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Abstract

A growing interest in R&D tax incentives as a way to sustain research and innovation
efforts has given rise to a large number of evaluations. The absence of consensus in the
literature about their impact on R&D is intertwined with the variety of underpinning R&D
tax incentives designs. Our meta-analysis aims at explaining this heterogeneity by the designs
characteristics of R&D tax incentives. We find that the type of design has a distinct impact
on R&D demand in the short run. We argue that these distinct effects are the results of
managing a trade-off between providing strong incentives for R&D and simplicity to claim
R&D deduction. In this respect, incremental and volume-based designs find a balance between
both dimensions while hybrid designs lack clarity and predictability in the short run. Their
respective effect can be moderated by additional features (i.e. generosity, targeting rules) even
if the latter increases complexity and decreases predictability. We conclude by highlighting
the importance of having a stable, clear, and simple framework to enhance the effect of R&D
tax incentives.
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1 Introduction
It is well-known that firms under-invest in R&D activities due to the fundamental uncertainty
involved and the limited appropriability of knowledge (Arrow, 1972; Nelson, 1959). This market
failure combined with the existence of knowledge spillovers justify the need for governmental in-
terventions. Governments have introduced a variety of instruments to promote private research
and innovation efforts. R&D grants and tax incentives represent the main instruments to do so.
Numerous issues in the allocation (Faccio, 2006) and in the use of R&D grants (Boeing & Peters,
2019) reduce their effectiveness (see Dimos & Pugh, 2016; Ugur et al., 2016, for an illustration).
Shifting the subsidization of R&D through the tax system instead of direct grants is thereby
more likely to reward innovative firms. Furthermore, R&D tax incentives are supposed to be
more neutral on the direction of innovative efforts. R&D tax incentives have been adopted in
most of OECD countries, reflected by an increasing number of evaluations across countries and
over time. However, the results of the literature remain unclear. While some authors report
positive effects of R&D tax incentives on R&D expenditures, others do not find any effect in the
short or mid-run (see Straathof et al., 2014, for a review). Two previous meta-analyses investi-
gate this heterogeneity and consider the importance of sectors (see Castellacci & Lie, 2015), and
different sources of publications bias (Gaillard-Ladinska et al., 2015) as potential explanations.
Besides sample characteristics and methodological choices, we argue that the heterogeneity of
the results found in the literature is driven by the specificities of the R&D tax incentive scheme
per se. As developed in Thomson (2013), the designs of R&D tax incentives are likely to affect
the results found for a given country. Our study proposes to rely on the meta-regression frame-
work to articulate the micro-findings from the literature on R&D tax incentives with a set of
variables characterizing the evaluated designs.

We explain this heterogeneity by the designs characteristics of R&D tax incentives. Our study
contributes to the literature on innovation policies by deepening our understanding of the im-
pact of R&D tax incentives on firms’ demand for R&D. Contrary to previous meta-analyses,
we use more rigorous inclusion criteria to focus exclusively on estimates at the firm-level and a
strict definition of the user costs to compare the magnitude of the effects of distinct R&D tax
incentives designs. Doing so, we aim at answering three main questions: i) is there a genuine
effect related to the introduction of R&D tax incentives on the private demand for R&D, and
how do methodological variations impact the results found in the literature?, ii) how does this
effect vary across countries?, iii) to which extent is this heterogeneity across countries explained
by the R&D tax designs?

We find that the type of design has a distinct impact on R&D demand in the short run. We
argue that these distinct effects are the results of managing a trade-off between providing strong
incentives for R&D and simplicity to claim R&D deduction. In this respect, incremental and
volume-based designs find a balance between both dimensions while hybrid designs lack clarity
and predictability in the short run. The respective design effect can be moderated by additional
features (i.e. generosity, targeting rules). The latter must be carefully considered to avoid losing
predictability and clarity which both reduce the firm’s capacity to claim R&D deductions. The
paper is structured as follows: Section 2 provides the rationale behind the different tax incentives
schemes, section 3 develops the empirical strategies and the meta-regression approaches used,
section 4 presents the results and robustness checks. Section 5 summarizes the main results and
policy conclusions.
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2 Heterogeneity of tax incentives schemes
R&D tax incentives constitute an important indirect policy instrument to support private re-
search and innovation efforts. This instrument is based on the underlying theory that the
optimal level of private R&D is determined by the intersection of a downward sloping demand
for R&D, and an upward sloping supply of R&D inputs. R&D tax incentives act on the latter
by decreasing the after-tax cost of R&D inputs via a reduction in corporate tax liability. Ceteris
paribus, R&D as input becomes less expensive, firms demand more R&D (Hall, 1993). The
reduction in corporate tax liability creates a tax shield for the firm which increases with the
amount of eligible R&D expenditures defined by the tax law1. As R&D tax incentives depend
on the reduction of corporate tax liability, there is an asymmetry in incentivizing profitable and
loss-making firms (e.g. SMEs) (Bozeman & Link, 1984). On the one hand, profitable firms
having enough profits/tax liability can benefit fully from the reduction. On the other hand,
loss-making firms are less likely to claim R&D tax deductions, or at best, benefit from a lower
deduction than their profitable counterparts2.

The magnitude of the deduction does not only depend on the quantity of the firm’s R&D
expenditures but also on the features of the R&D tax incentive implemented. We can distin-
guish different types of R&D tax incentives depending on the definition of their base and source
of deduction. Regarding the source of deduction, the most common form of R&D tax incentives
is the tax credit, which reduces directly the corporate tax liability (Appelt et al., 2016). In
contrast, enhanced deductions reduce the tax base (see subsection 2.4). In the next subsections,
we mainly focus on tax credit designs and differentiate between the definition of their respec-
tive bases. We classify these types of R&D tax incentives based on their opportunity costs in
claiming tax deduction (e.g. complexity, incentives for R&D and risk of relabelling).

2.1 Incremental R&D tax incentives

Incremental R&D tax incentive schemes award firms only for the fraction of R&D spending
above a pre-defined base. This pre-defined base is usually measured by averaging previous R&D
expenditures. Governments originally defined this base on a moving average of past R&D spend-
ing to determine the firms’ eligibility threshold in a given year. However, this moving average
discourages firms to apply to R&D tax incentives as current R&D expenditures increase the fu-
ture threshold3. This base definition can also lead to distortions in firms’ R&D planning: firms
develop strategies to maximize their tax gain by gradually increasing their R&D investment
instead of doing a single large investment (Straathof et al., 2014; Correa et al., 2013). This
explains why governments moved towards volume-based schemes to avoid such kind of R&D be-
haviour (see Table 1). Since this design only rewards the marginal R&D expenditures, it reduces
the risk of subsidizing windfall gains for existing R&D investments (Bozeman & Link, 1984).
By the same token, it lowers the risk of relabelling of R&D expenditures as it is not sustainable
to over- or underestimate R&D expenditures due to the clawback provision of current expen-
ditures (Köhler et al., 2012). Incremental designs cannot fully impede the risk of relabelling if

1The definition of eligible R&D expenditures differs among countries. Many countries refer to the Frascati
Manual which sets the benchmark for identifying R&D activities.

2Governments tackle this asymmetry by providing carry forward options for unused R&D tax incentives as
well as a transformation to cash refunds. However, cash refunds are usually provided at a lower incentive rate.

3An alternative to this is to introduce base amounts which are unrelated to current spending (e.g. the current
US incremental tax credit).
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uncertainty remains in the definition of the qualified R&D expenditures (Hall, 2001; Laplante
et al., 2019) and if the base definition is disconnected from previous R&D investments.

The combination of reduced risks linked to relabelling and incentives to reward actors who
increase their R&D spending make it very attractive for governments. However, this lower
budgetary burden comes at the price of high administration costs. From an administrative per-
spective, firms’ applications must be monitored to be qualified as eligible or not. From the firms’
perspective, they have to document their R&D expenditures over time and are not necessarily
equipped to forecast whether the cost of applying will be overweighted by the tax deduction. In
this respect, SMEs are less likely to benefit from such a scheme: first, by having less persistent
R&D expenditures due to financial constraints, second, a lower tax liability than large firms, and
third, a lack of skilled staff dedicated to know-how to minimize the tax burden. Governments
can also decide to target SMEs via the tax design to compensate for this lack of fit, either with a
targeted refundability rule, or a more generous tax deduction. With higher financial incentives,
SMEs are more likely to bear the application costs for R&D tax incentives.

