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Abstract

We analyze the problem of a buyer who chooses a supplier for a long-term

relationship via an auction. The buyer lacks commitment to not renegotiate the

terms of the contract in the long run. Thus, suppliers are cautious about the

information revealed during the auction. We show theoretically and experimen-

tally that first-price auctions perform poorly in terms of efficiency and buyer

surplus. Suppliers may pool on a high bid to conceal information. Second-price

auctions retain their efficient equilibrium and generate substantial surplus for

the buyer. We demonstrate that optimal mechanisms require concealing the

winning bid with a strictly positive probability.

1 Introduction

Firms are in long-term relationships with their suppliers. In past decades, auctions

emerged as the dominant mechanisms for selecting suppliers and the terms of trade.

However, in a long-term relationship, it is hard to commit to not renegotiating the

initial terms of the contract that were set by the auction.1 The buyer can use the

∗We thank Elena Katok, Peter Katuscak, Helene Mass, Marc Möller and the seminar participants
at Aachen University, University of Bayreuth, University of Bielefeld, DICE, Humbold University,
Industrieökonomischer Ausschuss, TU Munich, INFORMS Conference (Phoenix 2018) and the ZEW
Workshop on Market Design for helpful comments and suggestions.
†ZEW Mannheim, nicolas.fugger@zew.de
‡ZEW Mannheim and University Mannheim, vitali.gretschko@zew.de
§University Bonn, martin.pollrich@uni-bonn.de
1Mueller et al. (2016) find in a survey among automotive buyers: “[Prices] are always precisely

specified for the initial delivery period, e.g., one year. However, framework contracts foresee further
delivery periods up to over the model lifetime. In such a contract, prices for ensuing periods are either
pre-specified, with step-wise price reduction schedules to account for cost reductions via learning,
or prices are renegotiated annually. In either case, price specifications are likely not to be binding.
The OEM may enforce price renegotiation under breach of contract, especially in the context of
negotiations preceding contractual arrangements for parts for a new car model.”
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information revealed by suppliers during the initial auction in subsequent renegotia-

tions. As suppliers’ rents depend on their private information, they will be cautious

about what they reveal in the auction. We study the performance of procurement

mechanisms when the buyer cannot commit not to renegotiate terms of trade in the

long-run.

Different auction formats reveal different amounts of information. In a first-price

auction, if suppliers employ a separating bidding strategy, the buyer can fully back

out the (cost-)type of the winning supplier by observing the resulting price, which is

equal to the winner’s bid. The buyer uses this information during the renegotiation,

reducing the rent of the winning supplier. In a second-price auction2, the price is set

by the runner-up. Given a monotone bidding strategy, observing the price merely

reveals that the type of the winning supplier is below a cut-off. The winning supplier

always maintains an informational advantage over the buyer in the renegotiation.

We demonstrate that if the profits at the time of renegotiation are high, suppliers

pool on the same high bid in the first-price auction. In this case, the first-price

auction fails to select an efficient supplier. In a second-price auction, such pooling is

never an equilibrium outcome and the auction always selects an efficient supplier. If

bidders pool, the first-price auction generates lower buyer surplus than the second-

price auction.

In general, the buyer surplus in the second-price auction is also not optimal. The

optimal auction fine-tunes the trade-off between rent extraction and information re-

lease during the auction. We derive sufficient conditions such that the optimal auction

is an α-second-price auction. In the α-second-price auction, the winner pays the bid

of the runner-up just as in the second-price auction. However, his bid is revealed to

the buyer with probability α. At this, α is chosen such that maximal information is

released without destroying the incentives to separate in the auction.

In a lab experiment, set up to compare the performance of first-price auctions and

second-price auctions, we find substantial pooling in the first-price auction but not in

the second-price auction. This results in a clear ranking in terms of efficiency of both

formats.

Our results imply that if the buyer cannot commit not to renegotiate, second-price

auctions robustly achieve efficient supplier selection and high buyer surplus. First-

price auctions, perform poorly and should be used with caution. On a high level, we

provide a foundation for privacy-preserving implementation of procurement auctions

through, e.g., third parties, electronic platforms or decentralized encryption protocols.

2We assume that the buyer observes the price, but not the winner’s bid. This is the case if the
second-price auction is implemented as an English auction, which is the most common second-price
format in practice.
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In procurement practice, contracts are usually a trade secret to protect the privacy of

suppliers against their competitors and other buyers. We stress that such privacy is

also of importance in the immediate buyer-supplier relationship.

Section 2 describes our baseline model with two periods. In the first period, a

buyer procures from one of n suppliers a project, which size is normalized to one. In

period two, the buyer may negotiate an additional delivery of size Q with the contract

supplier selected in period one.3 The costs of delivering the project in period one

are private information to the suppliers and can be either high or low.4 To select

a contract supplier the buyer conducts an auction. Prior to the second period, the

contract supplier draws a cost shock that is correlated with his cost in period one:

low-cost suppliers are more likely to have lower costs in period two than high-cost

suppliers. The shock captures, e.g., any learning effects, efficiency gains, or price

changes of input factors. In period two, the buyer may employ any mechanism to

fix the price and the probability of delivery for the additional quantity. That is, the

buyer has full bargaining power within each of the two periods, but no possibility to

commit between the periods.

We corroborate our model with a survey among procurement consultants. The

average participant in the survey, during his or her career, participated in 77 projects

and in sum negotiated over 10 billion EUR of purchasing volume.5 The median

probability of the initial price agreement being renegotiated is reported to be 50

percent. The median duration of the initial price agreement is reported to be 24

months. This is about 20% of a typical lifetime of a project in the automotive industry.

That is, commitment to future prices is not common and stakes are high at the time

of renegotiation.

In Section 3 we analyze first-price and second-price auctions. We work our way

backwards. In the second period, the buyer proposes the optimal mechanism given

her (updated) belief after the initial auction. As she is facing only one supplier, the

3This is an absorbing exit condition as in Tirole (2016). Only the contract supplier is considered
for the additional volume. This is a reasonable assumption for the procurement of complex projects
and customized parts as those require high relationship-specific investments. In a survey of the
automotive industry Mueller et al. (2016) argue that this is standard industry practice and identify
six factors that lead to prohibitively high switching costs: specific production tools, process know-
how, intellectual property, qualification/validation costs, production capacity, production downtime.
Even though buyers resort to multiple sourcing to avoid hold-up, we abstract from multiple sourcing
in this paper. Multiple sourcing increases the buyer’s bargaining power and makes the problem of
private information revelation even more pronounced. Moreover, the suppliers would not only need
to conceal the information from the buyer but also from their competitors.

4We consider more general type spaces in Section 7.
5We carried out the survey in December 2016 among 70 procurement consultants. The response

rate was 48.6%. The consultants of the questioned company sometimes work in teams, such that just
summing the project experience and negotiated volume would overestimate the overall experience.
As an orientation, in the years 2013-2016 the company as a whole delivered 600 projects with an
overall purchasing volume of 70 billion EUR.
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optimal mechanism is a take-it-or-leave-it offer. If she is sufficiently sure to face a low-

cost supplier, she will post a low take-it-or-leave-it offer that would not be accepted

by a high-cost supplier. Vice versa, she will place a high offer if she is not sure enough

to face a low-cost supplier. Thus, suppliers benefit from making the buyer believe

that they have high cost. The larger the follow-up project (Q) the larger this benefit.

In the first period, the auctions differ with respect to the information contained in

the price. In the first-price auction, the price is equal to the winning bid. Thus, the

buyer perfectly learns the bid of the contract supplier. In the second-price auction,

the price is equal to the bid of the runner-up. Thus, the buyer learns only that the

bid of the contract supplier was less than or equal to the first-period price.

We show that irrespective of the size of the follow-up project types separate in the

second-price auction in every symmetric perfect Bayesian equilibrium. To gain some

intuition suppose all suppliers pool on the same bid. This implies, that bidders end up

in a tie. A supplier gains winning probability without sacrificing first-period profit by

slightly undercutting the pooling bid. Such undercutting has no consequence in the

second period as the price will be set by the pooling bid and the beliefs of the buyer

do not change given the deviation. The same logic applies to any partial pooling.

Hence, there is no pooling equilibrium in the second-price auction.

