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“[S]ociety is giving something for nothing . . . [when] concealable inventions

remain concealed and only unconcealable inventions are patented.”

Machlup and Penrose (1950)

1 Introduction

When better protection of intellectual property improves the appropriability of R&D in-

vestment returns, firms have stronger incentives to invest and innovate. The fruits of

such innovation serve as the proverbial shoulders on which future innovators can stand,

thus fostering technological progress through more follow-on (or cumulative) innovation.1

However, granting the inventor a temporary monopoly through a patent can have nega-

tive, “anticommons” effects on follow-on innovation when exclusivity renders the shoul-

ders less accessible (Heller and Eisenberg, 1998). A negative effect on follow-on innovation

also arises when inventors decide to disclose fewer of their inventions through patents and

instead keep them secret, especially in industries with technologies that are per se less

visible or “self-disclosing” (Strandburg, 2004). In those industries, the diffusion of knowl-

edge relies on the disclosure function of patents. Diffusion would be hampered if inventors

kept more secrets, and even more so when legal trade secrets protection is strong. We

study these effects of intellectual property policy and visibility of technology on patenting

and cumulative innovation.

Secrecy is an important tool in a firm’s intellectual property management toolbox.

There is ample survey-based evidence that secrecy is widely used and often more im-

portant as an appropriability mechanism than patents (e.g., Levin et al., 1987; Cohen

et al., 2000; Arundel, 2001). Mansfield (1986) reports survey results suggesting that one

out of three patentable inventions is kept secret when inventors have a choice between

secrecy and patenting. Importantly, choosing secrecy does not mean that the invention

is without any protection. The laws governing trade secrets offer protection against mis-

appropriation of secrets – that is, the acquisition of a trade secret by improper means or

1In 1675, Sir Issac Newton wrote in a letter to Robert Hooke: “If I have seen further, it is by standing
upon the shoulders of giants.” See Scotchmer (1991) for the economics of giants’ shoulders.
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the disclosure of a trade secret without consent.2 For example, in a well-publicized legal

case, Waymo LLC (a self-driving car startup under Google’s Alphabet) accused Uber

Technologies of violating both California state and federal trade secret laws, alleging that

a former employee secretly downloaded data around a key piece of technology from its

servers before resigning and launching a self-driving truck startup.3 However, while trade

secrets laws provide protection against such misappropriation, unlike patents they do not

grant general exclusivity: A trade secret is not protected if it accidentally leaks or is

uncovered through independent discovery or reverse engineering (Friedman et al., 1991).

Stronger protection of trade secrets renders them more attractive relative to patents.

In this paper, we ask how a change in the attractiveness of secrecy affects the diffusion of

knowledge through the decision to invest in different types of innovation, the disclosure

of these inventions, and the ability to build on them. We use exogenous variation across

states and time from the staggered adoption of the Uniform Trade Secrets Act (UTSA)

of 1979/1985, which changed the strength of trade secrets protection in individual states,

to identify the effects of trade secrets protection. Using the index of the strength of trade

secrets protection introduced by Png (2017a) and new data on the type of a patented

invention – product or process – to capture how visible or self-disclosing an invention

is (Ganglmair et al., 2021), we show that stronger trade secrets protection results in a

disproportionate decrease of process patents. Since patents provide insight into what is

not kept secret, we interpret this change as a relative increase in the propensity to keep

process inventions secret.4 This, in turn, limits opportunities for follow-on innovation.

The welfare implications of such changes in intellectual property protection depend

not only on the facilitation of follow-on innovation but also on the ex-ante incentives to

innovate. To make inferences about these incentives, we develop a simple framework of

sequential innovation. We illustrate insights from the model based on the causal estimates

2Generally speaking, a trade secret is information (e.g., a customer list, a business plan, or a manu-
facturing process) that has commercial value the secret holder wants to conceal from others (Friedman
et al., 1991). We use the terms “secrecy” and “trade secrets” interchangeably.

3The startup was later acquired by Uber. See Waymo LLC v. Uber Technologies, Inc; Ottomotto
LLC; Otto Trucking LLC. No. 3:17-cv-00939, N.D. Cal., San Francisco Division. The case settled in
February 2018, only five days into the trial.

4Our assumption of the choice between secrecy and patents, as opposed to joint use (Arora, 1997),
comes without loss of generality as long as there is some degree of substitutability.
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from our descriptive analyses. We find that total welfare may in fact decline as trade

secrets protection grows stronger. This is particularly the case when the costs of R&D are

relatively small and stronger trade secrets protection does little to incentivize innovation.

By contrast, stronger trade secrets protection can increase welfare when R&D is more

costly as protection can lead to increased investment in initial R&D. Further, the effects

are amplified when inventions are relatively invisible, because trade secrets are most

attractive for them.

We provide more institutional background, including details about the UTSA and a

discussion of the disclosure function of patents, in Section 2. In Section 3, we develop

a simple model of an inventor’s decision to disclose a new invention through a patent.

Among other factors, the value of the invention from a patent increases with the under-

lying invention’s visibility: Visibility allows for easier enforcement of the patent, thus

guaranteeing exclusive access to the technology. By contrast, the value of an invention

that is kept secret decreases in its visibility, because secrecy (and therefore exclusive ac-

cess) is more difficult to maintain. Our model predicts that, for a given baseline share

of (less visible) process inventions, the share of process patents decreases as trade secrets

protection strengthens. This theoretical prediction serves as the basis for the empirical

analysis in the rest of the paper.

In Section 5, we use the patent-level data introduced in Section 4 and the staggered

adoption of the UTSA across states – which provides exogenous variation in the strength

of trade secrets protection – to estimate the effect of stronger trade secrets protection

on the likelihood that a patent covers a process innovation. Consistent with results from

our theoretical model, we find that stronger legal protection of trade secrets leads to a

disproportionate decrease in the patenting of processes. Our estimated effects are largest

among individual inventors and small firms and are driven by patents covering discrete

rather than complex technologies. These results are robust to different modeling choices

as well as the inclusion of controls for other changes in IP enforcement, and they are

indicative of potentially large implications for follow-on innovation and welfare.

We examine these implications in Section 6. We add R&D decisions and follow-on
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innovation in a sequential innovation model to our simple disclosure framework from Sec-

tion 3. Counterfactual simulations show that the optimal level of trade secrets protection

is increasing in the costs of R&D. When costs are low, stronger legal protection of trade

secrets has little effect on initial R&D but carries the unintended consequence of imped-

ing follow-on innovation. On the other hand, for R&D projects that are relatively more

costly, stronger legal protection improves welfare by encouraging initial R&D. Applying

the model to our causal results, we further show that both positive and negative effects

of trade secrets protection are more pronounced for processes than for products, and that

the optimal level of trade secrets protection is lower when follow-on innovation carries

more value.

Beyond studies based on survey data, there is limited empirical work on trade secrets,

though a small literature presents indirect evidence on secrecy. Moser (2012) documents a

shift toward patenting (and away from secrecy) in the chemical industry as the publication

of the periodic table of elements has facilitated reverse engineering. Gross (2019) finds

that a policy during World War II to keep certain patent applications secret resulted in

slower dissemination of the patented technologies into product markets. Hegde and Luo

(2018) show that a reduction of the duration of temporary secrecy of patent applications

had a mitigating effect on licensing delays, and Hegde et al. (2020) find an acceleration

in diffusion of knowledge and ideas.

A related strand of literature studies the effect of changes in legal trade secrets pro-

tection on innovation and patenting behavior. Png (2017a,b) finds that stronger trade

secrets protection has a positive effect on firms’ investment in R&D and renders patent-

ing relatively less attractive. Related to this line of work, Contigiani et al. (2018) find

that more employer-friendly trade secrets protection has a dampening effect on innova-

tion, and Castellaneta et al. (2017) show a positive effect on firm value in industries with

high mobility of skilled labor. Angenendt (2018) finds that patent applicants respond to

stronger trade secrets protection by reducing the number of patent claims.

We add to these bodies of literature by accounting for the role of an invention’s

visibility in patenting and innovation decisions and in providing opportunities for follow-

4



on innovation. We further highlight that insights gained from the effects of patents on

innovation do not necessarily apply to trade secrets. This is particularly important in

light of the U.S. Defend Trade Secrets Act and the EU Trade Secrets Directive 2016/943,

for which impact evaluations are just now starting to become available. Results from the

UTSA can thus inform an ongoing policy debate in both the U.S. and in Europe.

2 Institutional Background

2.1 Uniform Trade Secrets Act (1979/1985)

The UTSA was published and recommended to the individual U.S. states for adoption in

1979 (revised in 1985) by the National Conference of Commissions on Uniform State Laws.

Between 1979 and 2018, all U.S. states except New York and North Carolina have adopted

the UTSA, with adoption dates ranging from 1981 (5 states) to 2018 (Massachusetts).

The objective of the UTSA was to clarify and harmonize across U.S. states the legal

protection of trade secrets. Most prominently, it attempted to standardize the definition

of a trade secret, the meaning of misappropriation, and remedies (including damages) for

trade secret holders in case of a violation. For example, with the adoption of the UTSA,

the Commonwealth of Virginia dropped the requirement of actual or intended use for

something to be considered a trade secret and increased the punitive damages multiplier

from 0.5 to 2.

Png (2017a) constructs an annual index that measures the strength of legal trade

secrets protection at the state level for the years 1976 to 2008. For example, the changes

in Virginia represent increases in two of the six inputs into the index.5 On average,

the UTSA implied a rise in the index of 42 points across states (median = 46.7). In

most states, the UTSA resulted in a strengthening of trade secrets protection, with the

exception of Arkansas and Pennsylvania, where pre-UTSA trade secrets protection (under

common law) was stronger, and a handful of states with no change. There is no obvious

5In addition to these two factors, the index is higher (i) without a requirement that the trade secret
holder have in place reasonable effort to protect the secret, (ii) without a requirement that the information
is used or disclosed, (iii) without a statute of limitation, and (iv) with unlimited length of injunction.
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pattern in the size of these changes over time and across states, and Png (2017a) cites

anecdotal evidence that suggests that passing of the bills often happened for “whimsical”

reasons.

2.2 Trade Secrets and the Disclosure Function of Patents

By using the UTSA to examine the effects of trade secrets protection on follow-on in-

novation and welfare, we make two implicit assumptions. First, changes in the level of

trade secrets protection affect firms’ use and defense of trade secrets. Second, patents

provide some disclosure of inventions.

The first premise, that the changes in trade secrets protection through the UTSA

were sufficient to induce changes in behavior, is supported by empirical evidence (e.g.,

Png, 2017a,b; Castellaneta et al., 2017). Moreover, Almeling (2012) attributes part of

the rise of trade secrets litigation over recent decades to the individual states’ adoption

of the UTSA, mostly because it raised awareness of the option to keep trade secrets.6

The second premise is that patents provide some disclosure of inventions. Legal schol-

ars have called the disclosure function of patents into question. For example, Ouellette

(2012) argues that patents have lowered the level of openness in science. While acknowl-

edging that “patents disclose useful, nonduplicative technical information” (p. 533), she

notes they “could be even more informative.” Others share these concerns (Roin, 2005;

Fromer, 2009; Devlin, 2009; Seymore, 2009). In addition, Lemley (2008a) suggests that

researchers might not pay attention to patents for strategic reasons, a phenomenon ob-

served more often in complex than in discrete technologies (Bessen and Meurer, 2009).