2.2 Volume-based tax schemes

Volume-based R&D tax incentives proportionally award companies that conduct R&D. In that
case, the tax deduction depends only on the total amount of eligible R&D expenditures in a
given year. As the R&D tax incentive is independent of past R&D investments, it increases the
predictability of the return of R&D tax incentives claimed. This gives firms more freedom to
allocate and to plan R&D investments (Spengel, 2009). Moreover, the simplicity in implementing
volume-based R&D tax incentives reduces the costs of monitoring by the public administration
and decreases the firms’ compliance costs (Köhler et al., 2012; Spengel, 2009). In theory, more
firms should apply in compare with incremental designs, especially among SMEs. The downside
of this design is to leave room for relabelling of R&D expenditures. The more familiar firms are
with the claims for R&D tax incentives, the easier it is to label expenditures as eligible R&D.
The second risk is to subsidize infra-marginal R&D projects, which would have been conducted
even in the absence of the R&D tax incentive. This lack of incentives to substantially boost R&D
can be moderated with an incremental component (e.g. hybrid design), or additional features
such as an enhanced deduction. The next subsections develop the two possibilities.

2.3 Hybrid tax schemes

Hybrid R&D tax incentives combine a volume-based and an incremental component. As men-
tioned above, the volume-based component lowers the cost of claiming and sustains the overall
R&D efforts. The incremental component aims at rewarding the extra R&D efforts that firms
undertake. The combination of both designs aims at benefiting from the best of both worlds
(e.g. low application costs, and incentives to stimulate incremental R&D expenditures) but
comes at the price of increasing the complexity of the scheme. The definition of the eligibility
threshold for the incremental component makes the tax deduction less predictable and more
costly to claim. The incremental component implies that firms have to disclose their current
R&D expenditures as well as the previous ones to show an increasing trend over time. Conse-
quently, firms have more incentives to apply to the volume-based component, than benefiting
from the full scheme. Doing so reduces the incentives to boost R&D and increasing the risk
of relabelling. This complexity which is inherent in hybrid as well as incremental R&D tax
incentive schemes represents a disincentive for firms to apply (Appelt et al., 2016; Hall, 2019).
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Corchuelo & Martínez-Ros (2010) illustrate this by reporting that a large number of Spanish
firms do not apply to tax incentives due to the complexity and high compliance costs involved.
This explains the persistence of firms claiming after having borne the costs of applications once,
especially among SMEs (see Labeaga et al. (2018)).

2.4 Alternative to tax credits: enhanced deduction

Besides tax credits, other types of R&D tax incentives consist of a super allowance that reduces
the taxable income by more than 100% of the eligible R&D expenditures. In contrast to tax
credits, enhanced deductions do not depend on the firms’ tax liability. SMEs or non-profitable
firms, who would not be able to claim the full amount of their tax credit can increase their
loss carry forward with enhanced deductions. However, the expected return related to enhanced
deduction is defined by the marginal corporate tax rate. The latter is the result of several
factors beyond R&D expenditures. Due to their dependence on the marginal corporate tax
rate, enhanced deductions are often not directly considered in the R&D budget of a firm as
well as less predictable than R&D tax credits and thus, less likely to encourage additional R&D
investments (OECD, 2003). This lack of incentives in using enhanced deductions increases
over time considering that nowadays most R&D tax credits provide fast cash refunds to foster
the participation of non-profitable firms. In some countries, enhanced deductions have been
combined with volume-based and hybrid tax credits to increase R&D incentives. Nevertheless,
the combination of both types of R&D tax incentives increases the complexity of benefiting from
the former.

2.5 Sources of heterogeneity: publication bias

The meta-analysis framework provides an interesting lens to study the variations found in the
literature. We build upon the meta-regression framework developed by Stanley (2012) which
split the sources of bias in two categories: publication bias (so-called K variables) and modera-
tors of the studied phenomenon (Z variables). Previous meta-studies about R&D tax incentives
have mainly considered the sources of publication bias (e.g. sample characteristics and method-
ological variations). Castellacci & Lie (2015) find a significant effect of the service sector and
SMEs in increasing the effect of R&D tax incentives on R&D demand. Gaillard-Ladinska et al.
(2015) illustrate the heterogeneity coming from the choice of the outcome variable (R&D stock
vs R&D flow). Second, the authors show that publication bias comes from the publication age
and the journal ranking. Additional methodological variations such as selection and endogene-
ity are also considered by the two previous meta-analyses but do not affect the significance of
the results4. The characteristics of R&D tax incentives designs have been mainly neglected as
an explanatory source of variations across studies. Castellacci & Lie (2015) look at the type
of designs in their analysis but do not report any statistical effect except in their interactions
with the high tech sector. Our analysis aims at extending this first attempt by considering the
characteristics of the R&D tax incentives designs in moderating their effectiveness (Z variables).

As developed above, the claiming mechanism behind each design is ,therefore, a source of varia-
tions across studies. The wide majority of evaluations assumes that all eligible firms in a given
period claim their R&D deduction, and hence, overestimate the actual impact of R&D tax in-
centives. The latter implies that firms quickly get familiar with the application process. This
simplifying assumption is not supported by empirical findings. In a recent OECD report, only

4See Gaillard-Ladinska et al. (2015) for GMM and Castellacci & Lie (2015) for IV
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half of the eligible firms do apply for R&D tax incentives (Appelt et al., October 2019 (final
project report forthcoming)). Providing a stable, clear, and simple tax scheme represents a key
determinant to make R&D tax incentives effective (Hall, 2001; Bloom et al., 2002; Appelt et al.,
2016; Hall, 2019). The period evaluated in our set of studies is on average centred around a few
years before and after the introduction of R&D tax incentives. The latter limits the number
of legal changes but reduces the analysis to short-term estimates. The focus of our analysis is
thereby rather short-term oriented to get a large set of comparable estimates.

3 Methods
Meta-analysis can be thought of as a collection of statistical analyses used to examine results
from individual (and independent) studies with the general purpose of integrating their find-
ings (Glass, 1976). Here, we employ a certain meta-analytical approach, which is called meta-
regression analysis, that is popular in empirical economics and that was introduced by Stanley
& Jarrell (1989) and Stanley (2001). Meta-regression analysis is a multivariate approach, utiliz-
ing multiple regressions analysis to explain variations in study outcomes that might be due to
different model specifications, study designs etc., but also due to publication bias. The latter is
seen as a central threat to the validity of the empirical results: “In our view, the central task
of meta-regression analysis is to filter out systematic biases, largely due to misspecification and
selection, already contained in economics research” (Stanley, 2012, 13).

3.1 Data collection

We collected estimations from publications by crossing two main sources: Google Scholar, and
IDEAS /RePEc. In line with previous meta-analyses, the earliest study composing the sample is
from 1993 to take into account the increasing use of econometric techniques (GMM estimations
with Arellano- Bond standard errors) in this field. The selection of publication relies on the
following strategy: alltitle=’R&D tax*’ and covers the period 1993-2019. Various trials showed
that specifying ’tax credit’ or ’tax incentives’ did not help in getting more relevant studies5.
The data was extracted between the 3rd of May 2018 and the 16th of June 20186. The strategy
developed to extract publications from IDEAS/RePEc differs slightly by relying on JEL codes7

standardized across economic fields and countries. According to the JEL code definitions, we
combined each query with a keyword search in the whole record (’R&D tax incentive’) (see Table
7 in the appendix for more details)8. The data was extracted between the 28th of May until the
28th of September 2018. Only French, Spanish, German, and English publications were used.
Figure 2 in appendix summarizes the main steps of the selection process.

3.2 Inclusion criteria: structural approaches at the firm level

The empirical assessment of the effectiveness of R&D tax incentives is estimated through para-
metric and non-parametric methods. Non-parametric approaches, e.g. ATM or ATT, measure

5The variation in vocabularies across communities did not lead to the selection of specific keywords. The
advantage of ’tax*’ is to cover all potential variations of tax credits, tax reforms, tax incentives.