The situation in a first-price auction is quite different. If in equilibrium all suppliers

pool on the same bid, a deviating bidder sets the price. This changes the buyer’s belief

and thus the contract supplier’s second-period profit. When the size of the second-

period Q is sufficiently large, full pooling can be sustained in equilibrium. We derive

all symmetric perfect Bayesian equilibria when the buyer uses a first-price auction.

Equilibria can involve pooling, separating or partial-pooling depending on the size of

the second period.

In Section 4, we compare the buyer surplus for both auction formats. Whenever the

first-price auction exhibits a pooling equilibrium, the second-price auction generates

a strictly larger buyer surplus. In the pooling equilibrium of the first-price auction,

suppliers pool on a bid larger or equal to the highest bid in the second-price auction.

Thus, the buyer surplus in the first period is smaller in a first-price auction. As

pooling does not reveal any additional information to the buyer, the second-period

surplus is also smaller. Matters are different in a separating equilibrium of the first-

price auction. The highest bid is lower or equal to the highest bid in the second-price

auction. Moreover, a separating equilibrium reveals all available information about

the cost type to the buyer. Thus, also the surplus in the second period is larger.

Overall, the question whether the second-price auction or the first-price auction

generates larger buyer surplus boils down to the question whether the first-price auc-

tion exhibits a pooling or a separating equilibrium. For large follow-up projects (large
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Q), we provide sufficient conditions such that the pooling equilibrium is the unique

equilibrium of the first-price auction. In those cases, the first-price auction generates

a smaller buyer surplus than the second-price auction. For small follow-up projects

(small Q) the separating equilibrium is the unique equilibrium and thus the first-price

auction generates more buyer surplus.

Our survey among procurement practitioners suggests that, at least in the auto-

motive industry, Q is rather large as the initial contract only covers about 20% of

the typical lifetime of the project. Thus, our results imply that first-price auctions

should be used with caution in the procurement of complex goods and services. In

particular, if the auction results in a long-term relationship with early renegotiation,

second-price auctions yield better outcomes.

In Section 5, we analyze the buyer-surplus maximizing mechanism. In all general-

ity, in such a dynamic environment, this is a very challenging task. Thus, we restrict

ourselves to the cases where it is always optimal for the buyer to procure the good.

These are the cases in which the value of the project is substantially higher than the

potential costs of the suppliers. This is a reasonable assumption for the procurement

of complex goods and services. Consider, for example, the automotive industry. When

procuring a steering wheel for a new model, it is not reasonable for the buyer to stop

the planning of the model just because she was not able to achieve the optimal cost

savings on the steering wheel.

We show that if the buyer’s value R of the project is sufficiently high, she faces no

commitment problem. That is, with the right information management, she achieves

the optimal full-commitment surplus even without commitment power. First, consider

the case in which second-period costs are drawn from the same interval, irrespective

of the first-period costs. When R is large, the optimal price in the second period does

not depend on the buyer’s belief: the buyer proposes the upper bound of the com-

mon support of the cost distribution. Thus, the main trade-off between information

revelation and rent extraction in the first period is not relevant and a second-price

auction maximizes the buyer surplus.

With different supports of the second-period cost distribution, information design

becomes relevant. If the buyer is sure to face a certain type in period two, she will

offer his individual upper bound. Thus, the offer of the buyer is sensitive to her belief.

In this case, a second-price auction may be sub-optimal. When the auction results in

a high price, the buyer is uncertain whether she faces a low-cost or high-cost supplier.

This may induce a second-period price which some high-cost suppliers reject in period

two. Any rejection destroys buyer surplus if R is sufficiently large. Revealing whether

the winner’s bid was lower than the winner’s price with probability α corrects the

belief of the buyer without sacrificing second-period rents. Now, whenever the buyer
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does not observe the winning bid she becomes more pessimistic about the contract

supplier’s type and increases her second-period offer. With the appropriate choice of

α, the increased second-period offer is accepted with probability one.

The optimal mechanism requires a non-trivial way to handle the information con-

tained in the bid vector. In practice, such fine control of information would need the

involvement of third parties (intermediaries). Some recent advances in information

technology also allow implementing such information revelation without the use of

intermediaries. Decentralized encryption gives bidders the opportunity to send en-

crypted bids in a way that the public key merely allows calculating the outcome of

the auction but not the individual bids (Brandt, 2010).

In Section 6 we present an experimental comparison of first-price auctions and

second-price auctions.6 In line with the theory, we find substantial pooling the first-

price auction. This pooling behavior is significantly more pronounced than in the

second-price auction and becomes more frequent when suppliers gain experience.

In Section 7 we provide extensions of our baseline model and show the robustness

of our results. First, we allow for some bargaining power of the contract supplier

in period two. Increasing the bargaining power of the supplier renders his private

information less relevant for the renegotiation. As before, the first-price auction may

exhibit pooling, partial-pooling or separating equilibria. In the second-price auction

the cost-types still separate. In a pooling equilibrium, the first-price auction is inef-

ficient and generates smaller buyer surplus than the second-price auction. However,

as information release becomes less relevant, the pooling equilibrium of the first-price

auction becomes harder to sustain.

Second, we extend the type space to more than two types. We show that full

pooling constitutes an equilibrium in the first-price auction whenever the second-

period project becomes sufficiently large. The second-price auction always leads to

separation and reasonable buyer surplus. Thus, as in the baseline model, the first-

price auction performs poorly as compared to the second price auction if the follow-up

project is sufficiently large. However, in contrast to the baseline model, a separating

equilibrium of the first-price auction fails to exist, as soon as there are at least three

first-period cost types. Thus, our main conclusions remain intact: the second-price

auction is well behaved, achieves an efficient allocation in period one and reasonable

buyer surplus; while the first-price auction performs poorly.

We review the related literature in Section 8. Our work is related to two strands

6Sometimes theoretical findings are overturned by experiments (Davis et al., 2010, 2014) as op-
timal equilibrium behavior is hard to derive for subjects in the lab. In the case at hand, it might
be hard for suppliers to anticipate the impact of their behavior on buyers offers in second-period.
Our experiment is designed to provide a simple test whether such a level of reasoning is behaviorally
relevant.
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of literature. First, auctions and mechanism design with limited commitment. Most

of those models consider negative selection where the interaction only continues if

the object is not allocated. We consider positive selection, where the interaction

only continues if the object is allocated. Second, we connect to the literature on

auctions and mechanism design with aftermarkets. The crucial component in those

models is the information available to the aftermarket. Either the information release

is exogenously given or the designer can design arbitrary information regimes. Our

model is the intermediate case. As the designer participates in the aftermarket, she

cannot rule out some information release via the allocation rule and the observable

price. The mechanism, however, can – but does not have to – release additional

information.

2 Model

In each of two periods, a buyer (she) awards a contract to one of n ≥ 2 suppliers (he).

The second contract can only be fulfilled by the winner of the first contract.7 In period

t = 1, 2 the buyer demands a quantity Qt. To economize on notation we normalize

Q1 to one and denote by Q := Q2/Q1 > 0 the relative quantity in the second period.

In each period the buyer has a constant value of R > 0 per unit of delivery. That is,

if the buyer purchases in period t at per-unit price pt, her profit is Qt · (R− pt).8

Period 1. A supplier can be of two types, θ = l or θ = h.9 Type θ’s cost of

producing one unit in period one is cθ, where 0 < cl < ch < R. We will call a h-type

a high-cost supplier and a l-type a low-cost supplier. Types are drawn independently

and identically at the beginning of period one and are a supplier’s private information.

Denote µ1 ∈ (0, 1) the prior probability that a supplier’s type is l.

Suppliers submit bids bi ∈ R in a reverse auction. Let b = (b1, · · · , bn) denote the

vector containing all bids. The supplier placing the lowest bid wins the first contract.

Ties are broken at random. The winner receives a payment p determined in the

reverse auction. That is, if supplier i wins the auction at price p his profit is p − ci.
We consider first-price and second-price auctions. In a first-price auction, the price is

determined by the winning bid. In a second-price auction, the price is determined by

the second-lowest bid. After the auction, the buyer merely observes the winner of the

auction and the price at which the auction concluded. The buyer does not observe all

7See Footnote 3 for an elaboration on this assumption on absorbing exit.
8We formulate the procurement project in terms of delivered quantity. In an alternative interpre-

tation the buyer purchases two projects of unequal sizes and values.
9Our main findings are robust to introducing more general type spaces, see the discussion in

Section 7.
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of the bids placed during the auction.10

After observing the outcome of the auction the buyer updates her belief. The

only available (public) information is the price p the winning bidder receives. We

denote µ2(p) the buyer’s belief regarding the winner’s type, i.e. the probability that

the winner is a low-cost type.