Nevertheless, law and economics scholars seem to agree that patents provide some

information. Exploiting variation across fields, Merges (1988) finds that many inventors

rely on published patents for technical information. Recent work by economists also

finds that innovators use existing patents for inspiration and information (Gross, 2019;

Hegde et al., 2020; Furman et al., 2021). Importantly, while in our model we assume

perfect disclosure for tractability reasons, our results hold as long as patents provdide

6For a comprehensive survey of trade secrets litigation in federal and state courts, see Almeling et al.
(2010a,b).
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some disclosure.

3 A Model of Trade Secrets and Disclosure

In this section, we consider an inventor’s decision whether to disclose a (patentable)

invention through a patent or to keep the invention a secret.7 This decision is embedded

(as Stage 2) in a three-stage sequential model, where Stage 1 describes the inventor’s

decision to invest in R&D and realize the initial invention, Stage 2 describes the disclosure

decision, and Stage 3 captures the market’s engagement in follow-on innovation. For the

patenting decision at Stage 2, we focus on the roles of trade secrets and an invention’s

visibility. The model derives predictions for the analyses in Section 5, where we examine

the empirical relationships between trade secrets protection, visibility, and patenting. We

return to the full three-stage model in Section 6.

3.1 An Inventor’s Decision to Disclose

An invention i at Stage 2 can be described by a tuple (φ,Θ, v). It is characterized by its

visibility φ ∈ [0, 1], its type Θ, and its private commercial value v ≥ 0 (from exclusive

use). We discuss each of the invention’s characteristics below.

An inventor is given the choice to disclose an invention through a patent (d̃ = D) or

keep the invention secret (d̃ = S).8 We set the inventor’s private returns Vd̃ equal to the

exclusivity-weighted commercial value v, where we interpret v as the rents the inventor is

able to appropriate from exclusive use of the invention.

In both disclosure states d̃ = D,S, the probability of exclusive use depends on the

visibility of the invention. Visibility is a two-way street. We refer to disclosure-visibility,

denoted by φD, as the ease with which an inventor A can observe a firm B using A’s

7Given that we use patent data for our empirical analysis, we restrict our model interpretation to
inventions that are patentable. In the U.S., this means they must exhibit patentable subject matter
(35 U.S.C. §101), be useful (35 U.S.C. §101), novel (35 U.S.C. §102), and non-obvious (35 U.S.C. §103).

8This assumption of mutually exclusive states d̃ is for convenience and does not pose significant
restrictions. Instead of a singleton invention, we can think of an invention that comprises both product
and process elements, and for which the decision to patent or keep secret is made for each individual
component.
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(disclosed) invention. We refer to secrecy-visibility, denoted by φS, as the ease with which

a firm B can observe inventor A using A’s own (secret) invention. We will assume that,

for a given invention, disclosure-visibility is higher than secrecy-visibility, φD ≥ φS. A

simple argument for this is that the inventor herself knows what to look for, whereas firm

B has little prior guidance. We set φD = φ and φS = ξφ with ξ ∈ (0, 1].

A patent for a more disclosure-visible invention is easier to enforce, and exclusivity

prevails.9 We can write the expected commercial value the inventor is able to materialize

as φDv = φv. In addition, the inventor receives a patent premium λ.10 It captures the

benefits from patenting over trade secrets and may even include licensing revenues from

follow-on innovation. Collecting terms, we can summarize the inventor’s private value of

disclosing the invention (i.e., the value from patenting) as VD(φ) = φ (1 + λ) v.

Whereas disclosure-visibility is important to determine the value of a patent, the

value from secrecy is determined by secrecy-visibility, φS = ξφ; and the value of secrecy

increases with the level of trade secrets protection. We denote the exogenous probability

that a trade secret is protected by τ ∈ [0, 1]. Recall that trade secrets laws provide

protection against misappropriation of trade secrets but not against simple copying. This

means that, even with perfect trade secrets protection (τ = 1), keeping the invention

secret is of little value to the inventor if it is secrecy-visible. Conversely, weaker trade

secrets protection reduces deterrence and results in more (unsanctioned) misappropriation

of trade secrets (Friedman et al., 1991). We therefore assume that, without any trade

secrets protection, the value of trade secrecy is zero even for non-visible inventions.11

Collecting terms, we define the private value from secrecy as VS(φ, τ) = τ (1− ξφ) v.

An implicit assumption in VS is that the secret holder can detect misappropriation,

9Active monitoring of infringement is said to be a major source of the costs of patent enforcement
(Hall et al., 2014). Goldstein (2013:64) writes: “A patent claim whose infringement is very hard to
discover is a claim with low or no value.”

10Patents are of additional value because, for instance, they signal the quality of the invention (Hsu
and Ziedonis, 2013), convey reputation (Graham et al., 2009; Sichelman and Graham, 2010), or improve
an inventor’s bargaining position in license negotiations (Hall and Ziedonis, 2001). Webster and Jensen
(2011) further provide evidence for a premium from commercialization.

11While the lack of legal sanctions is likely to encourage misappropriation, firms are expected to
erect safeguards when trade secrets protection is weak (Friedman et al., 1991; Lemley, 2008b). These
safeguards are often inefficient and their costs increase in v and decrease in τ . Without trade secrets
protection, the effective commercial value may thus in fact fully dissipate.
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and this ability is independent of the underlying visibility of the technology. A positive

probability of detection is consistent with empirical evidence: Many instances of trade

secrets litigation involve former employees or business partners stealing the secret holder’s

information (Almeling et al., 2010a,b). The Waymo case described in the introduction

provides one prominent such example. For tractability, we set the probability of detection

equal to unity, so that the only variation in the enforcement of trade secrets is through

τ .12

The inventor chooses disclosure if, and only if, VD(φ) ≥ VS(φ, τ), or

φ ≥ τ

1 + λ+ ξτ
=: φ̄(τ). (1)

For a given φ, we can write the decision to disclose as d̃ = D if φ ≥ φ̄(τ) and d̃ = S

if otherwise. Observe that in our model, the inventor’s decision to patent an invention

is not a function of the potential commercial value of the invention but rather of the

effective value (given the invention’s visibility).13 From the disclosure decision d̃ and the

expression for φ̄(τ), we can conclude that an inventor is more likely to file for a patent as

the degree of visibility φ increases (Moser, 2012), and she is less likely to patent as the

degree of trade secrets protection τ increases (Png, 2017b).

3.2 Value of Trade Secrecy by Invention Type

We assume that an invention’s visibility φ is unobservable but distributed on the unit

support with cdf GΘ. What is observable is an invention’s type Θ that is correlated with

its visibility. An invention is either a process (or method), Θ = M , or a product, Θ = P .

The probability that the realized invention is a process is θ = Pr(Θ = M).

We assume that processes are on average less visible than products.14 The (expected)

12An alternative interpretation of τ is the product of the detectability of misappropriation and the
strength of legal trade secrets protection.

13While the theoretical literature is divided (e.g., Anton and Yao, 2004; Jansen, 2011), most empirical
studies find a positive relationship between the value of an invention and the propensity to patent (e.g.,
Moser, 2012; Sampat and Williams, 2018).

14We formally capture this by assuming hazard-rate dominance. The distribution GP hazard-rate

dominates GM if
gp(φ)

1−GP (φ) ≤
gM (φ)

1−GM (φ) for all φ. Moreover, this implies that GP first-order stochastically

dominates GM so that GP ≤ GM for all φ (Krishna, 2010:276).
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values of secrecy EVS|Θ(τ) and disclosure EVD|Θ(τ) of an invention of type Θ are

EVS|Θ(τ)=

1∫
0

τ (1− ξφ) vdGΘ and EVD|Θ(τ)=

1∫
0

φ (1 + λ) vdGΘ. (2)

Proposition 1. For a given level of trade secrets protection τ , the value of secrecy is

higher for processes than for products. Conversely, the value of disclosure is lower for

processes than for products.

The proofs of this and all other results are relegated to Appendix Section A.1. Evi-

dence from survey data, finding that the propensity to patent is higher for products than

processes and thus suggesting a higher value of secrecy for processes, comports with this

theoretical finding (e.g., Levin et al., 1987; Cohen et al., 2000; Arundel, 2001; Hall et al.,

2013).

3.3 Probability of Disclosure for Invention Types

For our main theoretical result and prediction, we derive the probability ρ that a given

patent covers a process invention. We first establish two auxiliary results. In Lemma 1, we

show that the probability that a process is patented is weakly smaller than the probability

that a product is patented. For this, let d(φ, τ) = 1 if d̃ = D and d(φ, τ) = 0 if d̃ = S.

The probability that an invention of type Θ is patented is

dΘ(τ) =

∫ 1

0

d(φ, τ)dGΘ(φ) =

∫ 1

φ̄(τ)

1 · dGΘ(φ) = 1−GΘ(φ̄(τ)). (3)

Lemma 1. For a given level of trade secrets protection τ , dM(τ) ≤ dP (τ).

In Lemma 2, we establish the relationship between patenting probabilities and trade

secrets protection.

Lemma 2. The patenting probabilities for products dP (τ) and processes dM(τ) decrease

in trade secrets protection τ .

Given the underlying distribution of invention types with θ = Pr(Θ = M), Bayes’
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rule gives us the probability that a given patent covers a process:

ρ(τ) =
θdM(τ)

θdM(τ) + (1− θ) dP (τ)
. (4)

Proposition 2. Given the pool of inventions, the probability that a given patent covers

a process is decreasing as trade secrets protection increases.

The expression in Equation (4) can also be interpreted as the share of process patents

in a sample of patents. Proposition 2 predicts that the probability that a given patent

is a process patent decreases in response to an (exogenous) increase in trade secrets

protection. In the next two sections, we examine this prediction empirically.

4 Patent Data

In our empirical analyses, we estimate the probability that a patent includes a process

innovation as a function of the trade secrets protection index described in Section 2, for

patents with priority dates between 1976 and 2008 – the years for which we have trade

secrets protection data. To do this, we (a) match a set of patents to the relevant level of

trade secrets protection by identifying the timing and location of the patenting decision,

and we (b) determine each patent’s type (process or product) based on the language used

in its claims. We supplement these data with additional patent characteristics.

4.1 Timing of the Disclosure Decision and Patent Location

To determine the timing of the disclosure (patenting) decision, we use the earliest priority

date of the respective granted patent. This date reflects the application date of the

first patent in a patent family – that is, the parent application, which applies to all its

subsequent continuation and divisional applications.15 The relevant disclosure decision

was likely made at the time of the parent application, so that we use that application’s

priority date as the disclosure date for all related patents.

15For continuations, the applicant may not add new disclosures but may delete claims. Divisions
involve separating an earlier patent application into two or more.
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For the patent’s location, we consider only patents for which all U.S. inventors and

U.S. assignees are from the same state, and we use that state as the patent’s location.