6Guceri & Liu (2019) was added after the data collection when the latter got published.
7https://ideas.repec.org/j/
8The drawback associated to our strategy lies in the multiple entries within IDEAS/RePEc due to the use of

multiple JEL codes within one publication, and co-authors uploading the paper on multiple depositories, creating
several duplicates. However, IDEAS/RePEc helped to complete the initial sample of publications which probably
did not refer to R&D taxes in their titles.
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the difference in R&D expenditures between eligible and non-eligible firms to R&D tax incen-
tives. The latter represents the additionality effect related to the reduction of R&D costs. We
can distinguish two main empirical types of analysis among non-parametric methods: on the
one hand, the direct approach which uses a difference and difference framework, and on the
other hand, the structural approach which links the reduction of R&D cost coming from R&D
tax incentives to the demand for R&D via an elasticity. Consequently, we restrict our sample to
estimations based on structural approaches to be able to study the differences in effectiveness
across tax designs. Structural approaches can be summarized as follow:

RDi,t = β0 + β1 × UCi,t + β2 ×Xi,t + εi,t (1)

In which X refers to firm-specific variables and UC to the user costs of R&D for a given firm
(i) and period (t). The most widespread category of user costs can be defined as the “King-
Fullerton”, or “Jorgenson-Hall” approach. The simplest version of the user cost is defined as:
UCi,t = 1−Ai,t

1−τ × (ri,t + δ). In which r refers to the real interest rate, δ to the depreciation
rate of knowledge, τ to the corporate income tax, and A to the net present value of capital
allowances and deductions which reflect the reduction in tax liability for each dollar used in
R&D. Most of the estimations use a log-log specification to express the user costs as an elasticity.
Nevertheless, some authors estimate the user cost as a semi-elasticity or a growth rate. Our
data collection and coding scheme take this aspect into account. Structural approaches are
criticised to suffer from endogeneity and selection. First, the decision and capacity to claim
a tax deduction are not randomly distributed and depend on firms’ characteristics. Second,
a given firm decides in investing in R&D according to multiple criteria which mainly reflect a
firm’s strategy and characteristics. The attempts to tackle both issues and their impact on the
effectiveness of R&D tax incentives are also discussed in our results. As the literature focuses
mostly on short-run effects on R&D, our analysis is mostly bounded on this group to gather
enough comparable estimates. The long-run estimates found in some publications have been used
to test the persistence of R&D tax incentives on R&D demand. An overview of the publications
(and their respective design type) used to extract the short-run estimates is presented in Table
1. Unlike the two previous meta-analyses, we exclusively focus on structural approaches that
are more comparable: on the one hand, by focusing exclusively on firm-level estimations, and
on the other hand, by comparing estimates which strictly use the definition of the user costs
previously defined.

3.3 FAT-PET-PEESE estimation methods

The FAT-PET-PEESE (Funnel Asymmetry Test – Precision Effect Test - Precision Effect Es-
timate with Standard Error) is widely used in economics and focuses on effect synthesis under
conditions of publication bias. Under this approach, publication bias is seen as the selective
publication or non-publication of studies based on the direction and statistical significance of
the results (Rothstein et al., 2005, 3). In other words, the publication of an effect is a function
of the standard error. Concerning modelling the effect estimate under conditions of publication
bias, the following equation is a good starting point to illustrate the underlying logic:

Estimatei,s = β0,i,s + β1,i,s × SEi + εi,s (2)

In this context, i denotes a given estimation coming from a given study s. The term β1,i,s×SEi is
supposed to capture the publication selection bias, and, when SEi → 0, then E(effecti)→ β0.
The estimate is thus the result of its estimated true effect (β0) and its estimated publication
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bias (β1). The entire FAT-PET-PEESE approach consists of three steps: (1) The FAT, which
is also known as the Egger’s test (Egger et al., 1997), is employed to test for the existence of
publication bias, i.e., it tests H0 : β1,i,s = 0 and when we reject the H0 we would conclude that
this might be due to publication bias. (2) The PET tests for the existence (not magnitude)
of a real effect after adjusting for publication bias that is assumed to follow a certain selection
mechanism (H0 : β0,i,s = 0). (3) Finally, PEESE is supposed to provide an effect size estimate
that has been "corrected for publication bias", employing a different measurement of publication
bias, i.e., instead of SE, the variance SE2 is used (Stanley, 2012, 78).

However, equation 2 suffers from heteroskedasticity which is a common feature of economic
research. Due to the limited sample size, publication fixed effects were impossible to use in
the meta-regressions since each study represents one specific tax design9. Therefore, we follow
the approach described in Stanley (2012) who applies weighted least squares estimation with
the inverse of the variance of each estimate as analytical weight. As a robustness check, we
also weighted the latter by the inverse of the number of estimates characterizing each study
to account for over- or under- representation within the sample (Nelson & Kennedy, 2009). In
each estimation, robust and clustered standard errors at the study level are used to account
for correlated research choices in the estimation method, data sources, and research practices
characterizing a given study.

We start the analysis with the elasticities collected in the literature to document the distri-
bution of the averaged true effect linking R&D tax incentives to R&D demand. Since statistical
effects are expressed differently across studies (i.e. elasticities with log-log specifications, semi-
elasticities with lin-log elasticities, or even growth rates), we rely on the Partial Correlation
Coefficient (PCC) transformation to convert all effect sizes to a common measure to compare
the different statistical effects and thereby enlarge the number of observations and tax designs
in the sample. Another common transformation in meta-analysis is the t-test but comes with
two drawbacks. First, it limits the interpretation of the results to a significance level since the
t-test is a scale-free parameter. Second, the t-test is also sensitive to the number of parameters
and observations characterising the estimations. The PCC transformation takes into account
the power of estimations with the degrees of freedom and allows to interpret the results as the
strength of the relationship between the costs and demand of R&D (e.g. the correlation between
user costs and R&D demand).

9We could only observe variations from the period or the designs in a given country for France, Spain, Canada.
The set of related estimates was not large enough to exploit within-country variations.
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Table 1: Papers on the Effectiveness of R&D tax incentives on R&D investment Included in the Meta-Analysis

Study Authors,Year Status Estimates Country Period Incentive Base Incentive Design
1 Agrawal et al. (2014) Published 10 Canada 2000-2007 Volume Tax Credit
2 Baghana & Mohnen (2009) Published 4 Quebec 1997-2003 Volume Tax Credit
3 Crespi et al. (2016) Published 18 Argentina 1998-2004 Hybrid Tax Credit
4 Domínguez (2006) Published 4 Spain 1991-1999 Hybrid Tax Credit
5 Domínguez et al. (2008) Published 32 Spain 1991-1999 Hybrid Tax Credit
6 Fowkes et al. (2015) Working Paper 4 United Kingdom 2003-2013 Volume Enhanced Allowance
7 Guceri & Liu (2019) Published 2 United Kingdom 2002-2012 Volume Enhanced Allowance
8 Hall (1993) Published 5 United States 1980-1991 Incremental Tax Credit
9 Harris et al. (2009). Published 1 Northern Ireland 1998-2003 Volume Tax Credit
10 Jia & Ma (2017) Published 16 China 2009-2013 Volume Enhanced Allowance
11 Koga (2003) Published 6 Japan 1991-1998 Incremental Tax Credit
12 Labeaga et al. (2014) Working Paper 28 Spain 2001-2008 Hybrid Tax Credit
13 Lokshin & Mohnen (2007) Working Paper 5 Netherlands 1996-2004 Volume Tax Credit
14 Lokshin & Mohnen (2012) Published 3 Netherlands 1996-2004 Volume Tax Credit
15 Mulkay & Mairesse (2008) Working Paper 1 France 1983-2002 Incremental Tax Credit
16 Mulkay & Mairesse (2011) Working Paper 6 France 1981-2007 Hybrid Tax Credit
17 Mulkay & Mairesse (2013) Published 5 France 2000-2007 Hybrid Tax Credit
18 Mulkay & Mairesse (2018) Working Paper 4 France 1999-2007 Hybrid Tax Credit

2008-2013 Volume Tax Credit
19 Rao (2010) Working Paper 22 United States 1981-1991 Incremental Tax Credit
20 Rao (2013) Working Paper 17 United States 1986-1990 Incremental Tax Credit
21 Rao (2016) Published 12 United States 1986-1990 Incremental Tax Credit
22 Thomson (2010) Published 8 Australia 1990-2005 Hybrid Enhanced Allowance
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However, since partial correlations are usually not reported in primary studies, we have to
calculate them based on the information of the primary estimates:

PCCi,s = ti,s√
t2
i,s + dfi,s

(3)

where t refers to the t-ratio and df to the degrees of freedom of the relevant estimation. The
standard error for the PCC transformation is given by SEPCC =

√
(1−PCC2)

df . The PCC is quite
robust even if there are slight mismeasurements of the degrees of freedom as these are often not
explicitly reported in the primary estimates (Stanley, 2012)10.

3.3.1 Drivers of heterogeneous effects: extended MRA

Numerous characteristics of the sample, or methodological choices, may drive the variations
found among the estimated results. Stanley (2012) suggests to extend the simple model in (2)
by introducing Z variables, which account for heterogeneity and misspecification bias, and K
variables, which tackle publication bias:

PCCi,s = β0,i,s +
∑
k

βk × Zk + β1,i,s × SEPCC,i +
∑
j

δjKj × SEPCC,i + vi,s (4)

As mentioned above, several characteristics of the sample and methodology involved in a
given publication tend to influence the magnitude and significance of the results attributed to
the effect of tax incentives on R&D demand (Gaillard-Ladinska et al., 2015; Castellacci & Lie,
2015). We take into account the latter by building upon the two previous analysis to code our
K variables. We develop new variables characterizing the design of the tax incentives evaluated
in a given study, assuming that the latter moderate the averaged true effect attributed to tax
incentives (Z variables). A detailed coding scheme is provided in Table 2.