Period 2. At the beginning of the second period, the winning supplier i privately

draws the second period cost c from the distribution Fθ(c) on [cθ, cθ], where θ denotes

the winning bidder’s type and R > cθ.
11 The buyer then uses any mechanism12

to decide on the offer to the contract supplier for the delivery of the second-period

quantity Q. If the buyer purchases a quantity Q at a per-unit price P in the second

period, her profit is Q · (R− P ) and the contract supplier’s profit is Q · (P − c).
To avoid pathological cases and ensure that the outcome in period two is unique

we make the following assumptions regarding the distribution of second-period costs.

Assumption 1. The following holds true for all µ ∈ [0, 1] and all c:

1. Fθ has strictly positive density on its support [cθ, cθ] for any θ.

2. Fh(c) dominates Fl(c) in terms of the reverse hazard rate. That is,

fh(c)

Fh(c)
>
fl(c)

Fl(c)
.

3. The updated hazard rate,

(1− µ)Fh(c) + µFl(c)

(1− µ)fh(c) + µfl(c)
,

is non-decreasing in c.

The second assumption implies that being the low-cost type in period one trans-

lates into a higher probability of having lower costs in period two. It implies cl ≤ ch

10Since losing suppliers exit, the assumption on observability of the bid vector is inconsequential
regarding losing bids. In a first-price auction, in which the price is equal to the winning bid, this
assumption is vacuous. Thus, the assumption boils down to the buyer not observing the winning
bid in a second-price auction. This is the case e.g. if the second-price auction is implemented as an
English auction which is the standard in practice.

11A redrawing of the cost captures, e.g., learning-by-doing, or cost-changes of input factors. With
changing second-period costs the buyer can benefit from multiple-sourcing, as in Burguet (1996).
We abstract from this possibility to focus on the pure effect of renegotiation. See also Footnote 3.

12We refrain from formally introducing abstract mechanisms at this point. We show in Section 3
that it is optimal for the buyer to simply post a price to the contract supplier. Moreover, in Section 7
we show that the main results remain intact if the contract supplier has bargaining power in period
two.
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and cl ≤ ch, as well as first-order stochastic dominance, Fl(c) ≥ Fh(c) for all c. The

third assumption is a standard assumption that ensures that virtual costs are strictly

increasing for every belief of the buyer in period two. It ensures the monotonicity of

second-period rents (See Lemma 2).

Timing

1. Suppliers learn their first-period cost c1, . . . , cn.

2. Suppliers submit bids b1, . . . , bn.

3. The buyer observes the price p of the auction and updates her belief to µ2(p).

4. Profits from period one realize.

5. The contract supplier learns his second-period cost c.

6. The buyer proposes a mechanism.

7. The contract supplier participates in the mechanism.

8. Second-period profits realize.

3 Equilibria of first-price and second-price auctions

In this section, we characterize the equilibria of the first-price and second-price auc-

tions. We work our way backward starting with the analysis of optimal second-period

offers. We derive a reduced-form second-period profit function for the suppliers and

characterize all symmetric equilibrium bidding strategies in the respective auction

formats.

3.1 The second period

In the second period, the buyer uses a take-it-or-leave-it offer without loss of generality.

The following lemma characterizes the optimal offers.

Lemma 1. Let µ2 be the belief of the buyer after observing the first-period price.

Then the optimal mechanism in the second period is to make a take-it-or-leave-it offer

P (µ2) that is given by the solution to

R− P (µ2)− µ2Fl(P (µ2)) + (1− µ2)Fh(P (µ2))

µ2fl(P (µ2)) + (1− µ2)fh(P (µ2))
= 0 (1)

if the solution exists and by P (µ2) = ch otherwise.13

13Assumption 1 guarantees that if a solution exists, it is unique.
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Proof. Given Assumption 1 this result is immediate from, e.g., Myerson (1981).

The optimal mechanism awards the project to the contract supplier whenever the

virtual surplus of the buyer, as defined by substituting c for P (µ2) into the left-hand

side of (1), is larger than zero. This is achieved by the optimal take-it-or-leave-it offer

P (µ2) as stated in Lemma 1.

Definition 1. We denote by

π2(cθ, µ2) = Eθ [max {P (µ2)− c, 0}]

the second period per-unit profit of a winning supplier given his first period cost is cθ

for θ ∈ {l, h} and the second-period belief of the buyer is µ2.

The following lemma establishes that the more likely the buyer thinks that she is

facing the low-cost supplier, the lower she will choose the offer for the second period.

This is useful in deriving the equilibrium of the auctions in period one.

Lemma 2. The optimal take-it-or-leave-it offer P (µ2) and the supplier’s second-period

profit π2(·, µ2) are decreasing in µ2.

Proof. The proof is relegated to the appendix.

3.2 The first period

Before we turn our attention to the equilibrium bidding in the first period, we intro-

duce some notation with respect to the bidding strategies of the bidders. Throughout

the analysis, our solution concept will be symmetric perfect Bayes-Nash equilibrium

and thus we will not index bidding strategies by bidder. We will denote by Bθ(·) the

distribution function of the mixed strategy of a bidder with first-period type θ ∈ {l, h}.
That is, Bθ(b) denotes the probability that his bid will be below b. Let bθ denote the

infimum and b̄θ the supremum of the support of Bθ(·). Moreover, bθ(·) denotes the

density of Bθ(·). Whenever the bidder uses a pure strategy we will slightly abuse

notation and write that the bidder places a bid of bθ.

3.2.1 Second-price auction

In a second-price auction, the price p in period one is equal to the second-lowest bid.

Proposition 1 characterizes the unique symmetric equilibrium bidding strategies. The

second-price auction in our setting retains the well known properties from its static

counterpart. That is, in equilibrium bidders place bids equal to their expected surplus

from procurement.
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Proposition 1. In a second-price auction, a symmetric equilibrium exists. In any

symmetric equilibrium, bidding strategies are as follows. A high-cost supplier (θ = h)

bids

bh = ch −Q · π2

(
ch,

nµ1

nµ1 + 1− µ1

)
.

A low-cost supplier (θ = l) bids

bl = cl −Q · π2(cl, 1).

After observing the first-period price p the buyer updates her belief to14

µ2(p) =


nµ1

nµ1+1−µ1 p = bh,

1 else.

The buyer offers P (µ2(p)) in the second period. The contract supplier accepts the

second-period offer whenever c ≤ P (µ2(p)).

Proof. The proof is relegated to the appendix.

In a second-price auction, the price is set by the runner-up. Conditional on win-

ning, a bidder cannot influence the buyer’s belief. Any bid that leaves the high-cost

supplier with a positive profit cannot be part of a symmetric equilibrium bidding

strategy. Such a supplier could deviate to a lower bid increasing his profit in the

first period without changing his second-period profit. Once the bid of the high-cost

supplier is fixed the same is true for the low-cost supplier. To see this, suppose a

potential symmetric equilibrium would prescribe that a low-cost supplier places a bid

that leaves him positive profit even if he faces another low-cost supplier with the same

bid. In this case, he could slightly undercut this bid increasing his expected profit in

the first period without sacrificing any profit in the second period.

3.2.2 First-price auction

In the first-price auction, the price p is equal to the lowest bid. The buyer observes the

price and thereby the bid of the winner. The direct effect of one’s own bid in period

one on the (expected) profit in period two creates incentives for pooling. We provide a

necessary and sufficient condition such that there exists a pooling equilibrium resulting

in poor performance of first-price auctions.15

14In a second-price auction, off-path beliefs of the principal do not matter (see the proof of Propo-
sition 1). Thus, different off-path beliefs lead to the same on-path behavior.

15In Section 7 we show that the existence of a pooling equilibrium extends to more general type
spaces.
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Pooling equilibrium

The most interesting case arises if it is beneficial for a bidder with the low-cost type

to conceal his type in the auction and pool with the high-cost type.