Our approach ensures that the patent applicant’s decision was driven by only that state’s

level of trade secrets protection, and not contaminated by laws in other states.16 With

our assumption of single-state patents, we limit our overall sample to 1,451,311 patents

(out of 2,433,317 patents by U.S. applicants, and 4,370,594 total), granted between 1976

and 2014 and with priority dates between 1976 and 2008.17

4.2 Indicators for Process and Product Patents

We construct our indicators of process and product patents using information at the

level of the patent’s independent claims from Ganglmair et al. (2021).18 A claim can be

of one of three distinct types: (1) process (or method) claims describe the sequence of

steps which together complete a task such as making an article; (2) product-by-process

claims define a product through the process employed in the making of a product; and

(3) product claims describe an invention in the form of a physical apparatus, a system,

or a device.

We classify a patent as a process patent if at least one of its independent claims is

either a process claim or a product-by-process claim, and as a product patent otherwise.

We choose this rather aggressive definition because we are interested in whether any

process-related aspects of an invention are disclosed at all, regardless of the disclosure of

its product-related aspects.19

16An identifying assumption, which is supported by Paolino v. Channel Home Centers, 668 F.2d 721
724 n.2 (3d Cir. 1982), is that trade secrets protection is determined by the state where the secret was
developed and not where it was misappropriated: “The law of the state of residence of the person who
initially developed and protected the secret appears to be the obvious starting point for its protection.”

17Our estimation sample slightly over-represents individual applicants and under-represents large firms.
We document this selection in Section A.2, and we show below that this selection does not drive our
results.

18A patent claim describes what the applicant claims to be the invention for which the patent grants
exclusive legal rights. Each patent can hold multiple claims of different types. An independent claim
stands on its own whereas a dependent claim is in reference to an independent claim. Ganglmair et al.
(2021) use information from both the preamble of the claim (that names what the invention is about)
and the body of the claim (that lists steps of a process or the elements of a product) for their text-based
categorization of patent claims.

19We treat product-by-process claims as process claims because what they disclose is a process more
than a product. Dropping patents with such claims leaves our results unchanged.
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Table 1: Summary Statistics

N Mean Median SD Min Max

Process patent 1,451,311 0.473 0 0.499 0 1
Number of process claims 1,451,311 0.871 0 1.407 0 60
Number of product claims 1,451,311 1.920 2 1.885 0 104
Product-by-process claims 1,451,311 0.042 0 0.288 0 30

Independent claims 1,451,311 2.883 2 2.286 1 116
Length of first claim (words) 1,451,311 169.194 148 106.034 1 7078
Length of description (chars.) 1,451,311 25992.144 15658 39439.832 4 3,608,036
Generality 1,096,154 0.638 0.719 0.244 0 1
Originality 1,276,719 0.626 0.694 0.244 0 1
4th year renewal 1,358,663 0.826 1 0.380 0 1

Observations 1,451,311

Notes: This table provides summary statistics for all granted utility patents (between 1976 and 2014) with priority dates
between 1976 and 2008 for which all U.S. inventors and assignees are from the same state.

The top portion of Table 1 provides summary statistics for our patent-type indicators

for all granted USPTO utility patents in our sample.20 Almost half of all patents include a

process claim, although that number increased steadily over the time period of our study,

from just under 30% in the 1970s to almost 60% in the 2000s. This trend is universal

across patent classes. In our empirical analysis, we examine whether the UTSA caused

these trends to differ across states.

4.3 Additional Variables

We collect and construct additional patent characteristics to capture the complexity and

value of the patented technology. The bottom of Table 1 summarizes these variables

across all patents in our main sample. We proxy for a patent’s breadth and complexity

using the number of independent claims (see Lerner, 1994; Lanjouw and Schankerman,

2004) and the length (in words) of the first claim (see Kuhn and Thompson, 2019), where

shorter claims are likely broader. As an additional measure of a patent’s complexity, we

include the length of the patent’s description text.

To capture the external value (or technological impact) of a patent, we construct

measures of patent generality and patent originality as proposed by Trajtenberg et al.

20For our final sample, we follow Strandburg (2004), who argues that business methods are highly
visible “self-disclosing processes,” and drop all business method patents (Lerner, 2006).
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(1997). Patent generality captures the diversity of patents (measured by their respective

patent classes) in which a given patent is (forward)-cited. A higher generality score

implies more widespread impacts (Hall et al., 2001). Patent originality, on the other

hand, captures the diversity of technologies from which a given patent (backward)-cites.

A higher originality score means that the patented invention is combining ideas from

different areas to create something new (or “original”). We construct these measures for

each patent using the first USPC main class listed on the patent.21 As a measure of a

patent’s internal or private value, we use information on whether the patent holder paid

the patent maintenance fee during the 4th year of the patent term (see, e.g., Pakes, 1986;

Schankerman and Pakes, 1986).

5 Empirical Estimation and Results

5.1 The Impact of Trade Secrets Protection

We take advantage of the staggered adoption of the UTSA across U.S. states to estimate

the likelihood that a patent includes a process (Proposition 2). In our main specification,

we estimate the probability that a patent covers a process invention as a function of

the patent’s characteristics and the state’s trade secrets protection index. Formally, we

estimate

processj,cst = β1 protectionst + β2Xj + νcs + µct + εj, (5)

where the dependent variable is an indicator that is 1 if patent j, which belongs to

USPC main class c and is filed by an entity in state s in year t, is a process patent;

protectionst is the trade secrets protection index in state s and year t. To control for

trends within a USPC class that are common to all states and for any USPC class-state-

specific characteristics that do not vary over time, we include interacted fixed effects

for the patent’s USPC class and priority year (µct), as well as for its USPC class and

21There are about 450 main classes in the United States Patent Classification (USPC) system.
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location state (νcs), respectively.22 Our specification at the patent level is equivalent to

an analysis at the state level where the states are weighted by the number of patents, but

it also allows us to directly control for patent-specific measures of complexity and value,

Xj. We cluster standard errors at the state-year level, and we estimate Equation (5) as

a linear probability model, noting that logit estimations provide qualitatively identical

results.

5.2 Baseline Results

Table 2 shows the coefficients from the baseline specifications, including different sets

of control variables. All specifications show a statistically significant, negative effect

of a UTSA-related strengthening of trade secrets protection on the probability that a

patent is a process patent. We are most interested in the specifications including control

variables on both patent complexity and value measures (Columns (4) and (5)). Column

(4), which includes separate fixed effects for USPC main class, state, and year, suggests

that patents are 2.6 percentage points less likely to include a process innovation if the

trade secrets protection index rises by a full point. Column (5) interacts the USPC main

class dummies with the state and year dummies and therefore controls for state- and

time-specific variation across technologies. It reports a 1.8 percentage point decrease.

At a baseline process patent share of 42.3% before UTSA adoption, and with a mean

increase in the trade secrets protection index of 0.36 points across all patents, our results

correspond to respective mean decreases of 2.2% and 1.5% in the probability that a patent

is a process patent when a state adopts the UTSA. As we explain below, we can interpret

these results as lower bounds of the effects on the disclosure decisions.

Our results foreshadow large potential effects of changes in trade secrets protection

on follow-on innovation. We find that stronger protection leads to a disproportionate

decrease in the disclosure of innovations that are inherently less visible and therefore rely

on patents to facilitate follow-on innovation. In what follows, we first provide more detail

22The fixed effects including the priority year control for nationwide policy changes such as the Uruguay
Round Agreements Act of 1995 (extending the maximum validity of a patent to 20 years from filing) and
the American Inventors Protection Act of 1999 (introducing pre-grant publication of patent applications).
We cannot add state-year fixed effects because they are perfectly collinear with our variable of interest.
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Table 2: Baseline Results – Impact of Trade Secrets Protection

(1) (2) (3) (4) (5)

Trade secrets protection -0.018∗∗∗ -0.021∗∗∗ -0.026∗∗∗ -0.026∗∗∗ -0.018∗∗∗

(0.006) (0.006) (0.007) (0.007) (0.006)

Log(indep. claims) 0.233∗∗∗ 0.231∗∗∗ 0.228∗∗∗

(0.002) (0.002) (0.002)

Log(length of first claim) -0.044∗∗∗ -0.052∗∗∗ -0.045∗∗∗

(0.001) (0.001) (0.001)

Log(length of description) -0.002∗∗ 0.001 0.004∗∗∗

(0.001) (0.001) (0.001)

Originality 0.027∗∗∗ 0.011∗∗∗ 0.013∗∗∗

(0.003) (0.003) (0.003)

Generality 0.062∗∗∗ 0.039∗∗∗ 0.031∗∗∗

(0.003) (0.003) (0.003)

4th year renewal 0.045∗∗∗ 0.025∗∗∗ 0.022∗∗∗

(0.002) (0.001) (0.001)

State FE Yes Yes Yes Yes No
Year FE Yes Yes Yes Yes No
USPC Mainclass FE Yes Yes Yes Yes No
State/Year × USPC Mainclass FE No No No No Yes

R2 0.297 0.342 0.288 0.335 0.357
N 1,451,307 1,451,307 894,956 894,956 892,296

Notes: Linear probability models at the patent level with 1[process patent] as the dependent variable, and the index of trade
secrets protection as the independent variable of interest. Additional controls in columns (1)–(4) include indicator variables
for the patent’s location state, priority year, and USPC main class. Column (5) interacts USPC main class dummies with
both state and year indicators. Robust standard errors, clustered by state and year, in parentheses. * p < 0.1, ** p < 0.05,
*** p < 0.01.

and test the robustness of this main finding, and we then develop a model that includes all

stages of innovation – initial investment, the disclosure decision, and follow-on innovation

– to provide intuition as well as estimates for the welfare effects of these law changes.

5.3 Timing of the Effect

To test whether the negative effect on process patenting we found above sets in im-

mediately or gradually, we estimate the annual changes in the probability that a patent

includes a process innovation relative to the year before a state’s UTSA adoption. Specif-
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ically, we estimate

processj,cst =
∑
z

βz1(z)st + νcs + µct + εj, (6)

where νcs and µct represent USPC class-state fixed effects and USPC class-year fixed

effects, respectively, and 1(z)st represents the “lag,” or the number of years since patent

j’s filing state s adopted the UTSA. We choose the year before UTSA adoption as the

omitted category. This analysis deviates from our main analysis in two ways. First, rather

than an index of trade secrets protection, our explanatory variable of interest is a binary

variable. Second, the analysis drops patents from states that did not adopt the UTSA

because the lag variable is not clearly identified. As above, we estimate the regression

as a linear probability model for ease of interpretation, and we cluster standard errors at

the state-year level.

Figure 1 illustrates the results from this specification. Two takeaways are clear from

the analysis. First, although almost all 95% confidence intervals include zero, there might

be a slight decrease in the relative probability of a process patent in the years before UTSA

adoption. Inspired by these patterns, we examine the validity of our research design in

Section 5.5. Second, although the yearly coefficients are not statistically significant, they

suggest an immediate and lasting negative effect of the UTSA on the probability of a

process patent.23 Given the average increase in the trade secrets protection index when

the UTSA was adopted, the sizes of the coefficients are in line with those in Table 2.