3.3.2 Proxies for tax incentive scheme characteristic (Z variables)

Based on the insights gained from the theoretical background in section 2, we focus on these
characteristics of the tax scheme to explain the heterogeneity found in the literature. We first
address the differences in schemes by defining two main designs: on the one hand, a full incre-
mental scheme, and on the other hand, a full volume-based scheme. Hybrid schemes are used
as a reference category in both cases. Additionally, we control for R&D tax incentives using
enhanced deductions (Deduction) to control for deviating effects from R&D tax credits. Further-
more, governments often target SMEs to increase the overall take-up of R&D tax incentives. We
take into account the latter by adding a dummy Targeted. Furthermore, we aim at measuring
the impact of generosity on the averaged true effect. This is done by defining a lower (Min) and
upper bound (Max) characterizing a given scheme.11

10A general concern raised in the context of PCC transformation is the problem of asymmetric distribution if
the values get close to -1 and +1. However, the underlying dataset faces no asymmetric distribution.

11Refer to section B in appendix for more details on the calculation of the boundaries.
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Table 2: Main variables to tackle heterogeneity across studies

Variable Definition
K variables
Outcome
RDflow 1 if the RD outcome variable was RD expenditures (flows), 0 if RD stock of RD intensity
RDstock 1 if the RD outcome variable was RD stock, 0 if RDflow or RD intensity
Study
Published 1 if published in peer-reviewed journals, 0 if working paper
Modeltype 1 if linear GMM estimations, 0 otherwise
Sample
Sectors 1 if manufacturing and services/agri are considered, 0 if manufacturing only
Small 1 if only small firms are considered, 0 otherwise
Large 1 if only large firms are considered, 0 otherwise
Z variables
Tax scheme
Vol 1 if the tax scheme is volume-based, 0 otherwise (e.g. hybrid and incr)
Incr 1 if the tax scheme is incremental, 0 otherwise (e.g. hybrid and vol)
Min. normal rate, or the one for large companies
Max. max rate applied (beyond the normal regime, or for SME)
Deduction 1 if enhanced allowance, 0 if tax credit
Targeted 1 if a given scheme targets SMEs, 0 otherwise

3.4 Descriptive statistics

Our primary publication sample consists of 22 studies from which 226 estimates were extracted.
The latter include 116 elasticities, 30 growth rates, 10 semi-elasticities, 44 estimates from linear
forms, 8 growth-log, and 18 growth-linear estimations. This variety among the specification
forms requires us to transform the estimates into PCCs to be comparable. As shown in Table
9 in the appendix, the distribution of the initial coefficients extracted from the literature is
less uneven after the PCC transformation. Our set of R&D tax incentives estimates covers 16
different schemes evaluated over 33 years (e.g. 1980-2013) and across 12 distinct regions12. The
majority of these evaluations focuses on R&D tax credits instead of enhanced deductions (see
Table 1). Hybrid R&D tax incentives constitute the lion share of our sample while 19.5% of the
estimations deal with volume-based schemes, and 30.5% with incremental schemes respectively.
The type and level of financial incentives to claim R&D tax incentives strongly differ across
designs (see Table 3): enhanced deductions are more combined with volume-based designs than
schemes with incremental components. Moreover, the spread between the minimum and max-
imum refund rates differs across schemes: in the incremental designs, the spread is rather low
while it increases in the volume related schemes. SMEs benefit on average more from targeted
schemes in hybrid or volume-based designs than in incremental ones. Finally, we can see a trend
towards more volume-related designs over time: our earliest estimations are related to incre-
mental designs while our most recent set of estimations is related to volume-based estimations
(see Table 1). Hybrid designs emerge as a sort of transition between both designs.

The high level of heterogeneity is reflected in Figure 1 which maps the value of the partial
12They correspond to 10 countries and two specific regions, Northern Ireland and Quebec
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Table 3: Composition and characteristics of tax incentives schemes

Incremental Volume Hybrid

Estimations 69 44 113
Elasticities 8 24 84
Enhanced Deduction 0 20 8
Tax Credit 69 22 105
Generosity (min) 25.27 14.65 35.42
Generosity (max) 25.72 27.52 57.90
Targeted 6 26 101
Non-Targeted 63 18 12
GMM 7 24 65

Figure 1: Funnel plot with PCC: distribution across designs
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correlation coefficients on their precision (1/SE). In absence of publication bias, the funnel plot
should depict a symmetrical inverted funnel. The asymmetrical distribution rather suggests that
the studies composing our sample are heavily heterogeneous and/or the existence of publication
bias (e.g. authors tend to overestimate the actual effect of R&D tax incentives on R&D demand).
Each type of design follows a different distribution which shows different levels of efficiency and
biases. Besides the diversity coming from the evaluated policy, methodological choices enhance
the heterogeneity of results found across evaluations (see Table 9). We observe that most
estimates use R&D expenditures in flow as an outcome variable (N=137), 29 R&D stock, and
60 R&D intensity. The nature of the sample differs across studies as well (e.g. sectoral and
firm size): the majority of our estimates looks at the manufacturing sector and the overall firm
population. Finally, nearly half of our estimates come from GMM estimations to capture the
dynamics of R&D investment. As mentioned before, the estimates using GMM strongly overlap
with the IV estimations. To avoid multicollinearity we focus mainly on the use of GMM more
than considering IV and GMM apart. As suggested in Castellacci & Lie (2015), the use of IV
does not correlate with publication bias. Our results confirm this finding (see subsection 4.1.1).
Finally, our sample is relatively balanced regarding its composition of published and unpublished
result.
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4 Results
We present different sets of results that disentangle between the heterogeneity coming from
methodological variations and R&D tax incentive designs. First, we motivate our analysis
by providing an economic interpretation of the results found in the literature with a subset
of elasticities (see Table 4). Second, we use the PCC transformation as an output variable
(e.g. correlation score between the R&D demand and the user costs) to enlarge the number of
observations and the number of countries (and hence, designs) (see Table 5). Since almost each
country represents a single tax design13, we extend the set of country dummies by splitting the
designs of R&D tax incentives across their type, target, and generosity (see Table 6). The results
are then discussed by providing a set of robustness checks across R&D tax incentive types to
test if the sources of variation are coming from the context of implementation (see Tables 10
and 11 in appendix).

4.1 Averaged effects: heterogeneity across countries and methodologies

Tables 4 and 5 summarize different specifications which successfully disentangle between the
variations across R&D tax incentive designs across countries and methodological choices. Both
estimations aim at testing: i) the existence of publication bias among the reported estimates
in the literature, ii) the averaged true effect of R&D tax incentives on R&D demand. Within
this FAT-PET-PEESE framework, the coefficient reflecting publication bias is related to the
standard error coefficient, or the variance one. The constant provides the averaged true effect
characterising the strength of the correlation between the R&D cost and related demand, net
from publication bias. Since the user cost represents the cost (or price) to conduct R&D, R&D
demand should increase when the former decreases. Ceteris paribus, if the cost of R&D dimin-
ishes with the change in R&D tax incentives, firms will increase their demand for R&D. We,
therefore, expect to find that the averaged true effect is negative (and statistically significant).
By the same token, publications which overestimate the effect of R&D tax incentives by selecting
results should report a negative and significant publication bias.

Disregarding the choice of variable to measure publication bias (e.g. standard error or vari-
ance), models 1 and 2 in Tables 4 and 5 respectively confirm the existence of an averaged true
effect between the R&D user costs and the demand for R&D. On average, the elasticity of R&D
is around 1, meaning that reducing the cost of R&D by one percentage is associated with an in-
crease in R&D expenditures around one percentage (see Tables 4). A dollar invested in reducing
the costs of R&D via R&D tax incentives should thereby be translated into one dollar invested
in R&D. Our averaged true effect in Table 5 is around 0.15 across the three main models and
supports the results found in the subsample of elasticities. The magnitude of our averaged true
effect in the case of the PCC represents a large correlation between the user costs and the related
R&D demand14. However, the models weighted by the number of observations per publication
(see models 3 in Tables 4 and 5) depict different trends depending on the output variable used in
the meta-regressions: the subsample of elasticities indicates that the averaged true effect is not
statistically significant when one controls for over-representation of some studies in the sample.
On the contrary, the estimation with PCC shows a higher magnitude regarding the averaged

13Our sample has only two countries with estimates characterised by time-varying designs: France and Spain.
Therefore, almost each country represents a vector of different tax incentives parameters that we aim at testing.