Proposition 2 (Pooling equilibrium). If and only if there exists a b with

b ≤ cl −Qπ2(cl, µ1) +
n

n− 1
Q(π2(cl, µ1)− π2(cl, 1)), (2)

b ≤ ch −Qπ2(ch, µ1) +
n

n− 1
Q(π2(ch, µ1)− π2(ch, 1)), (3)

b ≥ ch −Qπ2(ch, µ1), (4)

pooling equilibria exist in the first-price auction. In a pooling equilibrium, all bidders

irrespective of their type place the same bid bh = bl = b.

Proof. The proof is relegated to the appendix.

Low-cost types pool whenever the loss in profits, π2(cl, µ1)−π2(cl, 1), in the second-

period from being identified as a high type is large enough. Note that the first-price

auction in our setting may exhibit many pooling equilibria. The equilibrium price

is set by the high-cost type. Due to the uncertainty about the second-period costs,

he can earn strictly positive profits in equilibrium. If a high-cost type undercuts

an equilibrium price that leaves him a positive profit, the buyer believes to face the

low-cost type. The second-period profits of the high-cost type jump downwards.

Thus, prices above the level of zero profits for the high-cost type can be sustained in

equilibrium. This is different in a standard first-price auction without a second period

where high-cost types compete their profits down to zero.

Ultimately, we are interested in the comparison of the buyer surplus of the first-

price and second-price auction. To this end, we are interested in the comparative

statics of an increase in Q, the size of the second period. For the revenue comparison

(see Section 4) we consider the pooling equilibrium that generates the highest possible

buyer surplus. That is, the pooling equilibrium, in which bidders place the lowest

possible bid bh = ch − Q · π2(ch, µ1). The conditions for the existence of such an

equilibrium result from conditions (2) and (4) and are characterized in the following

corollary.

Corollary 1. If and only if

1
n

(
π2(cl, µ1)− π2(ch, µ1)

)
> π2(cl, 1)− π2(ch, µ1), (5)

there exists Qpool such that for all Q ≥ Qpool the first-price auction has a pooling

equilibrium.
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Increasing the size of the second period affects the bidders’ payoff both on and off

the equilibrium path. On the path, the second-period profits increase. However, the

equilibrium bid reduces as high-cost suppliers compete away their increased second-

period gains of Q ·π2(ch, µ1). The effect on a low-cost type’s payoff is strictly positive.

His second-period profit increases at a larger rate than the profit of the high-cost type

which offsets the reduced equilibrium bid.

Off-path, more aggressive bidding lowers first-period profits at the rate of n ·
π2(ch, µ1), while second-period profits increase at the rate of n · π2(cl, 1). Depending

on the difference, the effect can go either way. If the effect is negative, condition (5)

holds trivially. If the effect is positive, condition (5) holds if and only if the increase

in on-path payoffs is stronger than the increase in off-path payoffs.16

Separating equilibrium

For a complete characterization, we now derive all possible symmetric equilibria of

the first-price auction. Depending on the initial parameters, the first period can be

sufficiently attractive such that second-period profits are not attractive enough to

induce pooling.

Proposition 3 (Separating equilibrium). If and only if there exist b with

b ≥ cl −Q · π2(cl, 0) +
n

n− 1
·Q ·

(
π2(cl, 0)− π2(cl, 1)

)
, (6)

b ≤ ch −Q · π2(ch, 0) +
n

n− 1
·Q ·

(
π2(ch, 0)− π2(ch, 1)

)
, (7)

b ≥ ch −Q · π2(ch, 0), (8)

separating equilibria exist in the first-price auction.

In a separating equilibrium, high-cost suppliers bid bh = b. Low-cost suppliers

randomize on the interval [bl, b) according to the distribution

Bl(̃b) = 1−

(
bl +Qπ2(cl, 1)− cl

µn−1
1 (̃b+Qπ2(cl, 1)− cl)

) 1
n−1

+
1− µ1

µ1

(9)

with bl given by

bl = (1− µ1)n−1 · (b− cl)− cl +
(
(1− µ1)n−1 − 1

)
·Q · π2(cl, 1). (10)

Proof. The proof is relegated to the appendix.

16With persistent types, that is, if second-period costs are the same as first-period costs, we have
that π2(cl, 1) = π2(ch, µ1) = 0 ≤ π2(cl, µ1). Consequently, (5) is satisfied and pooling equilibria exist
as soon as Q becomes sufficiently large.
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Similar to pooling equilibria, potentially many separating equilibria exist. If the

high-cost type was to undercut his equilibrium bid, the buyer believes to face a low-

cost type. Thus, the second-period profits of the high-cost type make a jump down-

wards. Prices above the level of zero profits for the high-cost type can be sustained

in equilibrium.

Corollary 2. If

n
(
π2(cl, 1)− π2(ch, 1)

)
≤ π2(cl, 0)− π2(ch, 0), (11)

a separating equilibrium of the first-price auction exists for all Q. Otherwise, there

exists a Qsep such that a separating equilibrium only exists if Q ≤ Qsep.

The result directly follows from comparing the conditions in Proposition 3. Condi-

tions (7) and (8) are always simultaneously fulfilled for some b. Whenever Q is small,

condition (8) already implies condition (6). To see this, consider the case Q = 0.

That is, a static first-price auction in which a separating equilibrium always exists.

Perturbing the problem with a small Q does not impede the existence of a separating

equilibrium.

Partial pooling equilibrium

A pure pooling and a pure separating equilibrium may fail to exist. In this case, a

partial-pooling equilibrium exists.

Proposition 4 (Partial pooling equilibrium). If and only if there exist µ ∈ (0, µ1)

and b with

b = cl −Q · π2(cl, µ) +
n

n− 1
·Q ·

(
π2(cl, µ)− π2(cl, 1)

)
, (12)

b ≤ ch −Q · π2(ch, µ) +
n

n− 1
·Q ·

(
π2(ch, µ)− π2(ch, 1)

)
, (13)

b ≥ ch −Q · π2(ch, µ), (14)

partial pooling equilibria exist in the first-price auction. In a partial pooling equilib-

rium, high-cost suppliers bid bh = b. Low-cost suppliers bid bh with probability pµ and

with probability 1− pµ randomize on the interval [bl, b) according to the distribution

Bl(̃b) = 1−

(
bl +Q · π2(cl, 1)− cl

(1− pµ)n−1 · µn−1
1 · (̃b+Q · π2(cl, 1)− cl)

) 1
n−1

+
1− µ1 + pµ · µ1

(1− pµ) · µ1

(15)
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with bl given by

bl = (1− µ1 + pµ · µ1)n−1 · bh + ((1− µ1 + pµ · µ1)n−1 − 1) ·Q · π2(cl, 1)

−
(
(1− µ1 + pµ · µ1)n−1 + 1

)
· cl (16)

and pµ given by

pµ =
µ

1− µ
· 1− µ1

µ1

. (17)

Proof. The proof is relegated to the appendix.

Partial pooling equilibria are an intermediate case between separating and full

pooling equilibria. Partial pooling arises whenever the second-period payoff from

imitating the high-cost type is too large to induce separation but not large enough to

deter undercutting a complete pool. Partial pooling changes the belief of the buyer

following bid bh to balance the incentives.

We have now characterized three types of equilibria. The following proposition

establishes that at least one of these equilibria always exists and rules out other

equilibria.

Proposition 5. A symmetric equilibrium of the first-price auction always exists. Ev-

ery symmetric equilibrium is either pooling, separating or partial pooling as charac-

terized in Propositions 2–4.

Proof. The proof is relegated to the appendix.

The crucial point in proving Proposition 5 is to show the monotonicity of bidding

strategies. A priori we cannot rule out that the buyer believes to face a high-cost type

if she observes lower bids. Thus, both types, in principle, may place lower bids if this

induces a switch of beliefs and higher second-period payoffs.

4 Buyer surplus comparison of the first-price and

second-price auction

The question of buyer-surplus comparison of the first-price auction and the second-

price auction is delicate as the surplus in the first-price auction depends on equilibrium

selection. We show that revenue equivalence fails and the first-price auction performs

worse than the second-price auction in every equilibrium if the follow-up project is

sufficiently large.

