO
60 75 90

economic status x x
economic status categorized x x x
eq. income x x x
eq. income squared
log eq. income x x

mobility portfolio x x
highest car segment x x
regional type x x x x
home ownership x x x x x x x
share of retirees x x x x x x x
share of adults x x x x x x x
share of adult females x x x x x
level of education x x x x
Eastern Germany x
household size x x x
no. employed adults x x
no. adults with driving license x x x x
share of regular ENVI users x x x
share unemployed x x
secondary residence x
type of household x
car sharing membership x
kids x
number of motorbikes x
number of bicyles x
number of electric bicycles x
no. of motorbikes

Table 9: Variable selection

C Derivation of the Extensive Margin Hypothesis
Test

We show that by testing H ′0 : E(I(Ŷh,0 = 2)|Yh,1 = 2) = E(I(Ŷh,0 = 2)|Yh,0 = 2) against
H ′1 : E(I(Ŷh,0 = 2)|Yh,1 = 2) 6= E(I(Ŷh,0 = 2)|Yh,0 = 2) using Welch’s two-sample t-test,
we recover a means to test H0: P (Yh,1 = 2∧Yh,0 = 1) = 0 against H1: P (Yh,1 = 2∧Yh,0 =
1) 6= 0 in the potential outcome setup where ∀h ∈ HEV Yh,0 and ∀h′ ∈ HICEV Yh′,1 is
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unknown. However, the test developed here is not equivalent to testing H0 in the complete
information setup, as there are possible scenarios in which H0 would be rejected but H ′0
would not.

On the EV sample, we can estimate E(I(Ŷh,0 = 2)|Yh,1 = 2). Under H0:

E(I(Ŷh,0 = 2)|Yh,1 = 2) = P (Ŷh,0 = 2|Yh,1 = 2)

= P (Ŷh,0 = 2|Yh,1 = 2, Yh,0 = 2)P (Yh,0 = 2|Yh,1 = 2)

+ P (Ŷh,0 = 2|Yh,1 = 2, Yh,0 = 1)P (Yh,0 = 1|Yh,1 = 2)

= P (Ŷh,0 = 2|Yh,0 = 2, Yh,1 = 2) (4)

as

P (Yh,1 = 2) = P (Yh,1 = 2 ∧ Yh,0 = 2) + P (Yh,1 = 2 ∧ Yh,0 = 1)

= P (Yh,1 = 2 ∧ Yh,0 = 2),

it follows that

P (Yh,0 = 1|Yh,1 = 2) = P (Yh,0 = 1 ∧ Yh,1 = 2)
P (Yh,1 = 2) = 0

P (Yh,0 = 2|Yh,1 = 2) = P (Yh,0 = 2 ∧ Yh,1 = 2)
P (Yh,1 = 2) = 1.

The second component E(I(Ŷh,0 = 2)|Yh,0 = 2) can be recovered from the model evaluation
measures on the ICEV test sample. Defining the set of households for which Yh,0 = 2,
the "non-event" as defined in section 3, as H2 = {h ∈ HICEV |testdata : Yh,0 = 2}, this
expected value can be estimated by the model’s specificity defined as Specificity =

1
|H2|

∑
h∈H2 I(Ŷh,0 = 2) We now derive an expression for E(I(Ŷh,0 = 2)|Yh,0 = 2) under H0

as

E(I(Ŷh,0 = 2)|Yh,0 = 2) = P (Ŷh,0 = 2|Yh,0 = 2)

= P (Ŷh,0 = 2|Yh,0 = 2 ∧ Yh,1 = 2)P (Yh,1 = 2|Yh,0 = 2)

+ P (Ŷh,0 = 2|Yh,0 = 2 ∧ Yh,1 = 3)P (Yh,1 = 3|Yh,0 = 2)

= P (Ŷh,0 = 2|Yh,0 = 2 ∧ Yh,1 = 2). (5)

As under H0,

P (Yh,1 = 3|Yh,0 = 2) = P (Yh,1 = 3 ∧ Yh,0 = 2)
P (Yh,0 = 2) = 0

P (Yh,1 = 2|Yh,0 = 2) = P (Yh,1 = 2 ∧ Yh,0 = 2)
P (Yh,0 = 2) = 1
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as

P (Yh,0 = 2) = P (Yh,0 = 2 ∧ Yh,1 = 2) + P (Yh,0 = 2 ∧ Yh,1 = 3)

= P (Yh,0 = 2 ∧ Yh,1 = 2)

if we maintain the restriction on possible adoption channels and assume that under H0,
the addition channel occurs with zero probability also for higher pre-treatment car en-
dowment Yh,0 = 2.

Therefore, under H0, it must hold that E(I(Ŷh,0 = 2)|Yh,1 = 2) = P (Ŷh,0 = 2|Yh,0 =
2, Yh,1 = 2) = E(I(Ŷh,0 = 2)|Yh,0 = 2).
To derive the asymptotic distribution of the two estimators 1

|HEV |
∑

h∈HEV
I(Ŷh,0 = 2|Yh,1 =

2) and Specificity = 1
|H2|

∑
h∈H2 I(Ŷh,0 = 2), it is important to notice that the model for

Ŷh,0 is estimated on the ICEV train sample and is thus invariant under increases of the
size of the EV sample and the ICEV test sample. We can thus consider Ŷh,0 as a given
random variable as the sample sizes of the EV and the ICEV test sample approach infinity.
Assuming that the vector of covariates Xh is an independent and identically distributed
random vector (iid), it follows that Ŷh,0 is iid as well and therefore

Specificity
d→ N (E(I(Ŷh,0 = 2)|Yh,0 = 2), σ2)

and

1
|HEV |

HEV∑
h=1

I(Ŷh,0 = 2|Yh,1 = 2) d→ N (E(I(Ŷh,0 = 2)|Yh,1 = 2), σ1)

Thus, if the hypothesis H ′0 : E(I(Ŷh,0 = 2)|Yh,1 = 2) = E(I(Ŷh,0 = 2)|Yh,0 = 2) is
rejected byWelch’s two-sample unpaired t-test, we know that alsoH0 cannot hold. Testing
H ′0 however is not equivalent to testing H0, as there might be a scenario in which H1

P (Yh,1 = 2 ∧ Yh,0 = 1) 6= 0 holds true, but at the same time H ′0 : E(I(Ŷh,0 = 2)|Yh,1 =
2) = E(I(Ŷh,0 = 2)|Yh,0 = 2) holds true. A possible such scenario would be given by

P (Yh,1 = 2|Yh,0 = 2) = P (Yh,0 = 2|Yh,1 = 2)

P (Yh,1 = 3|Yh,0 = 2) = P (Yh,0 = 1|Yh,1 = 2)

P (Ŷh,0 = 2|Yh,1 = 2, Yh,0 = 1) = P (Ŷh,0 = 2|Yh,0 = 2 ∧ Yh,1 = 3).

This is an illustrative examples to show that the power of testing Hypothesis 1 using H ′1
is clearly lower than the test in the full information setup. Overall, the test we develop is
not entirely conclusive about the effect’s significance level.
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