14According to Doucouliagos (2011) an averaged true effect above 0.076 in the field of policy and tax can be
considered as large.
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true effect. In the next subsections, we test whether these contrasting findings reflect the results
of methodological biases or distinct countries (and designs) across our two samples.

4.1.1 Methodological biases in measuring the impact of R&D tax incentives

In Table 4, we successively test whether the definition of the output variable used, and the
time-window involved (e.g. short vs long run) affect the results. Model 4 focuses exclusively
on estimations which use R&D flow as the way to measure R&D demand. This subsample
represents the lion share of our estimations and does not seem to differ much from the overall
results. Models 7 and 8 perform the same analysis on estimations which were not part of models
1-3 due to their methodological differences with the rest of the literature (e.g. growth and not
elasticities, and long-run estimates). These models aim at understanding whether the effect of
R&D tax incentives modifies structurally the R&D demand (model 7) and persists over time
(model 8). Despite its low number of observations, model 7 provides a less optimistic picture
than previously with elasticity around 0.27 and a significant level of publication bias. Moreover,
the few non-null long-run estimates we could find in the literature suggest that the effect of R&D
tax incentives collapses in the long-run disregarding whether the lag considered is one or two
periods15. This lack of persistence characterising R&D tax incentives has been also documented
in Gaillard-Ladinska et al. (2015).

In Table 5, we compare whether the type of methodology (e.g. to tackle selection and en-
dogeneity) influences the scope of the results. Our results show that estimations taking into
account selection effects do not find any averaged true effect but instead reflect a strong publi-
cation bias (see column 4). On the contrary, estimations which do not take into account selection
show a strong overall effect of R&D tax incentives on R&D demand without publication bias.
Our overall results seem thereby driven by the latter. R&D tax incentives seem to increase
R&D at the extensive margin more than at the intensive margin. This finding is in line with
a recent report of OECD showing that firms in R&D intensive sectors and firms with a high
level of R&D react less than their counterparts(Appelt et al., October 2019 (final project report
forthcoming)). Similarly, Castellacci & Lie (2015) find that on average firms in high tech sectors
exhibit a lower effect than in the overall population. The lack of a long-run effect combined
with lower effects measured with R&D growth and GMM estimations suggests that R&D tax
incentives are rather used in an opportunist way to decrease the R&D costs in the short-run
instead of incentivizing significant changes in R&D strategies. In our sample, most of the GMM
estimates are associated with hybrid designs (see Table 3). Therefore, one cannot ignore that
this effect might be mostly driven by hybrid estimations.

Model 6 shows that estimations with IV approaches (e.g. financial component in the major-
ity of cases) find a larger effect of R&D tax incentives in reducing the cost of R&D than our
overall models (columns 1-3) but seems plagued as well by publication bias. As mentioned in
Köhler et al. (2012), a limited amount of evaluations benefited from significant variations in the
tax scheme that allows disentangling causal mechanisms associated with the use of R&D tax
incentives. Using the financial component as an IV approach in this stream of literature became
the best way to deal with endogeneity. Despite its popularity, the magnitude of publication bias
characterising it is not without ambiguity regarding the effect attributed to R&D tax incentives.
The limited impact of using the financial component as an IV strategy was also documented in

15Longrun takes the value 1 when the estimation was related to a lag of two periods, 0 if it was only one period.
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Castellacci & Lie (2015) who do not find any impact in explaining the variations found among
the estimates in the literature. Publications with a large set of estimates provide a similar pic-
ture as the one depicted in the case of IV strategy (see model 6). Increasing the comparability
of estimates does not affect the significance level of our publication bias and the averaged true
effect. The slight increase in the magnitude of the averaged true effect may reflect differences in
the country and tax design evaluated.

4.1.2 R&D tax incentives and heterogeneity across countries

Both samples are composed of a large number of Spanish estimates which may bias the results
towards this specific country and design. We, therefore, compare our results without Spain
(model 6 in Table 4 and model 8 in Table 5) and introduce country dummies by pooling pub-
lications associated to the same country16 (model 5 in Table 4 and model 9 in Table 5). In
Table 5, model 8 shows that removing Spanish estimates increases the magnitude of the genuine
effect of R&D tax incentives on R&D but at the price of inflating the publication bias. This
result is confirmed in model 9 in which the averaged true effect reflects the Spanish case (not
significant). Moreover, assuming that one country represents one specific tax design, our results
show that the literature depicts a distribution of heterogeneous effects of R&D tax incentives
on R&D demand (from -0.7 and -0.2). Similarly, high heterogeneity across countries is under-
lined in Table 4. Model 6 in Table 4 removes Spanish estimations from the sample and has the
Argentinian design as a reference category. The trend previously described is also illustrated
among our elasticities: the elasticity of R&D cost and demand varies between 0.3 for Australia
to -1.9 for the USA. This result demonstrates that the impact of R&D tax incentives on R&D
demand ranges from firms that do not change their R&D demand to firms that double their
R&D expenditures. Similar findings are found in model 5 where Spain replaces Argentina as a
reference category. The largest effect is still found for the USA with an elasticity around -1.8
and only two other countries (e.g. Argentina and Canada) seem to find a statistical effect of
R&D tax incentives on R&D demand. The next section aims at unpacking these country effects
by testing the main features of R&D tax incentives evaluated in each publication.

16We observe time-varying designs in France and Spain mainly. The other studies may differ in their level of
analysis (region vs country).
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Table 4: Averaged true effects of tax incentives on RD with elasticities (short vs long runs)

Dependent variable: Elasticities and growth rates
FAT-PET FAT-PET-PEESE Weighted RD flow Country Without Spain Growth Longrun

(1) (2) (3) (4) (5) (6) (7) (8)
SE 0.147 −5.720∗∗∗ 0.074 −0.915 −1.947∗∗ −1.705∗∗∗ −3.478∗

(0.990) (1.060) (0.937) (0.684) (0.900) (0.206) (2.066)
Var −0.272

(0.686)
Argentina −0.775∗∗

(0.325)
Australia 0.383 1.286∗∗∗

(0.367) (0.112)
Canada −1.469∗∗∗ −0.784∗∗∗

(0.306) (0.079)
China 0.139 0.941∗∗∗

(0.333) (0.024)
Japan −0.354 0.438∗∗∗

(0.330) (0.015)
Netherlands 0.111 0.794∗∗∗

(0.305) (0.080)
UK −0.259 1.101∗∗

(0.595) (0.529)
USA −1.813∗∗∗ −1.025∗∗∗

(0.328) (0.011)
Longrun 0.133

(0.100)
Constant −1.072∗∗ −1.049∗∗ −0.005 −1.068∗∗ −0.275 −0.907∗∗∗ −0.269∗ −0.105

(0.482) (0.423) (0.067) (0.500) (0.299) (0.125) (0.149) (0.101)
Observations 116 116 116 98 116 52 30 89
R2 0.001 0.002 0.242 0.0001 0.534 0.379 0.729 0.274
Adjusted R2 −0.008 −0.007 0.235 −0.010 0.494 0.264 0.719 0.257
Residual Std. Error 25.265 (df = 114) 25.247 (df = 114) 32.375 (df = 114) 27.151 (df = 96) 17.891 (df = 106) 21.883 (df = 43) 0.368 (df = 28) 0.419 (df = 86)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors and clustered at publication level
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Table 5: FAT-PET and FAT-PET-PEESE estimations

Dependent variable: PCC

FAT-PET FAT-PET-PEESE Weighted per estimation GMM NoGMM IV >10 Without Spain Country
(1) (2) (3) (4) (5) (6) (7) (8) (9)

SE −1.762 −1.074 −3.300∗∗ −1.157 −2.214∗∗∗ −2.943∗∗∗ −2.081∗∗ −0.958
(1.230) (1.081) (1.386) (2.020) (0.838) (0.777) (0.946) (1.329)

Var −7.939∗∗∗
(2.694)

Argentina −0.261∗∗
(0.131)

Australia 0.075
(0.148)

Canada −0.196∗
(0.105)

China −0.037
(0.247)

France 0.058
(0.125)

Japan −0.365∗∗∗
(0.126)

Netherlands −0.126
(0.171)

UK 0.018
(0.112)

USA −0.744∗∗∗
(0.243)

Constant −0.134∗ −0.167∗∗ −0.153∗∗ −0.051 −0.154∗∗ −0.210∗∗∗ −0.222∗∗∗ −0.186∗∗∗ −0.028
(0.076) (0.071) (0.063) (0.139) (0.068) (0.020) (0.027) (0.036) (0.094)