Lemma 3. In every pooling equilibrium of the first-price auction the buyer surplus is

higher in the second-price auction than in the first-price auction.
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Proof. The proof is relegated to the appendix.

In a pooling equilibrium, the first-price auction performs worse than the second-

price auction in two dimensions. First, types do not separate. No information is

revealed about the supplier’s type. Thus, the buyer extracts less surplus in the second

period. Second, the high-cost type is pooled with the low-cost type. Thus, in the

second period, he receives a more aggressive offer and a lower profit. This leads to

less aggressive bids by the high-cost type in the first period.

Lemma 3 provides a sharp revenue ranking of both auction formats whenever every

equilibrium of the first-price auction is a pooling equilibrium. We focus on the size of

the second period Q and provide the following proposition.

Proposition 6. If condition (5) holds, there exists a Q̄ such that for all Q > Q̄ every

equilibrium of the first-price auction yields lower buyer surplus than the second-price

auction.

Proof. The proof is relegated to the appendix.

When condition (5) is satisfied, Corollary 1 ensures that a pooling equilibrium

exists for large values of Q. We show that, in this case, no other type of equilibrium

exists.

In Section 7 we discuss that the results on the existence of pooling equilibria and

the buyer-surplus ranking are robust to extensions to general type spaces. Whenever

there exist other equilibria, the first-price auction may outperform the second-price

auction. However, as we discuss in Section 7, the existence of other equilibria breaks

down as soon as the type space is extended beyond two types.

Proposition 7. In every separating equilibrium with the highest buyer surplus, i.e.,

bh = ch − Q · π2(ch, 0), the buyer surplus is higher in the first-price auction than in

the second-price auction.

Proof. The proof is relegated to the appendix.

In the separating equilibrium with the highest buyer surplus, the first-price auction

outperforms the second-price auction in two dimensions. First, due to the complete

separation, the buyer receives superior information after period one and thus extracts

more surplus in the second period. Second, in the separating equilibrium of the first-

price auction the high-cost type is perfectly identified after period one, while in the

second-price auction this can never happen.17 Consequently, the buyer’s second-period

price offer when the auction ends at a high price is higher in the first-price auction.

17Recall the price in the second-price auction is set by the runner-up. The probability that the
winner placed a bid strictly below the price is never zero.
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Thus, in a first-price auction a high-cost supplier expects a higher profit in the second

period which in turn leads to more aggressive bidding. As the bid of the high-cost

type sets the upper bound of the bid distribution, the separating equilibrium also

yields higher buyer surplus in the first period. Whenever the second period contract

is relatively small Corollary 2 ensures that a separating equilibrium exists.

5 Mechanism design

As the ranking of the buyer surplus is ambiguous, the question arises whether there

are other mechanisms that dominate first- and second-price auctions. This section

analyzes mechanisms to maximize buyer surplus. We limit ourselves to cases that

are relevant for procurement. That is, cases in which it is optimal to procure with

probability one.18 We begin our analysis by deriving an optimal mechanism under

full commitment. This mechanism serves as a benchmark. We provide a condition

for the project value R such that procuring with probability one is optimal under full

commitment. We then turn our attention to mechanism design without commitment

and provide conditions for R such that the full commitment allocation can be im-

plemented even without commitment.19 Finally, we show that in those cases buyer

surplus without commitment equals the surplus in an optimal mechanism under full

commitment.

Optimal mechanism with full commitment. Our model combines aspects of

auction design and sequential screening and thus leads to similar results. The following

lemma provides a condition for R such that it is optimal to procure the good with

probability one and characterizes an optimal mechanism.

Lemma 4. There is an Rc such that whenever R ≥ Rc the buyer-surplus maximizing

mechanism implements the efficient allocation:

(i) Select the most efficient supplier in period one.

(ii) Continue production in period two with probability one.

18See the introduction for a discussion of this assumption. A complete characterization of the
optimal mechanism under limited commitment lies beyond the scope of this manuscript. There
are several technical hurdles rendering the problem intractable, see for instance Laffont and Tirole
(1990), Bester and Strausz (2001) and Pollrich (2017).

19Note that if R is small, implementing the full-commitment outcome is impossible. To see this
recall that the optimal mechanism features ”no-distortion-at-the-top”. That is, the buyer procures
from the low-cost type with probability one in each period, irrespective of the cost realization in
period 2. Without commitment and R small the buyer optimally sets a non-trivial reservation price
in period 2 even if she is certain to face the low-cost type.
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The buyer surplus is then maximized with a second-price auction and appropriately

designed binary bid space {bl, bh}.

Proof. The proof uses standard techniques from static and sequential screening. We

relegate it to Appendix A.

Independent of the size of R, an optimal mechanism selects the most efficient

supplier in period one. If this supplier has low costs, production continues in period

two irrespective of second-period costs.20 The mechanisms extracts all (information)

rents from second-period production already in period one. If the contract supplier has

high costs, the mechanism induces a cut-off r ∈ [ch, ch] for second-period production.

Depending on R, this cut-off is determined by trading off second-period efficiency with

information rents to low-cost suppliers. If a low-cost supplier claims high costs and is

still selected as a contract supplier, he gains additional information rents from facing a

more favorable cost-distribution than high-cost suppliers. However, when the buyer’s

valuation R is sufficiently large, shut-down in period two becomes sub-optimal.

Implementation without commitment. Without commitment, the terms of trade

have to be sequentially optimal. Contrary to the full commitment case, neither the

second-period payments nor the production decision can be specified in period one.

As outlined earlier, it is without loss of generality to consider posted price mechanisms

in the second period. The supplier continues production only if his payment exceeds

his costs. Nevertheless, the buyer is tempted to reduce the price to increase surplus

even if this is not optimal from the point of view of period one. This trade-off crucially

depends on the buyer’s belief about production costs and the project value R. The

following lemma establishes conditions on R such that the allocation from Lemma 4

can be implemented even without commitment.

Lemma 5. There are finite values R= and R 6= such that

• when cl = ch the efficient allocation is implementable if R > R=,

• when cl < ch the efficient allocation is implementable if R > R 6=.

Proof. The proof can be found in Appendix A.

We first discuss the case cl = ch. Consider a second-price auction where the buyer

observes the winner’s payment but not his bid. In a separating equilibrium there are

two distinct beliefs on the equilibrium path. When the contract supplier’s payment is

low, the buyer beliefs she is facing a low-type. When the contract supplier’s payment

20This is the well-known no-distortion-at-the-top result or, in procurement, no-distortion-at-the-
bottom.
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is high, the buyer holds an interior belief µ2. In the first case, offering the payment cl

is optimal whenever R− cl ≥ Fl(c)(R− c) for all c ∈ [cl, cl]. R
= is the lowest value for

R such that the latter condition is satisfied.21 But then Assumption 1 implies that

the buyer optimally offers a payment equal to cl = ch following any belief about the

contract supplier’s type she may hold.

Matters are more complicated with cl < ch. Consider again a separating equilib-

rium of a second-price auction. For the belief µ2 = 1 (the buyer is certain to face

a low-cost supplier) a similar condition on R as before yields continued production.

However, this condition does not ensure that no shutdown is optimal following any

other belief. To see this, suppose the buyer is almost certain to face a low-cost supplier.

She is almost certain to never face a supplier with a second-period cost exceeding cl.

Thus, it is optimal to shut down production for suppliers with costs in the interval

(cl, ch]. In such a case, belief management becomes important. It is crucial for the

buyer to induce a belief such that she is willing to offer ch in period two and thus

implement the full-commitment allocation. A regular second-price auction may not

achieve this, since it makes the buyer too optimistic even when the resulting price is

high.22

However, the full-commitment allocation is still implementable. Consider an α-

second-price auction. The α-second-price auction has the same payment rule as the

second-price auction. It reveals with probability α whether the winner’s bid has been

lower than his payment and thus manages the belief updating of the buyer. If the

winner’s payment is high and the winner’s bid is not revealed, the buyer becomes less

optimistic about the contract supplier’s type. Our discussion of first-price auctions

reveals that too much information revelation is in conflict with an efficient allocation

in period one. Condition R > R 6= guarantees that separation of types in period one

and appropriate belief management are possible.

Optimal mechanism without commitment. Lemma 4 and Lemma 5 are key to

our final proposition. For large values of R we have established two results. First,

the optimal mechanism under full commitment implements the efficient allocation.