5.4 Heterogeneous Effects

We examine the roles of firm sizes and technology complexities in Table 3. In the first

two columns, we repeat the estimation from Columns (4) and (5) of Table 2, interacting

the trade secrets index with indicators for small (individuals and small firms) and large

23Our setting differs from traditional difference-in-differences analyses because we only observe each
patent once and our variable of interest is an index rather than a binary treatment variable. Still,
the result in Figure 1, along with unreported regressions that show the estimated effects do not vary
significantly across treatment cohorts, alleviates concerns about potential bias from weighting treatment
effects across the staggered cohorts (Goodman-Bacon, 2021).
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Figure 1: Yearly Effect of UTSA Adoption
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Notes: This figure presents coefficients on indicator variables that equal 1 in each year before and after UTSA adoption,
as in Equation (6), for 20 years before and after adoption. The vertical line shows the year before UTSA adoption.

applicants (large firms). The estimated decrease in the probability that a patent is a pro-

cess patent is largest for small applicants. In our preferred specification with interacted

fixed effects (Column (2)), the estimated coefficient (-0.022, se=0.006) corresponds to an

average decrease in the probability of a process patent of 2.4% (compared to an esti-

mated average effect of 1.5%). The (negative) coefficient is smaller, and less statistically

significant, for large applicants.

Our findings confirm our expectations and thus provide support for our empirical

design, for three reasons. First, trade secrets are more important as a means to protect

intellectual property for small firms than large firms (Hall et al., 2014). Second, individual

states are only a small part of a large firm’s overall market, and the adoption of the UTSA

in just one of these states may not have a strong impact on patenting. Third, findings

by Crass et al. (2019) suggest a stronger degree of substitutability between secrecy and

patents for small applicants, which should in turn yield a stronger effect of trade secrets

protection.

In the next two columns of Table 3, We allow the effects to vary between “complex”

and “discrete” technologies to explore this issue of substitutability between patenting

and trade secrets more directly. Complex technologies (such as in electrical engineering,

telecommunications, semiconductors, or machine tools) are more likely protected by a
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Table 3: Impact of Trade Secrets Protection by Applicant Size and Technology Type

Applicant size Technology type

(1) (2) (3) (4)

Trade secrets protection

. . .× Small applicant -0.036∗∗∗ -0.022∗∗∗

(0.007) (0.006)

. . .× Large applicant -0.014∗ -0.013∗

(0.008) (0.007)

. . .× Discrete -0.064∗∗∗ -0.038∗∗∗

(0.010) (0.008)

. . .× Complex -0.008 -0.007
(0.008) (0.006)

State FE Yes No Yes No
Year FE Yes No Yes No
USPC Mainclass FE Yes No Yes No
State/Year × USPC Mainclass FE No Yes No Yes

R2 0.336 0.358 0.334 0.356
N 892,620 889,933 855,654 852,923

Notes: Linear probability models at the patent level with 1[process patent] as the dependent variable, and interactions of
the trade secrets protection index with applicant size (columns 1 and 2) and with technology type (columns 3 and 4) as the
independent variables of interest. All specifications include our sets of complexity and value controls. Columns (1) and (3)
include state, year and USPC class fixed effects. Columns (2) and (4) include fixed effects for interactions of USPC class
with states and with years, respectively. Robust standard errors, clustered by state and year, in parentheses. * p < 0.1, **
p < 0.05, *** p < 0.01.

combination of patents and trade secrets, whereas discrete technologies (such as in chem-

icals, pharmaceuticals, or materials) are more likely to rely on just one IP strategy. Thus,

the effect of stronger trade secrets protection should be most pronounced among discrete

technologies. To test this, we assign a complexity indicator to each patent based on von

Graevenitz et al. (2013).24 Interacting this indicator with the trade secrets index in our

main specification (Column (4) of Table 3), we find that the probability of a process

patent decreases by 2.7% at the baseline (coef=0.038, se=0.008) among discrete tech-

nologies, whereas the effect is very small and statistically insignificant among complex

technologies (coef=-0.007, se=0.006).

24In our data, 73% of patents represent complex technologies.
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5.5 Discussion of Identification

Our identification strategy relies on two assumptions. First, the relative number of process

and product inventions (rather than patents) does not vary systematically in response

to the implementation of the UTSA. Second, the adoption of the UTSA is not affected

by an expectation that certain types of inventions will be more prevalent in the future.

5.5.1 Innovation of Products and Processes

Png (2017a) shows that investment in R&D increases when trade secrets protection be-

comes stronger, which could change the pool of realized inventions.25 While we are un-

aware of empirical evidence, it is likely that investment in process inventions is affected

disproportionately, because less visible inventions benefit the most from secrecy. Thus,

if a strengthening of trade secrets protection affected the creation of different types of

inventions differently, then stronger trade secrets protection would likely lead to a relative

increase in process patents absent changes in patenting behavior of existing inventions.

That is, because we observe a relative decrease, our results can be interpreted as a lower

bound of the effect of trade secrets protection on the patenting decision.

5.5.2 Placebo Tests

Although Png (2017a) provides evidence of the exogeneity of the UTSA with regard to

firms’ decisions to invest in R&D, one might be concerned that each state’s decision to

adopt the UTSA was motivated by changes in innovation and patenting behavior, rather

than the other way around. With the caveat that patents are the results of investments

made in the past, this would imply a change in the likelihood that a patent covers a

process invention before a state adopts the UTSA.26 We examine this possibility in a set

of placebo tests. Instead of the true UTSA adoption date for each state, we set an earlier

25The pool could also change if firms and inventors move to states with stronger trade secrets protec-
tion. As shown by Png (2012), however, the adoption of the UTSA had no significant effect on inventors’
mobility.

26Png (2017b) suggests an instrumental variables approach, which we adopt in an additional check.
Like in his paper, we find even stronger results in that specification. We continue without instruments to
provide more conservative estimates, noting that all qualitative results hold if we include the instruments.
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date, dropping all patents with priority dates after the true UTSA adoption to avoid

confounding our placebo effects with true ones.27

We then estimate the effect of placebo UTSA adoption – one, two, three and four

years before the true adoption – on the probability that a patent is a process patent, in

regressions that mirror Column (5) of Table 2. For all four placebo adoption dates, the co-

efficient of interest is small and statistically insignificant, ranging from -0.002 (se=0.004)

for placebo adoption two years earlier to +0.003 (se=0.004), four years earlier. These

results suggest that states adopted the UTSA exogenously with respect to changes in the

distribution of product and process patents.

5.5.3 Randomizing Treatment

The negative coefficients in our main analyses could be the result merely of chance. We

examine this possibility in a perturbation test similar to DeAngelo et al. (2017) and Alsan

et al. (2019). We randomize the timing of UTSA adoption across states based on the

true distribution of adoption dates. Then, we randomly assign these dates to the U.S.

states and estimate the impact of this pseudo-adoption on the probability that a patent

includes a process claim. We record the coefficient of interest – on an indicator variable

that is 1 after pseudo-adoption and 0 before, rather than the numerical index – for 1000

such permutations. Using the true adoption dates, the coefficient of interest is -0.0109.

Of the 1000 coefficients from the permutations, only 3 are more negative, suggesting that

the UTSA indeed affected patenting of products and processes differently.

5.6 Robustness Analyses

Our data construction and empirical approach are based on a number of assumptions,

which we examine in Appendix Section A.3. In short, we find that our results are robust.

First, we vary the timing of the disclosure decision. Instead of assigning a patent’s priority

date, we use each patent’s application date. We also limit our sample to the first patents

in a patent family. Second, we examine our sample restriction to single-state patents.

27We also drop all patents that were applied for more than ten years before the state’s true UTSA
adoption to create a closer comparison group.
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We consider both a broader definition of patent location (based on the first U.S.-based

assignee) and two narrower definitions (limiting the analysis to U.S.-only patents and

to single-assignee patents). Third, we examine our definition of a process patent. We

consider two less stringent definitions based on individual claims, and we drop software

patents. Fourth, we include control variables for state-level changes in the enforcement of

the Inevitable Disclosure Doctrine, which may have affected patenting decisions beyond

the effects of the UTSA. Fifth, we include state-specific linear time trends before UTSA

adoption to account for possible time-varying differences across states. Finally, we also

repeat our analysis after separately dropping each U.S. state to examine whether the

effects are driven by changes in individual states. We do not find any evidence of this.

5.7 The Number of Patents

Lemma 2 states that a strengthening of trade secrets protection should lower the proba-

bility that any invention is patented, regardless of its type. We examine this claim here,

by estimating the effects of the UTSA on the log-number of process and product patents.

To control for changes in patterns across technologies, we create a balanced panel at the

USPC class-state-year level, and we estimate equations such as

ln(patents+ 1)cst = β1protectionst + νcs + µct + εcst. (7)

Here, patentscst is the number of (process, product or total) patents in USPC main class

c in state s and year t, and all other variables are as in our main analyses. We weight

all observations according to the total number of patents in the state and USPC class

in 1979 – one year before any state adopted the UTSA – and we impute zeros and unit

weights for those state-year-classes without any patents.

Table 4 shows the results from these regressions. The first three columns include

separate fixed effects for USPC classes, states, and years; and the last three columns

include the interacted fixed effects – our preferred specification. Across the specifications,

we find large and significant decreases in the number of process patents, between 11 and
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Table 4: Impact of Trade Secrets Protection on Total Patenting

Separate FEs Interacted FEs

(1) (2) (3) (4) (5) (6)
Process Product All Process Product All

Trade secrets protection -0.175∗∗∗ -0.021 -0.096∗∗ -0.113∗∗∗ -0.003 -0.040
(0.038) (0.037) (0.039) (0.034) (0.035) (0.036)

R2 0.619 0.606 0.618 0.815 0.812 0.846
N 241,028 241,028 241,028 238,693 238,693 238,693

Notes: Log-OLS regressions at the USPC class-state-year level. The dependent variable is ln(patents+ 1), where patents
describes either the number of process patents, the number of product patents, or the total number of patents. The
regressions are weighted based on the total number of patents in 1979 (the last year before the UTSA) in the respective
USPC class, state and year. We infer zeros for class-state-years without any patents and assign these a frequency weight of
1. Columns (1) through (3) include state, year and USPC class fixed effects. Columns (4) through (6) interact USPC class
fixed effects with state and year dummies, respectively. Robust standard errors, clustered by state and year, in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01.

16%. By contrast, we find no significant effect on the number of product patents. On

average, a one-unit increase in the trade secrets protection index decreases the number

of patents by up to 10%.

6 Effects on Cumulative Innovation

In addition to affecting an inventor’s patenting decision, strengthening trade secrets pro-

tection can incentivize investment in initial R&D, but it may also retard knowledge

diffusion by reducing disclosure of less visible inventions. In what follows, we first intro-

duce a three-stage model of sequential innovation that endogenizes an inventor’s initial

R&D decision (Stage 1) and accounts for the effect of the inventor’s disclosure decision

(Stage 2) on the intensity of follow-on innovation (Stage 3).28 We then illustrate the

implications of changes in trade secrecy protection, and we calibrate the model using the

results from Section 5 and values of follow-on innovation from the literature to examine

the role of an invention’s visibility.