Observations 226 226 226 96 130 128 132 154 226
R2 0.033 0.028 0.016 0.110 0.013 0.079 0.126 0.068 0.331
Adjusted R2 0.029 0.023 0.011 0.101 0.006 0.072 0.119 0.062 0.300
Residual Std. Error 6.972 (df = 224) 6.993 (df = 224) 2.037 (df = 224) 6.053 (df = 94) 7.550 (df = 128) 6.077 (df = 126) 6.019 (df = 130) 6.127 (df = 152) 5.920 (df = 215)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors and clustered at study level, FE study level
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4.2 Effects of R&D tax incentives: PCC estimations

As mentioned before, our set of estimations is characterised by a high level of heterogeneity.
Therefore, one can assume that there might not be one averaged true effect linked to R&D tax
incentives but a distribution of true effects that are approximately normally distributed around
their mean (Stanley, 2017). Estimations in Table 6 indicate that the magnitude of the averaged
true effects depends on the characteristics of the scheme evaluated and of the methodology
involved in a given publication. Model 1 in Table 6 examines the existence of publication bias
and its methodological sources. Model 2 focuses only on the designs of R&D tax incentives
which are then tested successively across types in the appendix to avoid multicollinearity17.
Our third model combines all dimensions to illustrate potential issues with multicollinearity and
explains why we exclude a set of variables from our analysis in columns 4-7 (i.e. Published,
Sector, Modeltype).

4.2.1 Drivers of publications bias

The results from Table 6 show that publication bias is mainly coming from the outcome variable.
The first model provides the averaged true effect of R&D tax incentives on R&D demand taking
into account the specificities of the sample and methodology in a given estimation. In line with
Gaillard-Ladinska et al. (2015), using R&D stock as an output measure tends to underestimate
the results found. This finding is consistent with the effect found previously: since the demand
for R&D is mainly stimulated in the short run, the effect estimated with R&D stock which
requires rather long run variations is more likely to be lower than the ones estimated with
R&D flow, or intensity. Our averaged true effect is still around -0.15, describing a rather large
correlation between R&D cost and demand. Unlike Castellacci & Lie (2015), we do not find
any statistical effect coming from services and confirm the findings of Gaillard-Ladinska et al.
(2015). Considering the overlap in terms of publications in our sample, this result suggests that
the choice of the response variable and/or the coding scheme used by Castellacci & Lie (2015)
are responsible for this difference. Similarly, we do not observe a higher reaction from SMEs to
changes in R&D tax incentives than in the overall firms’ population. Although our K variables
are not statistically significant, only considering Z variables is accompanied by publication bias
(model 2). On average, evaluations based on structural approaches tend to overestimate the
actual impact of R&D tax incentives. The next subsection discusses the distribution of averaged
true effects depending on the specificities of the R&D tax incentive designs and additional sources
of biases.

17The absence of enhanced deductions in the case of incremental design makes the variable highly correlated
with our design type variables
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Table 6: Extended MRA estimations with PCC: tax schemes characteristics

Dependent variable: PCC

K Z K+Z Types US wo US Period
(1) (2) (3) (4) (5) (6) (7)

SE −1.813 −1.928∗∗ 0.134 −1.596 1.751 −2.343 3.076
(1.895) (0.931) (1.317) (1.031) (3.204) (3.926) (3.115)

RDflowSE 2.629 1.143 1.765 −0.647 3.673 −0.909
(2.412) (1.490) (1.952) (2.382) (3.571) (1.678)

RDstockSE 3.696∗ 3.823∗∗ 1.887 −1.297 2.789 −0.586
(1.951) (1.607) (1.159) (2.846) (3.238) (3.044)

PublishedSE −3.690 −3.908∗
(2.888) (2.059)

SmallSE −1.548 −2.910 −3.504 −4.218 −4.069 −2.405
(3.523) (2.991) (3.726) (4.381) (4.782) (3.189)

LargeSE 2.883 2.965∗∗ 1.483 −0.708 0.511 1.019
(1.865) (1.459) (1.181) (1.503) (1.808) (1.457)

ModeltypeSE −0.242 −2.461
(1.454) (1.616)

Incremental −0.419∗∗∗ −0.506∗∗∗ −0.443∗∗∗ −0.318∗∗∗
(0.137) (0.123) (0.125) (0.089)

Volume −0.166∗ −0.204∗∗∗
(0.096) (0.062)

Deduction 0.205∗∗∗ 0.225∗∗∗
(0.039) (0.045)

Targeted −0.012 0.061
(0.121) (0.111)

US_SE −5.880∗∗
(2.723)

PeriodSE −6.082∗
(3.210)

Constant −0.158∗∗∗ −0.031 −0.091 −0.138∗∗ −0.157∗∗ −0.150∗∗ −0.175∗∗∗
(0.061) (0.078) (0.100) (0.060) (0.063) (0.067) (0.060)

Observations 226 226 226 226 226 165 213
R2 0.151 0.241 0.413 0.203 0.144 0.120 0.192
Adjusted R2 0.123 0.223 0.383 0.181 0.120 0.087 0.168
Residual Std. Error 6.625 (df = 218) 6.235 (df = 220) 5.560 (df = 214) 6.403 (df = 219) 6.636 (df = 219) 7.297 (df = 158) 6.636 (df = 206)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors and clustered at publication level

21



4.2.2 Tax design and averaged true effects

Models 2 and 3 suggest that the volume-based estimations seem to have a higher impact than
hybrid ones. This finding is in line with Castellacci & Lie (2015) who use a similar set of
publications. The correlation between the tax design features in models 3 and 4 puts in doubt the
reliability of this effect. As a robustness check, we pool together our subset of hybrid and volume-
based estimations to increase their level of comparability (see Table 11 in appendix). Model 4
isolates the main effect associated with the type of design characterising a given evaluation. The
averaged effect is absorbed by the incremental dummy which exhibits a larger magnitude than
in the overall model. Put in other words, estimations evaluating an incremental design find on
average significant effects in stimulating R&D demand by decreasing the costs of R&D. This
result holds across our different specifications but we cannot ignore two potential sources of
biases. As suggested in Table 1, incremental designs were mostly implemented in the 1980s and
early 1990s. Moreover, our observations linked to incremental designs are also biased towards
the USA. In the next subsection, we test whether our conclusion about the incremental design
is driven by the USA or the evaluated period.

4.2.3 Country, Period bias vs tax design

In model 5, we test whether having the USA as a context of evaluation is a potential source
of bias. On average, studies looking at the USA provide more optimistic results regarding the
impact of R&D tax incentives than the ones evaluating other countries. Multiple reasons can
explain why studies about the USA find stronger results such as the quality of institutions or a
more market-based economy. In model 6 we test whether excluding the US estimates from the
sample decreases the magnitude of the effects estimated in model 4. The averaged true effect
and the significance of the incremental designs remain but we can observe a slight decrease in
magnitude. Model 6 confirms what we find in model 5: the US estimates depict higher effects
than the ones coming from other countries but do not drive the main results.

As mentioned above, we only observe estimates for the USA in the 1980s and 1990s. This
period is of interest because it represents the development of several high tech industries in the
USA (i.e. ICT, biotech, semi-conductors) which is enhanced by the birth of venture capital.
More broadly speaking, this period was characterised by the liberalization of markets (e.g. cap-
ital and goods ones) around the world. This might have played a role in fostering the effect
of R&D tax incentives on R&D demand. Several trade agreements were signed in the USA
with Canada, Mexico, but also within Europe. The macroeconomic context might have been
more rewarding, especially for technological frontier firms, which were increasing R&D due to
better access to capital and larger exporting markets (see the “escape competition” scenario
Aghion et al., 2005). In parallel, the rise of the Asian tigers went with the intensification of
high tech competition at the global level. Consequently, the private R&D demand was strongly
stimulated disregarding the existence of R&D tax incentives (see Köhler et al., 2012). In model
7, we introduce a variable splitting our sample into two categories: estimations before 1998 and
estimations from early 2000. We chose 1998 as an arbitrary point representing the signature
of China to the WTO and the early 2000s as a new phase of globalization. Model 7 indicates
only a weak and enhancing statistical effect coming from evaluations using samples from the
1980-1990s. The absence of observations of incremental designs in the 2000s does not allow us
to disentangle between the bias from the period and the design type. To measure the magni-
tude of the difference(s) across designs, we provide a set of robustness checks by splitting our
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overall sample across design types. Finally, we use these robustness checks to discuss the role
of additional tax design features in explaining the heterogeneity of results within each type of
design (see Tables 10 and 11).