Second, this allocation is implementable under limited commitment. The following

proposition shows that for large values of R buyer-surplus coincides when using an

α-second-price auction with appropriate binary bid space {bl, bh}.23

Proposition 8. The following holds true.

21Formally, R= = supcl≤c≤cl
cl−cFl(c)
1−Fl(c)

. See also the proof of Lemma 5 for why R= <∞.
22The updated belief in the second price auction is nµ1/(nµ1 + 1− µ1) which converges to one as

n grows large.
23See the proof of Proposition 8 for the specific bids our mechanism uses.
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(i) If cl = ch and R > max{Rc, R=}, a second price auction with appropriate bid

space {bl, bh} yields the same buyer surplus as an optimal mechanism under full

commitment and thus maximizes buyer surplus under limited commitment.

(ii) If cl < ch and R > max{Rc, R 6=}, an α-second-price auction with appropriate

bid space {bl, bh} yields the same buyer surplus as an optimal mechanism under

full commitment and thus maximizes buyer surplus under limited commitment.

6 Experiment

In a laboratory experiment, we investigate the influence of the procurement mecha-

nism on bidding behavior. We test whether the lack of commitment indeed leads to

pooling in the first-price auction and thus reduces efficiency and buyer surplus.

6.1 Design and protocol

In our experimental setting, one buyer faces two potential suppliers. As we focus on

suppliers’ bidding behavior, the role of the buyer is computerized. The buyer awards

one main contract and a follow-up contract, which can only be completed by the

contract supplier. Both contracts are of equal size. Suppliers are either low-cost or

high-cost both with a probability of one half. Low-cost suppliers produce at a cost of

zero ECU in both periods. High-cost suppliers produce at a cost of 11 ECU in both

periods.

We compare three procurement mechanisms. A first-price sealed-bid auction with

renegotiation (FPA2), a second-price sealed-bid auction (SPA2) with renegotiation,

and a first-price sealed-bid auction without renegotiation (FPA1). In all three auc-

tions, suppliers can select bids from the discrete bid grid {0 ECU, 6 ECU, 11 ECU}.
Subjects only specify their bid for the case that they are low-cost, i.e., have costs of 0

ECU, high-cost suppliers automatically place a bid equal to their costs of 11 ECU.24

In the FPA2 and the SPA2 treatment, after the price of the initial auction was an-

nounced, the contract supplier receives an automated offer for the follow-up contract.

We instruct the subjects that the buyer will offer the lowest price for which she can

be certain that it is accepted by the contract supplier. The offer is thus automatically

accepted by the contract supplier.25 In the FPA1 treatment, there is no renegotiation

and the price for the main contract is also applied to the follow-up contract.

24This is a consequence of limited liability and prevents subjects from accumulating losses. Bidding
below 11 ECU is dominated for high-cost suppliers.

25Each price below 11 ECU necessarily reveals that the costs of the contract supplier are zero.
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Each of the three treatments included six independent cohorts. Each cohort had

8 human participants all in the role of suppliers, who were randomly rematched in 33

procurement interactions including 3 practice periods. Each laboratory session was

conducted with two cohorts (16 people) in the laboratory simultaneously. In total 144

human subjects participated in our auction experiments.

Each participant was randomly assigned to one of the three treatments. The ex-

perimental sessions were conducted in the Cologne Laboratory for Economic Research

at the University of Cologne and the Mannheim Laboratory for Economic Research at

the University of Mannheim. Participants were recruited using the online recruitment

system ORSEE (Greiner, 2015) and earning money was the only incentive offered.

The experimental interface was programmed using oTree (Chen et al., 2016).

Upon arrival at the laboratory, the participants were seated at computer terminals.

They were handed written instructions and they read these on their own. When all

participants had finished reading, they had the opportunity to ask clarifying questions

that were answered in private. To ensure a common understanding of the game all

participants had to solve a quiz consisting of control questions.26 At the beginning

of each period, the eight participants in one cohort were divided into four groups

consisting of two suppliers and one computerized buyer. In order to rule out super

game effects, we randomly determined one of the 30 periods to be payoff relevant at

the end of the experiment. Each period consisted of ten subperiods for which the

bidding strategy and matching were fixed. In each of the subperiods suppliers’ costs

were randomly determined and one main contract and one follow-up contract were

awarded.27

We computed cash earnings for each participant by multiplying the total earnings

from all subperiods of the payoff-relevant period by a pre-determined exchange rate

and adding it to a 5 Euro participation fee. Participants were paid their earnings in

private and cash at the end of the session. Sessions lasted approximately 60 minutes

and subjects participating in the auctions earned an average of 14.54 Euro.

6.2 Hypotheses

The theory in Section 3 predicts that the FPA2 mechanism results in inefficient sup-

plier selection and high prices. The SPA2 solves the problem by information man-

agement, namely by concealing the contract supplier’s bid to the buyer. In the FPA1

26We invited 22 to 24 participants per session and only the first 16 participants that answered all
control questions correctly participated in the experimental sessions. Those participants that did
not qualify for the experiment received 5 Euro for their participation.

27Fixing the bidding strategy for several subperiods reduces the payoff variance given a bidding
strategy, but still avoids super game effects, which might arise if multiple periods are payoff relevant.
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Figure 1: Comparison of the procurement mechanisms in terms of efficiency. Illus-
trated is how frequently low-cost suppliers place pooling bids in the different procure-
ment mechanisms.

we test the value of commitment. We derive the following testable hypotheses for our

experiment.

Hypothesis 1. The FPA2 is less efficient than the FPA1.

Hypothesis 2. The FPA2 is less efficient than the SPA2.

Hypothesis 3. The FPA1 is as efficient as the SPA2.

Hypothesis 4. The FPA2 generates less buyer surplus than the FPA1.

Hypothesis 5. The FPA2 generates less buyer surplus than the SPA2.

Hypothesis 6. The SPA2 generates less buyer surplus than the FPA1.

6.3 Results

Throughout this section, we report the p-values based on the non-parametric Wilcoxon-

Mann-Whitney test comparing the different procurement mechanisms taking each co-

hort as one independent observation. The tested hypothesis is that the respective

distributions do not differ between the procurement mechanisms.

We start the analysis of the experimental results by comparing the level of efficiency

in the different procurement mechanisms. To do so, we consider the share of pooling

bids, that is, the share of high bids placed by low-cost suppliers. The pooling behavior

is illustrated in Figure 1. As predicted, the FPA2 results in substantial pooling. In

contrast, other procurement mechanisms yield significantly more efficient outcomes.

The SPA2 is significantly more efficient than the FPA1.

Result 1. The FPA2 is less efficient than the FPA1 (p = 0.0039).
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Figure 2: Evolution of buyer’s expenses over time. Illustrated is the (expected) total
cost of a buyer awarding the main contract and the follow-up contract. Observations
left from the vertical line refer to the practice periods. Lines without marker display
equilibrium predictions.

Result 2. The FPA2 is less efficient than the SPA2 (p = 0.0039).

Result 3. The FPA1 is less efficient than the SPA2 (p = 0.0039).

As trade is guaranteed to occur, we can compare buyer surplus by considering

buyer expenses. We compare the buyer expenses by calculating the expected expenses

given the suppliers’ bidding strategies and the actual matching. We consider the

buyer’s expected expenses and not the realized expenses to minimize noise due to

randomness. Figure 2 illustrates the evolution of the buyer’s expenses over time.

Result 4. The FPA2 generates less buyer surplus than the FPA1 (p = 0.0039).

Result 5. The FPA2 generates the same buyer surplus as the SPA2 (p = 0.7488).

Result 6. The SPA2 generates less buyer surplus than the FPA1 (p = 0.0039).

In terms of buyer surplus, the FPA1 dominates the other procurement mechanisms,

which is in line with theory. The comparison of the FPA2 with the SPA2 shows that

the difference in expenses is not significant if we consider all 30 periods. Subjects

in FPA2 learn to pool over time. Whenever the subjects do not pool on the highest

bid, the first-price auctions generate more buyer surplus than the SPA2. This is a
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consequence of the bid-grid, as any undercutting of the high-cost types decreases the

price by at least 5 ECU. Figure 2 suggests that the FPA2 achieves better results than

the SPA2 only if suppliers are inexperienced. If suppliers are experienced, the SPA2

results in higher buyer surplus than the FPA2.