28Our model of follow-on innovation is simple but nonetheless consistent with stylized facts and other
models proposed in the literature. See our discussion in Section A.4.1.
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6.1 An Augmented Model of Cumulative Innovation

6.1.1 Stage 1 (Initial R&D)

An inventor observes a potential invention (idea) i with characteristics (φ,Θ). The in-

vention’s visibility φ is drawn from an invention-type specific distribution with cdf FΘ.

We assume that disclosure-visibility and secrecy-visibility are the same (so that ξ = 1

from Section 3). Invention types Θ (product or process) are binary, and the probabil-

ity that a potential invention is a process is θF = Pr(Θ = M). Before any investment

is made, the inventor observes R&D costs Ci and forms expectations of the invention’s

commercial value vi based on a known distribution. She undertakes the R&D project if

the expected payoffs from the invention (including the value and licensing revenues from

both the invention and potential follow-on innovation) outweigh its cost. We refer to FΘ

and the distribution of invention types as unconditional distributions, that means, before

the R&D decision is taken.

6.1.2 Stage 2 (Patent or Trade Secret)

The second stage of our augmented model is the disclosure model in Section 3. Con-

ditional on a positive R&D decision, the disclosure decision depends on the strength of

trade secrets protection τ and the invention’s realized visibility φi, where φi is drawn

from the invention type specific conditional distribution of realized inventions with cdf

GΘ (after the R&D decision).

6.1.3 Stage 3 (Follow-on Innovation)

For any realized initial invention i, we model follow-on innovation as one representative

invention iF with random value viF and cost CiF .29 Follow-on innovation can only happen

if it is profitable (i.e., viF ≥ CiF ). If it is, then the realization depends on how much of

the initial invention i is visible after the inventor’s disclosure decision. We refer to this

29The value of this representative invention can be interpreted as capturing the present discounted
value of a stream of follow-on innovation (akin to quality-ladder models in Grossman and Helpman
(1991), O’Donoghue et al. (1998), or Hopenhayn and Mitchell (2001)) triggered by invention i.
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measure as effective visibility of initial invention i and denote it by φ̃i. It is equal to

φ̃i =

 φi if R&D in Stage 1 and trade secret in Stage 2;

1 if R&D in Stage 1 and patent in Stage 2.
(8)

Effective visibility is equal to the invention’s visibility φi if the invention is realized but

kept as a trade secret. We assume, without loss of generality, that the invention is fully

disclosed through patenting so that effective visibility of a patented invention is equal to

1.30

In addition to the effective visibility, the probability that follow-on innovation is suc-

cessful also depends on barriers to access to the initial invention. We capture how much

patents – and their potential anticommons effect – lower the success probability of follow-

on innovation by a scale parameter ψD < 1. For secrets, we normalize this parameter to

ψS = 1. The success probability of follow-on innovation is then ψ̃iF ,d̃ = ψd̃φ̃i following a

realized initial invention with disclosure state d̃ ∈ {S,D}.

6.2 Surplus Implications

To provide some intuition from this model, we assume (1) that the unconditional visi-

bilities (of potential inventions) are uniformly distributed between 0 and 1, (2) that the

value of any (initial or follow-on) innovation is exponentially distributed with rate pa-

rameter 0.1, (3) that the patent premium λ equals 0.1 (in line with Schankerman, 1998),

and (4) that the baseline success probabilities for follow-on innovation are φS = 1 for

secret Stage 1 inventions (so that ψ̃S = φ) and φD = 2/3 for patented inventions (so

that ψ̃D = 2/3). We simulate the R&D and disclosure decisions, along with the follow-on

innovation outcomes, given R&D costs drawn from a logistic distribution with variance

0.5. We choose three separate location parameters for the cost distributions to describe

industries with varying R&D costs: no costs, low average costs (40% of the expected

value of the R&D investment), and high average costs (80%).

30The assumption of perfect disclosure through patenting is to simplify the analysis. Our results hold
as long as patents provide more disclosure than secrecy.
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Given simulated investment and disclosure decisions for 1,000,000 potential inventions,

we calculate “welfare” W (τ), a function of trade secrets protection, as the expected social

surplus derived from the use of the invention.31 For each invention at Stage 1, the potential

surplus is the value of the gains from trade without any barriers to access; and the realized

surplus is the potential surplus net of the disclosure-state specific deadweight loss. For

patented inventions, barriers to access (and thus the deadweight loss) increase in visibility

φ, whereas for inventions kept as trade secrets, the barriers to access decrease in visibility

and increase in trade secrets protection, τ . For follow-on innovation, we assume free access

and zero deadweight loss in both disclosure states. To calculate the expected surplus, we

account for the inventor’s decision to develop any potential inventions at Stage 1 and the

probability of follow-on innovation at Stage 3.

Figure 2 illustrates how welfare from innovation varies with the trade secrets pro-

tection level τ , for each R&D cost level. The graphs on the left depict welfare from all

innovation. For no R&D costs (Panel (a)), stronger trade secrets protection has an un-

ambiguously negative effect on total welfare. But as R&D costs increase, stronger trade

secrets protection can increase welfare. The right-hand side of Figure 2 separately depicts

the surplus associated with initial R&D and with follow-on innovation to illustrate the

channels that affect welfare.

Deadweight Loss from Monopoly Power: Stronger trade secrets protection in-

creases barriers to access to a technology, which increases the deadweight loss from

monopoly power. We show this effect in the solid line (for initial innovation) in Fig-

ure (ii) of Panel (a), which isolates this deadweight loss because, without R&D costs, all

R&D projects are realized.

Decision to Innovate: When costs are nonzero, trade secrets protection has a positive

effect on initial R&D by increasing the expected value of realized R&D projects. This

in turn has a positive effect on welfare from innovation. We observe this effect in the

solid-line graphs in Figures (ii) of Panels (b) and (c).

31We provide more details on our welfare measure in Section A.5.
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Figure 2: Effect of Trade Secrets Protection on Welfare
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Notes: This figure plots welfare W (τ) (in % of the value when τ = 0) for values of τ ∈ [0, 1], when there are no R&D
costs (Panel (a)), with low average R&D costs (40% of the expected R&D project value, Panel (b)), and with high average
R&D costs (80%, Panel (c)). In each scenario, we simulate a sample of N = 1,000,000 inventions, assuming a uniform
unconditional visibility distribution and baseline success probabilities of ψS = 1 and ψD = 2/3. In the left Panel (i), we
show the aggregate value of both initial and follow-on innovation (W (τ)). In the figures on the right (ii), we separately
plot the social value of initial R&D (solid) and follow-on innovation (dashed).

Follow-on Innovation (1): Stronger trade secrets protection affects welfare by lower-

ing the share of inventions that are disclosed. This has a negative effect on overall welfare

through ψ̃iF ,d̃: effective visibility decreases, which in return reduces the success probabil-

ity of follow-on innovation. We observe this negative effect of trade secrets protection in

the dashed graphs on the right-hand side figures.

Follow-on Innovation (2): Stronger trade secrets protection has a secondary effect

on follow-on innovation. The increased ex-ante R&D activity implies there is more initial
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R&D to build on. This counteracts the negative effect of trade secrets on follow-on

innovation from reduced disclosure, especially when R&D costs are high. To observe

this, compare the dashed graphs in Figures (ii) for the value of follow-on innovation for

Panels (b) and (c). For higher costs (Panel (c)), trade secrets protection has a stronger

incentivizing effect on initial R&D. As a consequence, the decrease in the value of follow-

on innovation is smaller here than for low costs.

Finally, observe from the locations of the maxima in the left graphs of Figure 2 that the

optimal level of trade secrets protection increases in R&D costs. This rationalizes existing

law and practice, which tends to provide stronger protection for higher-cost projects.

In the State of New York (that has not adopted the UTSA but follows common law

principles) one factor to determine whether something is a trade secret explicitly lists the

costs of developing the information.32 Moreover, under the UTSA, trade secrets holders

must also show significant costs of duplication of the secret information to establish the

validity of their case, for example by referring to their own costs of R&D (Sandeen and

Rowe, 2013:34).

6.3 The Role of Visibility

The above results suggest important welfare effects of changes in trade secrets protection

across all inventions, and these effects may be particularly strong among less visible

inventions. Here, we study the role of visibility, using the invention’s type as a proxy. To

meaningfully distinguish the effects on process and product innovations, we need to obtain

the unconditional visibility distributions FΘ of both process and product innovations. In

what follows, we briefly explain our estimation and simulation strategy and the set of

assumptions we make for identification.33 We then use the estimated values to illustrate

the role of an invention’s visibility in informing the effects of trade secrets protection.

32Restatement (First) of Torts, §757 cmt. b (1939). Despite the adoption of the UTSA and the
publication of the Restatement (Third) of Unfair Competition (also governing aspects of trade secrets
protection), courts and commentators in many states continue to cite this Restatement of Torts (Sandeen
and Rowe, 2013:19).

33We provide a formal description of the estimation details, including a table summarizing the ingre-
dients of each step, in Appendix Section A.4.
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6.3.1 Estimation and Simulation Strategy

We proceed in four steps. In an initial step (Step 0), we predict the type distribution of

disclosed inventions (process and product patents) based on our estimates in Section 5.

Step 1 describes Stage 2 of the augmented model, in which we use maximum likelihood

estimation to estimate the shares and distributions of the conditional (realized) inventions

that explain our predicted patent shares. In Step 2, we simulate – given initial R&D costs

– the distributions of unconditional inventions (ideas) that give rise to these estimated

conditional distributions. We do this by matching simulated moments of the distributions

of visibilities and invention types with those estimated in Step 1. Finally, in Step 3 we

use the estimated conditional distributions to simulate follow-on innovation as we did in

Section 6.2.

Step 1: To calculate the log-likelihood of the observed visibility distributions GΘ and

the distribution of invention types with θ, we use the predicted share of process patents

for τ ∈ [0, 1] based on the results for discrete technologies from Column (4) of Table 3, and

we make two main assumptions. First, as before, we set the patent premium λ = 0.1.34

Second, the type-specific visibilities φ follow triangular distributions. We hold the mode

for the distribution for products constant at 0.5 and estimate the distribution for processes

without imposing hazard rate dominance.

The estimated parameters comport with our theoretical predictions. The estimated

mode of the triangular distribution for processes is lower than the one we fixed for prod-

ucts (0.376 vs. 0.5).35 Consequently, patenting probabilities for processes are lower than

for products (Lemma 1) and decreasing in τ (Lemma 2), and the share of process patents

decreases as trade secrets protection increases (Proposition 2).