4.3 Robustness checks: Features across designs

The previous results stress the importance of the type of R&D tax incentive design in explaining
the differences across countries. Additional dimensions within the tax design can explain why
implementing a similar design in a given country leads to different results. The correlation
between enhanced deduction and the design type limited the use of the former in the main
results. Moreover, the strong effect coming from the type of design suggests that only variations
within the type of design, and not across designs, are relevant to explain the heterogeneity of
the results across countries. We conduct a set of robustness checks in Tables 9 and 8 in the
appendix for the incremental and volume-related designs (e.g. hybrid and volume-based). We
pool together volume-based and hybrid due to the proximity between both designs and periods
evaluated. The robustness checks confirm the results previously described (models 1-2 in Tables
8 and 9): we find an averaged true effect in both cases and show that the effect for incremental
designs is much higher than in the two other cases. Interestingly, models 3 and 4 in Table 9
contradict this idea by showing that the volume-based estimations drive the overall results in the
volume related case. Consistent with our framework and the complexity of the hybrid scheme,
the hybrid estimations seem to have on average no effect on R&D demand. The absence of
Spanish bias (see model 10 in Table 9) suggests that model 8 in Table 5 exhibits a lower effect
due to an increase in the number of hybrid estimations, and not Spanish estimates. The next
section discusses the additional tax features which moderate the effect across each type of design.

4.3.1 Targeting & Generosity: incremental design

Generosity seems to explain the variations found in the literature only in the incremental case.
A large number of estimations from the USA leads to a significant over-representation of the
USA in our sample. Even if the results remain significant by adding a US dummy (see model
6 in Table 8), we cannot ignore a strong bias from the USA among our sub-sample. To cope
with this, we weight our estimates with the inverse of the variance of each estimation adjusted
by the number of estimates per paper. Doing so, we observe that targeted SME features in the
incremental context tend to decrease the overall effect and that there is a linear relationship
between the refund rates and efficiency. Nevertheless, the lack of variations in the sample makes
our Z variables acting as a dummy US/non-US. Therefore, the averaged true effect reflects the
US case and is moderated by features from other countries. Model 3 illustrates the Japanese
case which exhibits a weak statistical effect in decreasing the effect of R&D tax incentives. By
introducing a special SMEs base definition, the clarity and predictability of the scheme decrease.
The negative effects of refund rates (see models 4-5 in Table 10) are associated with observations
from France related to the establishment of an additional incremental component in the 1980s.
This double incremental component enhances the generosity of the design but at the price of
increasing the complexity of obtaining such deduction. The lack of predictability decreases the
efficiency of the design.
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4.3.2 Targeting & Generosity: volume-based and hybrid designs

In the volume related estimations, only having targeting rules seems to explain the variations
across countries. As suggested in Table 3, each design is characterised by a specific level of
generosity. The uneven distribution of the refund rates acts as a control for the type of design.
Consequently, the averaged true effect sums up the two effects in models 8-9 in Table 11 (e.g.
null for hybrid and negative for the volume-based user costs)18. Targeting SMEs has different
effects depending on the type of R&D tax incentive used. Model 6 shows that designs with
enhanced deductions do not affect the magnitude of the averaged true effect. The absence of
significance probably reflects the high compliance costs which overweight the uncertain return
coming from the lack of predictability. This scenario is confirmed in model 7 in which the
magnitude of the constant increases but decreases with enhanced deductions: SMEs who have
the choice between a refundable tax credit which is more favourable and an allowance will use
the former. As mentioned in the framework, the increased uncertainty linked to the eligibility in
enhanced deductions and their disconnection with the R&D budget make them more complex,
and hence, less efficient.

5 Conclusion
Nowadays, the majority of OECD countries has adopted R&D tax incentives as an instrument
to stimulate the demand for private research and innovation efforts. Yet, the literature provides
ambiguous results about their effectiveness. Our meta-regression analysis proposes to consider
the R&D tax incentives designs as an explanation for these contradicting results found in the
literature. Our study provides four key findings. First, we confirm the existence of a genuine
effect of R&D tax incentives on enhancing the private demand for R&D. This effect seems to
be short-run oriented and to stimulate R&D rather at the extensive than the intensive margins.
Instead of stimulating a significant and permanent increase in R&D expenditures, R&D tax
incentives are associated with opportunistic behaviours (e.g. incentives to disclose R&D expen-
ditures, or relabelling). We cannot rule out that hybrid estimations bias this result considering
their over-representation in our sample. Second, we quantify this effect: on average, decreasing
the cost of R&D by one dollar leads to an increase in R&D expenditures of one dollar. This
result varies a lot across countries. Third, we explain this heterogeneity across countries by the
characteristics of the R&D tax designs: incremental schemes are related to the highest effect on
R&D, followed by volume-based ones. Hybrid estimations do not seem to affect the demand for
R&D in the short run, consistent with the opportunistic behaviour described before. Fourth,
we show that generosity and targeting have a secondary role in explaining the variations across
countries but moderate the averaged true effect in each scheme.

Several important conclusions can be drawn from this analysis. Our findings highlight the
trade-off between providing strong R&D incentives and easing the tax claims. Incremental
and volume-based R&D tax incentives manage to balance between both at the cost of creating
enhanced inequalities between large firms and SMEs, either in terms of providing enough in-
centives to conduct R&D or to claim R&D deductions. The essence of R&D tax incentives is
to reward innovative actors, following a success brings success logic. However, new actors are

18Model 8 shows a weak but significant effect in line with the volume-based averaged true effect. This is
consistent with the measurement used in the estimation: the minimum refund rate in the hybrid design corresponds
to the volume component in the latter. However, model 9 estimates the result of the maximum refund rate
comparing the volume case with the incremental component from a hybrid.
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hampered by this logic due to their limited tax liability. As we show, moderating this effect
by creating differential rewards between SMEs and large firms comes at the cost of increasing
complexity. This enhanced complexity seems to explain why we did not find any effect in the
case of hybrid designs in the short run. By being at the crossroad between both designs, the
hybrid designs reflect that increasing complexity reduces the effectiveness of R&D tax incentives.

The scope of our results is by definition bounded to the studies composing our sample. Be-
sides the specificities of the design, the interaction of R&D tax incentives with other taxes and
innovation policies could also explain the contrasting results found across countries. As devel-
oped in Hall (2001), the tax rate on capital gains should be considered since the latter rewards
risks bore by entrepreneurs and venture capitalists to start innovation projects. Spengel (2009);
Akcigit et al. (2018) stress the importance of corporate taxation as an instrument to stimulate
innovativeness. The literature about the complementarity between R&D subsidies and R&D
tax incentives is developing but leads to contradicting results (see Appelt et al. (October 2019
(final project report forthcoming)) for a discussion). Beyond country differences, the periods
of evaluation might be of interest. R&D tax incentives seem to have a negative effect on R&D
demand in case of economic downturns (Aysun & Kabukcuoglu, 2019). The interactions between
R&D tax incentives and other policies require further investigations to better understand their
asymmetrical treatment of losers and overall effectiveness.
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Appendices

A Data delineation

Duplicates removed n=600Google Scholar n=436 IDEAS/RePeC n=417

Abstract screening:
firm, country specific,
R&D tax incentives,
econometrics (n=73)

Screening of
methodological
contents: R&D
demand function,

User Cost

Excluded (n=527)

Sample (n=22), 1 duplicate removed

Categories A-D (n=50)

yes

yes

no

yes

no

Figure 2: Selection process and inclusion criteria
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Table 7: JEL codes

Category Overlap
Google

Overlap in other
JEL

H25 Business Taxes and Subsidies 15 23 (32)
H32 Firm 4 3 (O38)
H42 Publicly Provided Goods 3 all (H32)
L13 Oligopoly and Other Imperfect Markets 0 1 (O31), 3 (O32)
O38 Government Policy 14 23 (O32)
O32 Management of Technological Innovation and R&D 14 3 (L13), 10 (O31)
O31 Innovation and Intervention: Process and Incentives 4 10 (O32), 1 (L13)
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B Definition of the Generosity variables

To approximate for the generosity of a R&D tax incentive scheme, we calculate a minimum and
maximum tax credit rate applicable for the respective country (taking into account firm size
specific regulations) over the sample period. In case of an enhanced deduction, we transform
the deduction to an equivalent tax credit rate by multiplying the enhanced deduction rate with
the corporate income tax rate.