Our data includes 48 individual participants bidding in six independent cohorts in

each of the three procurement mechanisms, each individual bids in 30 auctions. We

take advantage of this panel structure to obtain better estimates of the dynamics of

bidding behavior. We fit the following two regression models

Model 1: Ki,t = β0 + βFPA1 × FPA1 + βSPA2 × SPA2

+ νi + εi,t

Model 2: Ki,t = β0 + βFPA1 × FPA1 + βSPA2 × SPA2

+ βt × (t− 30) + βt,FPA1 × (t− 30) + βt,SPA2 × (t− 30)

+c+ νi + εi,t

In both models, FPA1 and SPA2 are dummy variables indicating the treatment.

Hence, the FPA2 treatment serves as the baseline. In Model 2, t is the period number

(1 to 30). By using t− 30 we set the last period as the baseline period.

Note that there are two error components in the models: one that is independent

across all observations εi,t and one that is cohort-specific νi. Each error term has a

mean of zero and some positive standard deviation. In this, we use the random effects

model to control for cohort heterogeneity.

We interpret the coefficients in Model 1 as follows: β0 reflects the buyer’s expenses

in the FPA2, βFPA1 and βSPA2 express how much higher the buyer’s expenses are in

the FPA1 and SPA2 treatments, respectively, compared to the FPA2 treatment. The

interpretation of these coefficients is the same in Model 2, the only difference being

that in model 1 they reflect average expenses and in model 2 they reflect expenses at

the end of the experiment, i.e. for auctions with experienced suppliers. Furthermore,

in Model 2 βt estimates how the learning of suppliers affects the buyer’s expenses over

time in the FPA2. The coefficients βt,FPA1 and βt,SPA2 express in how far this learning

effect in the other procurement mechanisms is different from the learning effect in the

FPA2.

The estimates for the models are presented in Table 1. Model 1 states that the

buyer’s expenses in the FPA2 are on average 18.37 ECU, which is not significantly

different from her expenses in the SPA2. In contrast to that, the expenses are signifi-

cantly lower in the FPA1. Both findings confirm the observations reported in Result 4

and Result 5, respectively. Model 2 tells us that the buyer’s expenses in the FPA2
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Table 1: Regressions of buyer expenses.

Model
(1) (2)

β0 18.37∗∗∗ 19.63∗∗∗

(0.548) (0.780)

βFPA1 -2.647∗∗∗ -4.477∗∗∗

(0.606) (0.885)

βSPA2 -0.290 -1.937∗

(0.564) (0.793)

βt 0.0864∗∗

(0.0295)

βt,FPA1 -0.126∗∗∗

(0.0322)

βt,SPA2 -0.114∗∗∗

(0.0316)
Observations 540 540

Robust standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

are 19.63 ECU at the end of the experiment. For experienced suppliers both the

FPA1 and the SPA2 yield significantly lower expenses than the FPA2. Furthermore,

it shows that the buyer’s expenses become larger over time in the FPA2 and that the

differences between the expenses in the FPA2 and the SPA2 or FPA1 increase over

time.

Result 7. The FPA2 generates lower buyer surplus than the SPA2 if suppliers are

experienced (p = 0.015, Table 1).

The analysis of the experimental data shows that bidding behavior is broadly in

line with the theoretical predictions. This means, for each procurement mechanism the

equilibrium bid is the most frequent bid and its frequency becomes larger over time.

At the same time, we observe substantial deviations from the equilibrium bidding

strategy especially in the SPA2, which in turn makes the SPA2 more expensive for

the buyer than predicted. In Appendix B we shed more light on this using a quantal

response analysis.
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7 Discussion of model extensions

In this section, we discuss extensions of the model and the robustness of our results.

We will focus on the equilibria and the buyer-surplus ranking in first-price and second-

price auctions.

7.1 Bargaining power in the second period

We assumed that in the second period the buyer has all the bargaining power. With

this assumption in mind, suppliers are particularly cautious about revealing informa-

tion to ensure information rents in the second period. If the contract supplier had all

the bargaining power in period two, information release would not be an issue.

There are many ways to model bargaining under asymmetric information. To

keep the model tractable, we consider a simple reduced-form model of intermediate

bargaining power. Suppose that in the second period the contract supplier can make

a take-it-or-leave-it offer to the buyer with probability γ. With probability 1 − γ

the buyer makes a take-it-or-leave-it offer to the contract supplier. The parameter γ

measures bargaining power. The case γ = 0 corresponds to our main model.

We start the analysis by considering the second period. If the buyer makes the

offer, the analysis from Section 3 remains unchanged. If the supplier makes the offer

he always demands a payment equal to Q ·R and production continues with certainty.

From the point of view of the first period, the expected second-period profit of a

winning supplier at price p (and induced belief µ2(p)) is

Q ·
(
γ · (R− Eθ[c]) + (1− γ) · π2(cθ, µ2(p))

)
.

The equilibrium of the second-price auction remains qualitatively the same. Sup-

pliers place a bid such that their expected profit is zero if they win the auction and

receive a payment equal to their bid. That is, a type θ bidder submits the bid

bθ = cθ −Q ·
[
γ · (R− Eθ[c]) + (1− γ) · π2(cθ, µ2(p))

]
with µ2(p) as defined in Proposition 1.

Next, consider pooling equilibria in the first-price auction. Parallel to Proposition 2
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a pooling equilibrium exists whenever there is a b such that

b ≤cl −Q ·
[
γ · (R− El[c]) + (1− γ) · π2(cl, µ1))

]
+

n

n− 1
·Q · (1− γ) · (π2(cl, µ1)− π2(cl, 1)),

b ≤ch −Q ·
[
γ · (R− Eh[c]) + (1− γ) · π2(ch, µ1)

]
+

n

n− 1
·Q · (1− γ) · (π2(ch, µ1)− π2(ch, 1)),

b ≥ch −Q ·
[
γ · (R− Eh[c]) + (1− γ) · π2(ch, µ1)

]
.

As γ · Q · (R − El[c]) > γ · Q · (R − Eh[c]) a pooling equilibrium is harder to sustain

the higher the bargaining power of the suppliers. Comparing the first condition and

the third condition yields a similar result as Corollary 1. That is, if condition (5) is

satisfied and γ < 1, a pooling equilibrium exists whenever Q is sufficiently large. Note

that (5) is independent of the bargaining power γ. Bargaining power merely influences

the critical threshold Qpool. A similar but reverse logic applies to separating equilibria.

These are easier to sustain if the suppliers’ bargaining power increases.

Overall, the ranking of the buyer surplus from Section 4 remains intact. Buyer

surplus is higher in the second-price auction than in the pooling equilibrium of the

first-price auction but lower than in the separating equilibrium of the first-price auc-

tion. For small values of Q the separating equilibrium exists and thus the first-price

auction has an equilibrium with higher buyer surplus. The critical threshold of Q

increases in the suppliers’ bargaining power. If condition (5) holds true and Q is

sufficiently large, all equilibria of the first-price auction yield lower buyer surplus as

compared to the second-price auction.

7.2 Arbitrary type space Θ

Suppose that a supplier’s cost of fulfilling a contract in period one is cθ with θ ∈ Θ =[
θ, θ̄
]
. The types of the suppliers are independently and identically distributed with

a distribution function G. Denote by Iθ the degenerated belief with mass one on θ.

That is, the buyer believes she is facing a supplier of type θ with certainty.28

First, observe that the equilibrium of the second price auction remains qualitatively

the same. Bidders bid such that their expected profit is 0 if they win the auction with

a price equal to their bid. That is, each bidder bids cθ −Q · π2(cθ, µ2(cθ)) with µ2(cθ)

denoting the updated belief of the buyer after observing that cθ is the second lowest

bid.