Step 2: We estimate the unconditional distributions of invention types and visibilities

through simulated method of moments. Specifically, we find the unconditional visibility

and type distributions for which the moments of the simulated conditional distributions

34Our results are consistent for λ ≥ 0.
35The mode is estimated very precisely, based on 1000 bootstrap replications. The triangular distri-

bution for visibilities of products likelihood-dominates, implying that it also hazard-rate dominates the
triangular distribution for visibilities of processes, as is our distributional assumption in Section 3.
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match the moments of the conditional distributions we estimated in Step 1.36 These

simulated conditional distributions describe all potential inventions that the inventor

decides to develop at Stage 1. In addition to the potential invention’s visibility, this

R&D decision is also driven by its value vi and the costs of R&D Ci (both of which

are simulated), as well as the strength of trade secrets protection τ , which informs the

disclosure decision at Stage 2. Like we did for the conditional distributions in Step 1, we

assume that visibilities follow triangular distributions, but unlike in Step 1, we estimate

these distributions for both invention types.

Step 3: Given our results from Steps 1 and 2, we simulate follow-on innovation as in

the previous section. We assume a baseline success probability of follow-on innovation

of ψD = 2/3 for patented Stage-1 inventions and ψS = 1 for secret Stage-1 inventions.

The invention values vi and viF are independent draws from the same distribution, as are

R&D costs Ci and CiF .

6.3.2 Estimation Results

We calibrate our model for no R&D costs, low average costs, and high average costs

for N = 1,000,000 simulated potential inventions, where the invention values vi and the

R&D costs are drawn from the same distributions as above. For all three cost levels,

the results continue to satisfy our distributional assumption of hazard-rate dominance.

Moreover, for both invention types, we observe a selection of higher-visibility inventions

into development in Stage 1. The distributions of costs and values further imply relatively

large R&D investment probabilities – ranging from 0.70, or 70% of all possible inventions,

for high R&D costs to 1, or 100%, without any costs – in Stage 1. In Stage 2, 67% (high

costs) to 77% (no costs) of realized inventions are patented, with patenting probabilities

for processes considerably lower than for products (from 64% and 70%, respectively, for

high costs to 70% and 80% for no costs). These results for patenting probabilities are

in line with survey evidence reported by Mansfield (1986) who finds that between 66%

and 84% of patentable inventions are indeed patented. Finally, in Stage 3, up to one half

36We use the means and variances of the visibility distributions and the means of the invention-type
distributions.
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Figure 3: The Role of Visibility

(a) Invention Types: No R&D Costs
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(b) Invention Types: High R&D Costs
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Notes: This figure plots the welfare function W (τ) (in % of W (0)) for τ ∈ [0, 1]. We simulate a sample of N = 1,000,000
inventions, using the estimates for unconditional distributions from Step 2 and assuming baseline success probabilities of
ψS = 1 and ψD = 2/3. We plot the welfare functions separately for processes (dashed line) and for products (dash-dotted
line). In Panel (a), we use the estimates for no R&D costs; in Panel (b), we use the estimates for high average R&D costs
(such that costs are 80% of the expected R&D project value).

of all realized initial inventions lead to follow-on innovation (with the share decreasing

in R&D costs). We see slightly lower probabilities of follow-on innovation building on

processes (28% to 49%) than products (30% to 53%).

6.3.3 Visibility and Surplus

Both positive and negative effects of trade secrets protection are amplified for less visible

inventions (processes). The positive incentive effect is stronger for processes, because they

are less likely patented and stronger trade secrets protection increases appropriability.

As we formalize in Section 3 and show in Section 5, the negative disclosure effect is also

stronger for processes. The probability that processes are disclosed in patents decreases

relative to products, which jeopardizes their follow-on innovation disproportionately.

Figure 3 illustrates these findings. We isolate the negative disclosure effect in the

no-cost environment in Panel (a), in which ex-ante incentive effects do not play a role.

As R&D costs increase, the positive effects on ex-ante incentives become more important.

However, in the high-cost environment in Panel (b), these ex-ante incentive effects more

than offset the negative disclosure effect.
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6.4 The Role of Follow-on Innovation

In Figure 4, we compare, in a low cost environment, the results from the baseline model

(where initial and follow-on value follow the same distributions) with a scenario in which

follow-on innovation is on average twice as valuable. Larger relative value weights of

initial and follow-on innovation can be explained, for instance, by more frequent or more

numerous improvements of a product in a quality ladder when follow-on innovation is the

present discounted value of all steps on that ladder. We find that the positive effect of

trade secrets protection on the total value of innovation is weaker when follow-on innova-

tion is more valuable, implying that the negative disclosure effect on follow-on innovation

outweighs the positive effect from the increased potential for follow-on innovation due to

more initial R&D. That is, even in an environment where the positive effects on follow-on

innovation are more pronounced, the net effects of trade secrets on follow-on innovation

remain negative.

Consequently, the optimal value of trade secrets protection for the initial invention is

lower in industries that are characterized by a relatively larger value of follow-on innova-

tion. We can see this by the shift to the left of the peak of the welfare functions when the

value of follow-on innovation is doubled (panel (a)). In Panel (b), we plot the optimal

value of trade secrets protection against the relative weight of follow-on innovation and

observe a monotone negative relationship. In industries characterized by a lot of cumu-

lative innovation, the impacts on follow-on innovation are amplified. For reasonable cost

assumptions, the net effects are negative, making trade secrets protection less valuable as

cumulative innovation gains importance. Moreover, because the effects on disclosure and

follow-on innovation are even stronger for processes (Figure 3), the optimal trade secrets

protection level is likely even lower for those inventions.

7 Conclusion

The effects of intellectual property rights on incentives to innovate are relatively well-

understood, but we know less about the differences between the effects on initial and
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Figure 4: The Role of Follow-on Innovation

(a) Welfare for Low R&D Costs

Trade Secrets Protection

To
ta

l V
al

ue
 (

in
 %

)

0.0 0.2 0.4 0.6 0.8 1.0

80
90

10
0

11
0

Baseline
High−Value Follow−on

(b) Optimal Trade Secrets Protection

Relative Weight of Follow−On Innovation

O
pt

im
al

 P
ro

te
ct

io
n

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
25

0.
50

0.
75

Notes: In Panel (a), we plot the welfare function W (τ) (in % of W (0)) for τ ∈ [0, 1] in the low-cost environment. We
simulate a sample of N = 1,000,000 inventions, assuming a uniform unconditional visibility distribution and baseline success
probabilities of ψS = 1 and ψD = 2/3. We plot the welfare function for two different values of follow-on innovation. The
solid line describes the baseline from Figure 2 (where viF ∼ exp(1/10)), the dashed line describes the scenario in which
the value of follow-on innovation is drawn from exp(1/20) (twice the average value of the baseline). In Panel (b), we plot
the optimal level of trade secrets protection for different values of follow-on innovation relative to initial ideas in a low-cost
environment. We mark the baseline (=1) and the high-value scenario from Panel (a) (=2).

follow-on innovation. We add to recent discussions by arguing that the effects on follow-

on innovation depend on both the intellectual property institutions and the visibility

of the original idea. For highly visible inventions, patents limit the ability of others to

build on said innovation. For inventions whose technology is less visible, however, trade

secrets limit access entirely. For these inventions, patents can disclose information, which

boosts the potential for follow-on innovation. Therefore, an intellectual property policy

that particularly encourages patenting of less visible inventions could increase innovative

activity as a whole.

The trade-off between the incentives to innovate and the ability of others to build on

existing inventions also depends on the profitability of R&D investment. When R&D is

relatively profitable (with low R&D costs), strengthening protection of a trade secret does

little to incentivize additional investment in initial innovation, but it might discourage

the disclosure of existing inventions. This hurts follow-on work, especially when the

invention is not otherwise visible. On the other hand, when R&D is costly enough to

prevent some innovation, a stronger trade secrets law could lead to more investment in

initial R&D. If the increases in initial innovation are large, they could offset the losses

from nondisclosure.

Our results support a body of literature that argues that an optimal policy distin-

guishes between different types of inventions and industries. Industries with high R&D
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costs (e.g., pharmaceuticals and chemicals) are most likely to benefit from increased trade

secrets protection. By contrast, industries with relatively low R&D costs likely experience

a welfare loss from stronger trade secrets protection.

Note that we specifically study secrecy of patentable inventions. A different, and

broader, approach to trade secrets relates to the design of the employment relationship

(e.g., in the form of covenants not to compete) or broader organizational concerns (such

as in non-disclosure agreements). Given the mechanisms in our paper, we view our results

as complementary to that literature.
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A Appendix

A.1 Formal Proofs of Theoretical Results

Proof of Proposition 1: For the proof of this claim, we utilize the stochas-

tic dominance property of our visibility distributions. As stated in the text, our

assumption of hazard rate dominance implies first-order stochastic dominance (Kr-

ishna, 2010:276). It will be useful to first state the definition and general property

of first-order stochastic dominance. We follow the treatment in Mas-Colell et al.

(1995:195). Let u(x) be a non-decreasing function in x ∈ [0, 1]. Then∫
u(x)dGP (x) ≥

∫
u(x)dGM(x) ⇐⇒ GP (x)

FOSD
� GM(x). (A.1)

Integrating by parts, we obtain∫
u(x)dGΘ(x) = [u(x)GΘ(x)]10 −

∫
u′(x)GΘ(x)dx

Because GΘ(0) = 0 and GΘ(1) = 1 for Θ = M,P , we can rewrite the condition in

the claim as∫
u(x)dGP (x)−

∫
u(x)dGM(x) =

∫
u′(x) [GM(x)−GP (x)] dx ≥ 0.

Because GP (x) ≤ GM(x) by first-order stochastic dominance, the condition holds

for any non-decreasing function so that u′(x) ≥ 0. Note that if u(x) is strictly

increasing and GP (x) < GM(x) for some x, then the inequality is strict.

For the first claim in the proposition, EVS|M(τ) > EVS|P (τ), τ (1− ξφ) v is

a strictly decreasing function in φ (because ξ > 0). We can simply rewrite the

inequality as −EVS|P (τ) > −EVS|M(τ) or∫ 1

0

−τ (1− ξφ) v︸ ︷︷ ︸
u(φ)

dGP (φ) >

∫ 1

0

−τ (1− ξφ) v︸ ︷︷ ︸
u(φ)

dGM(φ) (A.2)

with u(φ) increasing in φ so that the general property above applies. We obtain a

strict inequality by the implicit assumption that GM(φ) and GP (φ) are not identical

so that GP (φ) < GM(φ) for some φ. For the second claim, EVD|M(τ) < EVD|P (τ),

note that φ (1 + λ) v is strictly increasing in φ, and the above general property

applies.
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Proof of Lemma 1: For any given τ , dM(τ) ≤ dP (τ) if, and only if, GP (φ̄(τ)) ≤
GM(φ̄(τ)). The latter holds by first-order stochastic dominance of GP over GM .

Proof of Lemma 2: Patenting probabilities (weakly) decrease in τ if dΘ(τ) is

(weakly) decreasing in τ . We have ∂φ̄(τ)
∂τ

= 1+λ
(1+λ+ξτ)2

> 0 so that GΘ(φ̄(τ)) increases

in τ and dΘ(τ) = 1−GΘ(φ̄(τ)) decreases in τ .