Table 8: Generosity

Country Sample period Size Minimum (%) Maximum (%)

Argentina 1998-2004 all 50 80
Australia 1990-2005 all 43,44 60,81
Canada 2000-2007 all 20 35

small 20 35
large 20 20

China 2009-2013 all 12,5 12,5
France 1981-2007 all 4,6 48,45

1983-2002 all 47,37 80
1991-2003 all 50 50
1999-2007 all 42,5 50
2000-2007 all 2 17
2004-2007 all 6,35 48,65
2008-2013 all 30 35

Japan 1991-1998 all 20 20
Netherlands 1996-2004 all 13,45 50
Northern Ireland 1998-2003 all 25 50
Québec 1997-2003 all 19,6 50

small 39,29 50
large 19,6 19,6

Spain 1991-1999 all 30 50
Spain 2001-2008 all 40,88 62,18
United Kingdom 2002-2011 all 5,34 18,75
United Kingdom 2003-2012 all 5,4 20,45
United States 1980-1991 all 25 25

Australia:
During the time period covered several changes in the corporate income tax rate occured. 1990-
93: 39%, 1994-95: 33%, 1996-2000: 36%, 2001: 34%, 2002-05: 30% The average CIT rate is
34,75%. The super-deduction of 125% (175%) is transformed by multiplying the depreciation
rate with the CIT. Therefore the generosity is measured with 43,44% (min) and 60,81% (max).

United Kingdom:
In the United Kingdom the R&D tax incentives is a super-deduction, we have to transform it to
an equivalent tax credit to be comparable to other studies. We calculated therefore the average
tax credit rate for SME (large companies) for each case of small or large profits. Which gives
you the average generosity of each scheme during the sample period.

Canada:
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There are two subsamples: either all firms or only small firms are observed. Therefore the
minimum rate of 20% and the max rate of 35% is used as proxy. Only in the case of only large
firms we would have used 20% as a proxy for min and max.

Québec:
For SMEs a refundable tax credit for salaries and wages of researches exists. The tax credit
rate is 37,5% additionally a SME could claim an incremental tax credit on R&D expenditure
(1999-2004) of 15%. Therefore we use 37,5% (min) and 52,5% (max) as proxy. For a sample of
large firms 17,5% is used as min and max. For a mixed sample 17,5%(min) and 37,5% (max) is
used.

Argentina:
For Argentina we proxy the minimum rate with 50%. Law No. 23,877 provides a tax credit on
investment in R&D and the available maximum rate is 50%. However, if companies invest in
technological modernization a maximum credit of 80% is available, irrespective of the company
size.

Spain (1991-1999):
The tax credit was introduced in 1995. The Spanish tax credit consists of a volume-based part
and an incremental part. The volume-based rate was 20% and the incremental rate was 40%.
The rates changed in 2001.

Spain (2001-2008):
The Spanish tax credit consists of a volume-based part and an incremental part. The rates varied
over the sample period. In general all firms could receive the volume-based part. The average tax
credit rate of the volume-based part is calculated in the following way: (3*0,2+3*0,3+0,276+0,25)/8
= 25,325% (min) And for the incremental part: (3*0,45+3*0,5+0,46+0,52)/8 = 46,625% (max)

China:
The R&D tax incentives is an enhanced deduction of 150%. In general, 100% is always de-
ductable. Therefore, we transform the additional 50% to an equivalent tax credit of 12,5% (due
to a CIT rate of 25%).

Japan:
In general, all firms can apply for the incremental credit of 20%. However, SMEs could alter-
natively apply for a volume-based tax credit of 10%. Based on the descriptive statistics the
majority of companies observed in the data are not classified as SMEs according to Japanese
tax law. As a result of this, we do not consider the alternative 10% volume-based tax credit.

Netherlands:
The R&D allowance takes the form of deductions of wage tax and social-insurance contributions.
As a rule, the R&D allowance amounts to 40% of the first EUR 68,000/90,756/110,000 of the
wage bill for R&D per calendar year, and 15% (on average) of the remaining R&D wage bill.
The 40% could be increased for start-ups t0 60-70% (on average 50%).

France:
Evolution from the incremental to the volume-based regime > 50% to 40% from the incremental
component from 1984 to 2007 and emergence of the volume-based at 5% in 2004. In 2008, regime
totally volume based and around 30% (5 compo as extra). No SMEs discrimination.
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C Data description
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Figure 3: Distribution of the estimated elasticities
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Table 9: Summary statistics

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Response variable
Coef. User Cost 226 −0.479 0.619 −3.160 −0.798 −0.055 0.310
SE User Cost 226 0.128 0.184 0.000 0.030 0.180 1.400
PCC 226 −0.352 0.435 −0.985 −0.787 −0.003 0.722
SE PCC 226 0.121 0.093 0.010 0.046 0.176 0.443
K variables
RDflow 226 0.606 0.490 0 0 1 1
RDstock 226 0.128 0.335 0 0 0 1
RDintensity 226 0.265 0.443 0 0 1 1
Published 226 0.513 0.501 0 0 1 1
Small 226 0.181 0.386 0 0 0 1
Large 226 0.301 0.460 0 0 1 1
Sector 226 0.549 0.499 0 0 1 1
Modeltype 226 0.425 0.495 0 0 1 1
Z variables
Incremental 226 0.305 0.462 0 0 1 1
Volume 226 0.195 0.397 0 0 0 1
Enhanced deduction 226 0.133 0.340 0 0 0 1
Targeted 226 0.588 0.493 0 0 1 1
Minimum 226 28.273 12.353 2 20 40.9 50
Maximum 226 42.163 19.992 12 25 60.8 80
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D Robustness checks

Table 10: Robustness checks with incremental estimations

Dependent variable: PCC

Avg effect K Target Min Max US
(1) (2) (3) (4) (5) (6)

SE −1.517∗∗∗ −1.197 3.017 −1.361 −1.738∗∗ 3.601
(0.331) (0.720) (2.342) (1.330) (0.756) (2.386)

RDflowSE −2.284 1.487 −2.365 −2.412 2.530
(1.748) (2.850) (1.977) (1.728) (3.014)

SmallSE 0.162 −0.984 0.233 0.448 −0.950
(0.452) (0.702) (0.481) (0.336) (0.624)

LargeSE 4.270 1.782 4.373 4.639 1.650
(4.250) (2.256) (4.315) (4.463) (3.554)

Targeted 0.712∗∗∗
(0.257)

Min 0.005
(0.036)

Max 0.014
(0.013)

ModeltypeSE −0.297
(3.575)

USdummy −0.839∗∗∗
(0.229)

Constant −0.485∗∗∗ −0.529∗∗∗ −1.338∗∗∗ −0.620 −0.807∗∗∗ −0.662∗∗
(0.089) (0.142) (0.465) (0.704) (0.285) (0.274)

Observations 69 69 69 69 69 69
R2 0.049 0.142 0.351 0.143 0.173 0.452
Adjusted R2 0.035 0.089 0.300 0.076 0.107 0.399
Residual Std. Error 4.523 (df = 67) 4.394 (df = 64) 3.853 (df = 63) 4.426 (df = 63) 4.349 (df = 63) 3.568 (df = 62)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors and clustered at publication level
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Table 11: Robustness checks with hybrid and volume estimations

Dependent variable: PCC

avg effect K Deduction Targeted Min Max Deduction Deduc/target Spain
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

SE −0.181 3.020 0.340 −2.650∗ −0.205 −0.441 −0.345 −0.542 −0.524 −2.402
(1.824) (3.378) (0.968) (1.564) (2.531) (1.803) (2.414) (1.394) (1.348) (2.073)

RDstockSE 2.444
(2.107)

SmallSE −4.396
(4.009)

LargeSE 1.902
(1.528)

SectorSE −3.102
(2.737)

ModeltypeSE −3.732∗
(2.245)

Deduction 0.143 0.158∗
(0.093) (0.093)

Min 0.002
(0.005)

Max 0.002
(0.004)

Spain 0.117
(0.161)

Constant −0.151∗∗ −0.140∗∗ −0.214∗∗∗ −0.009 −0.157∗∗ −0.159∗∗ −0.168∗∗ −0.207∗ −0.216 −0.101
(0.075) (0.064) (0.043) (0.059) (0.077) (0.074) (0.073) (0.124) (0.155) (0.116)

Observations 157 157 44 113 127 157 127 157 157 113
R2 0.0003 0.151 0.001 0.048 0.0003 0.032 0.038 0.017 0.013 0.085
Adjusted R2 −0.006 0.117 −0.023 0.040 −0.008 0.019 0.022 0.004 0.001 0.068
Residual Std. Error 7.326 (df = 155) 6.863 (df = 150) 7.524 (df = 42) 6.833 (df = 111) 8.055 (df = 125) 7.233 (df = 154) 7.934 (df = 124) 7.287 (df = 154) 7.301 (df = 154) 6.731 (df = 110)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors and clustered at publication level
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