Proof of Proposition 2: Using dM(τ) = 1−GM(φ̄(τ)) and dP (τ) = 1−GP (φ̄(τ)),

the first derivative of ρ(τ) with respect to trade secrets protection τ is

∂ρ(τ)

∂τ
=
− (1− θ) θ [(1−GP ) gM − (1−GM) gP ] φ̄′

(θ (1−GM) + (1− θ) (1−GP ))2

where φ̄′ > 0 is the partial derivative of φ̄(τ) with respect to τ and GΘ and gΘ are

evaluated at φ̄(τ). The probability ρ(τ) decreases in τ if the term in brackets in the

numerator is non-negative so that (1−GP ) gM ≥ (1−GM) gP or gM
1−GM

≥ gP
1−GP

.

The latter inequality holds by the assumption of GP hazard-rate dominating GM .

A.2 Representativeness of the Sample

Because our main regression sample is limited to patents whose U.S. assignees

and inventors are all from the same state, we introduce the possibility of sample

selection. We examine this possibility by comparing our variables of interest across

three samples: (1) all utility patents with priority dates between 1976 and 2008

and granted between 1976 and 2014 for which we observe the relevant information

(4,287,180 patents); (2) the subset of patents with any U.S. assignee or inventor

(2,391,486 patents); and (3) the subset of patents for which all U.S. assignees and

inventors are located in the same state (our main estimation sample, 1,451,311

patents). Table A.1 shows summary statistics for our process patent indicator

as well as the control variables. The regression sample (rightmost column) has a

slightly higher share of process patents than the total population of patents, but

smaller than the population of U.S. patents. They also seem to have slightly higher

degrees of originality and generality. We control for these variables in the main

estimation.

Figure A.1 illustrates the distributions of the sizes of the applicants. It shows

that our regression sample over-represents individual applicants and under-rep-

resents large firms. Because small applicants (individuals and small firms) see the

largest effect (see Section 5.4), our average treatment effects may be slightly over-

estimated.

40



Table A.1: Summary Statistics for Different Subsamples

All All US Single-State

Mean SD Mean SD Mean SD

Process patent 0.459 0.498 0.507 0.500 0.473 0.499
Number of process claims 0.799 1.294 0.919 1.400 0.871 1.407
Number of product claims 1.781 1.798 1.875 1.872 1.920 1.885
Log(indep. claims) 1.185 0.450 1.246 0.452 1.242 0.453
Log(length of first claim) 4.989 0.582 4.953 0.594 4.976 0.584
Log(length of description) 9.716 0.965 9.759 0.959 9.699 0.951
Originality 0.602 0.253 0.632 0.240 0.626 0.244
Generality 0.606 0.263 0.634 0.249 0.638 0.244
4th year renewal 0.838 0.368 0.840 0.367 0.826 0.380

Observations 4287180 2391486 1451311

Notes: This table provides summary statistics for all granted utility patents (between 1976 and 2014) with priority
dates between 1976 and 2008. Column (1) shows statistics for all patents; Column (2) shows statistics for patents
with at least one U.S. assignee or inventor; Column (3) uses single-state patents.

A.3 Robustness of the Empirical Results

The main analysis requires that we make several choices about variable definitions

and the resulting sample selections. Here, we examine the robustness of our empir-

ical results to these assumptions in additional regressions, replicating the specifica-

tion from Column (5) of Table 2. All specifications show a robust negative impact

of trade secrets protection on the share of process patents. We summarize all results

in Table A.2.

Disclosure Date: We first assign the application date of each individual patent as

the date of the disclosure decision (Column (1) of Panel (a)). The coefficient of inter-

est remains strongly significant and almost identical to that in the main specification

(-0.020 (se=0.006) instead of -0.018). Next, we circumvent the disclosure date issue

altogether by considering only the patent family head – the first patent within its

family. Again, the results are almost unchanged (Column (2) in Panel (a)).

Invention Location: We test the robustness of our results to the sample selection

of single-state patents. In a less conservative approach, we use all patents and assign

the first assignee’s state as the location of the disclosure decision, or the location

of the first inventor if no U.S. assignee is listed. In a more conservative approach,

we drop all patents with non-U.S. contributors, thus guaranteeing that the decision

is made in the identified state. Again, both approaches provide almost identical

results to the main specification (Columns (3) and (4) of Panel (a), respectively).

Decision Maker: Our focus on single-state patents also helps alleviate concerns

about who makes the disclosure decision: if all assignees and inventors are located
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Figure A.1: Applicant Size Distributions for Different Subsamples
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Notes: This figure presents shares of applicant sizes of different subsamples of all granted utility patents (between
1976 and 2014) with priority dates between 1976 and 2008. The darkest (leftmost) column shows statistics for all
patents; the lightest (middle) column shows statistics for patents with at least one U.S. assignee or inventor; the
rightmost column uses single-state patents.

in the same state, we know where the decision maker is located even if we do not

know their identity. In another approach, we focus on patents with only one decision

maker: those with just one assignee, or with just one inventor if no assignee is listed.

The main result again remains almost unchanged (Column (5) in Panel (a)).

Definition of Process Patents: The main analysis defines all patents with at

least one independent process claim as a process patent because we are interested in

disclosure of any process component of the invention. Here, we use two alternative

measures of a process patent: (1) a patent is a process patent if the first claim

is a process claim,37 and (2) a patent is a process patent if at least 50% of its

independent claims are process claims. Our results are of similar magnitude to the

main regression (Columns (1) and (2) of Panel (b)). Further, we drop all software

patents, because software patents are often filed as process patents even though

they do not inherently include process innovation.38 The resulting coefficient on

the trade secrets protection is almost identical as well (-0.017, se=0.006, Column

(3)).

Other Changes in Relative Trade Secrets Strength: It is possible that the

changes in protection due to the UTSA are correlated with other changes in the

relative strength of trade secrets and patenting. Changes in the enforcement of the

inevitable disclosure doctrine (IDD) pose one possible such confounding variable.

The IDD is a common law doctrine that allows employers to seek protection against

37Kuhn and Thompson (2019) argue that under U.S. law the broadest claim is listed first.
38We follow Graham and Vishnubhakat (2013) in identifying patents as software patents. In

our data, 66% of all software patents include a process claim, as opposed to 40% of non-software
patents.
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Table A.2: Robustness Checks

Panel (a): Disclosure Date and Invention Location

(1) (2) (3) (4) (5)
Appl. Date Family Head Assignee Loc U.S. Only 1 Assignee

Trade secrets protection -0.020∗∗∗ -0.020∗∗∗ -0.020∗∗∗ -0.018∗∗ -0.017∗∗∗

(0.006) (0.005) (0.005) (0.007) (0.006)

Observations 878512 796373 1435763 616992 849881

R2 0.357 0.364 0.356 0.344 0.358

Panel (b): Process Patent Definition and Control Variables

(1) (2) (3) (4) (5)
Process: 1st Process: Most No Software IDD Pre-Trends

Trade secrets protection -0.008∗ -0.015∗∗∗ -0.017∗∗∗ -0.017∗∗∗ -0.029∗∗

(0.005) (0.005) (0.006) (0.005) (0.013)

Observations 886436 892296 652023 892296 892296

R2 0.331 0.279 0.335 0.357 0.357

Notes: Linear probability model with 1[process patent] as the dependent variable. In Panel (a): Column (1) sets
the date of the disclosure decision as the patent’s application date; Column (2) uses only the first patent in a patent
family (the family head); Column (3) uses the location of the first assignee (or the first inventor if no assignee is
listed); Column (4) is limited to patents for which all contributors are American and from the same state; and
Column (5) drops patents with more than one assignee. In Panel (b), Columns (1)–(3) examine the definition of
process patents. Column (1) uses the status of the patent’s first claim; Column (2) considers a patent a process
patent if at least half of its claims describe a process; Column (3) drops all software patents; Column (4) adds
state-year specific control variables for changes (strengthening and weakening) in the court enforcement of the
Inevitable Disclosure Doctrine (IDD); Column (5) adds state-specific linear pre-trends. Robust standard errors,
clustered at the state and year, in parentheses. All specifications include the same control variables as the full
specification in the main text.

the disclosure of trade secrets by a former employee when working for a competi-

tor. Courts in the U.S. states have at various points in time either strengthened or

weakened the judicial enforcement of the IDD.39 Using the case coding from Castel-

laneta et al. (2016:Table B1), we control for changes in the judicial enforcement of

the IDD (implying either a strengthening or weakening of employer-friendly trade

secrets protection). Our results, reported in Column (4) of Panel (b), are again

unchanged.

39For instance, in 1998 the Utah District Court found (in favor of the IDD) that “inevitable that
defendants will traffic upon Novell’s trade secrets and confidential technical information unless they
are restrained from being in the same business Novell is in.” Novell, Inc. v. Timpanogos Research
Group, Inc., 46 U.S.P.Q.2d 1197 (Utah Dist. Ct. 1998). In 1999, the Fairfax County Circuit Court
(in Virginia) found (against the IDD) that the “mere knowledge of a trade secret is insufficient
to support an injunction order.” Government Technology Services, Inc. v. Intellisys Technology
Corp., 51 Va. Cir. 55 (Va. Cir. Ct., Oct. 20, 1999). Both cases cited in Castellaneta et al. (2016).
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Accounting for Pre-Trends: Finally, the placebo tests in the main text suggest

the share of process patents did not change in the years leading up to a state’s

UTSA adoption. Nevertheless, we add state-specific pre-trends to our difference-in-

differences regression to account for the possibility that the shares of process patents

were changing before UTSA adoption. The negative coefficient on the trade secret

protection index is even stronger in this specification (coefficient=-0.029, se=0.013,

Column (4) of Panel (b)).

A.4 Structural Estimation: Details

A.4.1 Modeling Follow-On Innovation: Discussion

Our model for follow-on innovation at Stage 3 is simple but nonetheless consistent

with stylized facts and other models proposed in the literature. We make three main

assumptions. First, follow-on innovation as captured by viF is by other firms rather

than the inventor of the initial innovation. For instance, Sampat and Williams

(2018) document that, for their sample of genome patents, most of follow-on re-

search is done by firms other than the patent assignee. Follow-on innovation by

the initial inventor does not explicitly enter our model but could be captured by vi

and is not dependent on the effective visibility of any part of the initial invention.

Second, disclosure has a positive effect on follow-on innovation. Williams (2013)

documents that a restriction of access to human genome data leads to a 20–40%

reduction in follow-on research.

Third, conditional on the effective visibility, the baseline probability of follow-on

innovation to a trade secret is higher than that following a patent. This assumption

reflects the anticommons effect where technologies are underused because patents

on early ideas raise the costs of creating future ideas by introducing frictions in

the bargaining process over licenses (Scotchmer, 1991; Galasso and Schankerman,

2010).

A.4.2 Estimation Steps

We summarize our estimation strategy in Table A.3, and we explain the details of

our strategy for Steps 1 and 2 below.

Stage-2 Disclosure Decision (Step 1): We estimate the conditional distribu-

tions GΘ and values for θ by maximizing the log-likelihood LL of the observed

time-variant patent-type distribution. We observe two types of patents and use

Mj ≡Mj(Θ = M |patent) = 1 to denote if a given patent j is a process patent, and

Mj = 0 if it is a product patent. Moreover, for each patent j, we observe the level
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Table A.3: Estimation Strategy

Step 0 Reduced form estimation of the share of process patents

Estimate share of process patents

Data trade secrets protection index τ ∈ [0, 1]

Step 1 ML estimation of conditional distributions (given realized R&D)

Estimate conditional visibility distribution GM for processes (φ ∼ triangular(γM ))
conditional invention-type distribution θ

From Step 0 estimated share of process patents for each τ

Calibration patent premium λ fixed (= 0.1)
visibility for products (GP ) ∼ triangular(0.5)

Step 2 SMM estimation of unconditional distributions (given R&D costs)

Estimate unconditional visibility distributions FΘ with Θ = M,P (φ ∼ triangular(·))
unconditional invention-type distributions θF

Moments mean & variance of estimated and simulated conditional visibility distributions
mean of estimated and simulated conditional invention-type distributions

From Step 1 estimated conditional distributions GΘ and θt

Calibration patent premium λ fixed (= 0.1)
value vi ∼ exp(0.1)
costs Ci ∼ logistic(C, 0.5)

Step 3 Simulation of realized follow-on innovation

Simulate N = 1,000,000 potential inventions of full 3-stage sequential innovation model

From Step 2 unconditional distributions FΘ and θF

Calibration patent premium λ fixed (= 0.1)
value vi and viF independently ∼ exp(0.1)
costs Ci and CiF independently ∼ logistic(C, 0.5)
baseline success probabilities ψD and ψS fixed (ψD = 2/3 and ψS = 1)

of trade secrets protection τj at the time the decision to disclose the invention was

made. Let ρ(τj) be the probability that a patent is a process patent as derived in

Equation (4). Then, the log-likelihood of the data is given by

LL(GM , GP , θ, λ) =
∑
j

Mj log ρ(τj) + (1−Mj) log(1− ρ(τj)). (A.3)

It is a function of the (conditional) distributions of visibilities GΘ and the invention

type θ, as well as the patent premium λ = 0.1. We estimate the model on the

sample of single-state patents with priority dates between 1976 to 2008. For states

that have adopted the UTSA, we exclude all patents with priority dates in the year

of adoption.
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Estimation of Unconditional Stage-1 Distributions (Step 2): In the sec-

ond step, we estimate the unconditional distributions FΘ of visibilities and θF of

invention types, using as inputs the conditional distributions GΘ and θ estimated in

Step 1. For this second step, we follow a simulated-method-of-moments approach.

First, for given unconditional distributions
(
FM , FP , θ

F
)

and some R&D cost Ci, we

simulate a dataset of potential inventions and solve Stage 1 of our augmented model

to obtain the simulated conditional distributions, δ ∈
{
ĜM , ĜP , θ̂

}
. Second, we cal-

culate the simulated conditional moments µ̂m(δ|FM , FP , θF ) for the simulated data

and the estimated moments µm(δ) based on the estimated conditional distributions

GΘ and θ from Step 1. Third, we define the quadratic score function

S(FM , FP , θ
F ) =

∑
δ

∑
m∈M

(
µ̂m(δ|FM , FP , θF )− µm(δ)

)2
(A.4)

where M is the set of moments (mean and variance for the visibility distributions

and mean for the invention-type distribution). We minimize this score function over(
FM , FP , θ

F
)

(specifically, the modes of the triangular visibility distributions and

the shares of process inventions for the invention-type distributions) to obtain the

unconditional distributions.

A.4.3 Estimation Results

In Table A.4, we report the parameters of both the conditional distributions (Step

1) and unconditional distributions (Step 2). For the conditional distributions, we

obtain the distribution for the visibility of processes relative to the distribution

for the visibility of products. A constant value of γP = 0.5 provides for a flexible

specification without imposing our theoretical distributional assumptions. We find

first-order stochastic dominance satisfied.

We report the parameters of unconditional distributions from Step 2 for no

R&D costs (C = 0), low costs (C = 2.295 such that R&D costs are 40% of the

expected R&D project value), and high costs (C = 4.375 such that R&D costs

are 80% of the expected R&D project value). Note that, unlike in Step 1, where

we fix GP , in Step 2 we explicitly estimate FP (i.e., the mode γP ). First-order

stochastic dominance (verified for the conditional distributions) continues to hold.

The bottom panel of Table A.4 shows decisions at all three stages that are implied

by the estimated parameters.
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Table A.4: Estimates for Conditional and Unconditional Distributions

(1) (2) (3) (4)

Stage 1: FΘ, θF

Stage 2: GΘ, θ no cost low cost high cost

Mode for processes γM 0.376 0.373 0.328 0.196
[0.3755, 0.3796]

Mode for products γP 0.5 0.501 0.466 0.31

Share of processes θ 0.454 0.456 0.460 0.463
[0.4536, 0.4550]

R&D intensity (Stage 1) 1.000 0.970 0.702
. . . of processes 1.000 0.964 0.683
. . . of products 1.000 0.975 0.718

Patents (Stage 2) 0.768 0.750 0.674
. . . for processes 0.734 0.709 0.637
. . . for products 0.797 0.784 0.704

R&D intensity (Stage 3) 0.512 0.399 0.291
. . . from processes 0.490 0.377 0.275
. . . from products 0.531 0.417 0.305

Notes: We report the parameter estimates for the conditional distributions from Stage 2 and Stage 1 of the
augmented model. For Stage 2 (Step 1) in Column (1), we estimate the mode γM (of the triangular distribution
over support [0, 1]) for processes and hold constant the mode γP = 1/2 for products. Invention types are Bernoulli
distributed with parameter θ. We report in brackets the 99% confidence interval from 1000 bootstrap replications.
The reported point estimates are from one single model using the full sample. For the simulated-method-of-moments
approach for Stage 1 estimates (Step 2), we use the first two moments (mean and variance) for GM and GP and the
first moment (mean) for θ. For the costs of the initial invention as well as the follow-on invention, we assume that
Ci = C + εi and CiF = C + εiF where εi and εiF are (independently) logistically distributed with zero mean and
scale 1/2. We set C = 0 = Ci (no cost) in Column (2), C = 2.295 (low cost, such that costs are 40% of the expected
R&D project value) in Column (3), and C = 4.375 (high cost, such that costs are 80% of the expected R&D
project value) in Column (4). We further assume that the value of the initial invention and follow-on innovation
are (independently) drawn from the same distribution, vi, viF ∼ Exp(1/10). At the bottom of the table, we report
R&D intensities at Stage 1 (share of inventions i that are developed) and Stage 3 (share of inventions iF that are
developed, conditional on Stage-1 R&D) and the share of patented inventions i (conditional on Stage-1 R&D) at
Stage 2.

A.5 Welfare Measure

We use the expected total value added of a given idea, denoted by W (τ), as our

welfare measure. It is calculated as the weighted sum of the aggregate surplus from

the realized initial invention, Wi (which depends on its disclosure state, d̃i), and

the aggregate surplus from realized follow-on innovation, WiF . The expected total

value added of a potential idea i is equal to

W (τ) = E(Θi,φi,d̃i,vi,viF )

[
Ri(τ)

(
Wi + ψ̃iF ,d̃iRiFWiF

)]
, (A.5)
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where expectations E(·) are over the invention type Θ, visibility φ, disclosure state

d̃, and commercial values vi for initial and viF for follow-on innovation. Further,

Ri (RiF ) is an indicator that is equal to 1 if the inital (follow-on) R&D project

is undertaken, and Wi and WiF are measures of aggregate surplus from initial and

follow-on innovation.

We determine Ri and RiF as follows. Denote by EVi the expected gross value of

the invention to the inventor: the maximum between the expected value of secrecy

(EVS|Θ(τ)) and disclosure through patenting (EVD|Θ(τ)). The inventor decides to

undertake the initial R&D project (Ri = 1) if EVi ≥ Ci. Similarly, the follow-on

invention is realized (RiF = 1) if it is profitable and successful. It is profitable if the

commercial value covers the costs, viF ≥ CiF and successful with probability ψ̃iF ,d̃.

For the measures of aggregate surplus Wi, we assume that 2vi is the poten-

tial aggregate surplus that materializes when there are no barriers to access to the

invention. Because the barriers to access depend on the inventor’s disclosure de-

cision, the realized aggregate surplus is the potential aggregate surplus net of the

disclosure-state specific deadweight loss. For instance, in the textbook case of linear

demand with unit market size (and zero marginal cost), non-price discriminating

monopoly profits (=vi) are one half of the aggregate surplus (=2vi), and consumer

surplus and deadweight loss are one quarter each (= vi/2). This value represents

the maximum deadweight loss (from a scenario with full barriers to access). We

provide a concrete example below.

For patented inventions, barriers to access increase in visibility φ, and the ag-

gregate surplus, WD, as a function of visibility is equal to

WD(φ) = 2vi −
φvi
2
− Ci, (A.6)

where Ci is the cost of R&D of the potential idea. For inventions kept as trade

secrets, barriers to access decrease in φ and increase in trade secrets protection τ .

As discussed in Section 3, the probability that the inventor has exclusive access,

implying full monopolistic deadweight loss, is equal to τ (1− φ). Aggregate surplus,

WS for an invention that is kept secret is therefore equal to

WS(φ, τ) = 2vi −
τ (1− φ) vi

2
− Ci. (A.7)

To summarize, using the disclosure condition in Equation (1), the aggregate surplus

of the initial invention is Wi = WD(φ) if φ ≥ φ̄(τ) and Wi = WS(φ, τ) otherwise. For

the aggregate surplus of any realized follow-on innovation, we assume free access,

so that WiF = 2viF − CiF .
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For a concrete example, consider a market with linear demand D(p) = 1− p. A

firm with a new technology produces a homogeneous good at marginal production

costs of cL. This firm has many potential competitors that all produce at marginal

costs cH > cL. Competition is in prices. We assume the invention is radical in the

sense that the monopoly price (under low costs cL) does not exceed the higher of

the marginal costs, pmL ≤ cH . Moreover, for simplicity let cL = 0. The monopoly

profits in this case are πmL = 1
4
.

When the firm chooses to patent the technology, so that all potential competitors

have (restricted) access to the technology, it is able to detect infringement of its

patent (and enforce it) with probability φ. This means, with probability 1 − φ,

there is at least one competitor who can freely use the low-cost technology. With

at least one competitor producing at zero marginal cost, the equilibrium price (and

deadweight loss) is equal to zero. The expected social surplus is φ 3
2πm

L
+(1− φ) ·0 =

2πmL −
φπm

L

2
.

Instead of a patent, let the firm keep the technology a secret. As discussed in the

main text, the firm has exclusive access to the technology with probability τ (1− φ).

This means that with probability 1− τ (1− φ) there is at least one competitor who

can freely use the low-cost technology – and the equilibrium price and deadweight

loss are equal to zero. The expected social surplus is

τ (1− φ)
3

2πmL
+ [1− τ (1− φ)] · 2πmL = 2πmL −

τ (1− φ)πmL
2

.

Let v denote the commercial value of the invention if the firm has exclusive access.

In other words, let v = πmL , then the expressions for expected aggregate surplus are

equal to the expression in Equations (A.6) and (A.7).
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