28Our results hold for continuous and discrete type spaces. Thus, the distribution can exhibit mass
points and gaps.
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Second, observe that a pooling equilibrium in the first-price auction still exists

under similar conditions as before. With the same argument as in Proposition 2, a

pooling equilibrium in the first-price auction exists whenever there is a b such that

b ≤ cθ −Q · π2(cθ, G) +
n

n− 1
·Q · (π2(cθ, G)− π2(cθ, Iθ))

b ≥ cθ̄ −Q · π2(cθ̄, G),

for all θ ∈ Θ. Similar to condition (5) in Corollary 1, whenever

π2(cθ, G)− π2(cθ̄, G) > n ·
(
π2(cθ, Iθ)− π2(cθ̄, G)

)
(18)

for all θ ∈ Θ a pooling equilibrium exists if Q is sufficiently large.

To see that condition (18) can be satisfied, consider the case of persistent types:

the left-hand side is strictly positive, while the right-hand side is strictly negative.

Consequently, condition (18) is always satisfied in a model with persistent types and

a pooling equilibrium exists when Q is sufficiently large.

Third, we show that a separating equilibrium of the first-price auction fails to

exist. We illustrate the argument for the case of persistent types. That is, the case

where second-period cost c is equal to first-period cost cθ for all bidders and cost

types. We provide an argument for discrete types and for continuous types.

Discrete types. Suppose that a separating equilibrium exists. With persistent

types it holds that π2(cθ, Iθ) = 0 for all θ, and π2(cθ, Iθ) > 0 for all θ > θ. Now

consider the lowest type θ and the second-lowest type θ̂. With similar arguments as

in Proposition 5 the equilibrium is monotonic and the support of the bids is connected.

That is, the supremum of the bid support of type θ is equal to the infimum of the

bid support of type θ̂. Denote this value by b. If there is no mass point at b, type θ

gains by bidding slightly above b. The winning probability changes only marginally

whereas the second period payoff increases discontinuously from 0 to π2(cθ, Iθ̂) > 0.

If there is a mass point at b, type θ̂ strictly gains by undercutting b.29 The winning

probability increases discontinuously whereas second-period profits stay 0. It follows,

that bidding on disjoint intervals is not an equilibrium. Thus, a separating equilibrium

does not exist.

With two persistent types there is a unique separating equilibrium. This equi-

librium is sustained as the high-cost type places a zero-profit bid with probability

one. Thus, he has no profitable downward deviation. This provides an incentive for

29In equilibrium, the profit of type θ̂ when bidding b is strictly positive. Otherwise, he could
deviate to the bid of type θ̄.
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the low-cost type to separate from the pool. As argued above, with more than two

types, such a mass point is impossible in a separating equilibrium for types below

the highest-cost type. Thus, lower-cost types would like to deviate from a separating

strategy and mimic higher-cost types.

Continuous types. Suppose a separating pure-strategy equilibrium exists. As be-

fore, the equilibrium is monotonic. That is, there exists a decreasing bidding function

β(cθ). The payoff of a bidder with type θ from deviating and bidding some b = β(cθ̂)

can be written as

(1−G(β(cθ̂))
n−1 ·

(
β(cθ̂)− cθ +Q · π2(c, Iθ̂)

)
.

With persistent types, for cθ̂ ≤ cθ we have π2(cθ, Iθ) = 0, and for cθ̂ > cθ we have

π2(cθ, Iθ̂) = cθ̂ − cθ. Thus, the left derivative of the profit function is

− (n− 1) · (1−G(cθ̂))
n−2 · g(cθ̂) · (β(cθ̂)− cθ) + (1−G(cθ̂))

n−1 · β′(cθ̂). (19)

The right derivative is

−(n− 1) · (1−G(cθ̂))
n−2 · g(cθ̂) · (β(cθ̂)− cθ

+Q · (cθ̂ − cθ)) + (1−G(cθ̂))
n−1 · (β′(cθ̂) +Q). (20)

The necessary condition for β to be an equilibrium bidding function is that at cθ =

cθ̂ either the left derivative is zero and the right derivative is negative or the right

derivative is zero and the left derivative is positive. Now, if expression (19) is equal

to zero, expression (20) is equal to Q · (1−G(cθ̂))
n−1 which is positive. If expression

(20) is equal to zero, it follows that

−(n−1)·(1−G(cθ̂))
n−2 ·g(cθ̂)·(β(cθ̂)−cθ)+(1−G(cθ̂))

n−1 ·β′(cθ̂) = −Q·(1−G(cθ̂))
n−1.

Thus, the left derivative is negative and β does not fulfill the necessary condition for

equilibrium. Thus, a separating equilibrium does not exist.

The result is intuitive. With persistent types, in a potential separating equilibrium,

all bidders earn a profit of zero in the second period. Thus, the optimal bidding

function in period one would be the classical equilibrium of the first-price auction.

However, in such an equilibrium the bidders would like to deviate and mimic high-

cost types to earn second-period profits. If the bid is chosen in a way that deviation

upwards is not profitable, bidders have a deviation incentive downward as they still do

not earn second-period profits and would prefer to bid like in a standard single-round
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first-price auction.30 Summing up, if we extend the model beyond the two-types case,

the main conclusions remain intact. First, the second price auction is well behaved,

achieves an efficient allocation in period one and reasonable buyer-surplus. Second,

the first-price auction in this setting performs poorly. Either Q is sufficiently large and

all types pool on the same bid. In this case, the first-price auction is highly inefficient

and provides a strictly lower buyer surplus then the second-price auction. Or Q is

small and a pure-strategy equilibrium fails to exist. Thus, with a lack of commitment

and future interaction first-price auctions should be used with caution.

8 Literature Review

Procurement auctions are inherently different from sales auctions. For example, in

procurement the auctioneer cares about whether the winning bidder is qualified to

deliver the good (Fugger et al., 2016; Wan and Beil, 2009), is concerned with supplier

investments (Beer et al., 2017; Li and Wan, 2016; Li, 2013), might want to diversify

the supply base by procuring the same good from two or more suppliers (Chaturvedi

et al., 2014), or has to employ an agent to verify quality who is prone to corruption

(Burguet, 2017; Gretschko and Wambach, 2016). The feature at the heart of this

manuscript is that, as compared to sales, procurement often results in long-term

relationships. As a consequence, renegotiation of the original terms of the contract is

a major concern. A classic strand of the literature investigates moral hazard as the

main source of renegotiation (Fudenberg and Tirole, 1990 or Herweg and Schmidt,

2015 for a more recent contribution). Another line of reasoning identifies design flaws

as a source of renegotiation (Herweg and Schmidt, 2017; Herweg and Schwarz, 2018).

Suppliers have private information about potential design flaws of the procurement

project and leverage this information to capture additional rents during the project.

We extend the literature on renegotiation in procurement by considering renegotiation

in an adverse selection setting. Suppliers reveal private information during the initial

procurement auction which in turn the buyer exploits in the renegotiation.

The problem at hand is related to the literature on sales without commitment. The

literature started with considering monopolists selling a durable good to a single buyer

(e.g., Bulow (1982), Hart and Tirole (1988)) and developed into auctions without

commitment. A seller designs an auction but cannot commit to retaining the object

when the auction does not allocate it (e.g., when the reserve price is not met). Skreta

(2015) analyzes optimal selling mechanisms with a finite horizon. If the good was

not allocated in the first stage, the seller proposes a new mechanism. She shows

30The result also extends to partial pooling equilibria, as the argument remains valid also if the
bid function is monotonic only for a subset of types.
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that optimal mechanisms resemble their static counterparts. Liu et al. (2019) study a

similar problem but with an infinite horizon. They show that with sufficiently many

bidders a version of the Coase conjecture applies and an efficient auction is uniquely

optimal. Vartiainen (2013) goes one step further by studying a seller who does not

adhere to the mechanism initially proposed irrespective of whether the good was to

be sold or not. He proves that the English auction is an optimal mechanism, as it

reveals just the right amount of information and the seller does not wish to propose

an alternative mechanism.

Most of these models consider negative selection: renegotiation only takes place

if the good is not sold. In this case, remaining bidders have low valuations (bad

types). As a consequence, a ratchet effect kicks in as in the classical literature on

the Coase conjecture.31 Tirole (2016) demonstrates for the single-agent case that

positive selection leads to fundamentally different results. With positive selection,

at the stage of renegotiation, only good types are left. He shows, that in this case

lack of commitment is not an issue. We also study a model with positive selection.

Renegotiation only takes place if a supplier was chosen. This always renders the

buyer more optimistic about the supplier’s type. Thus, our results differ markedly

from the results in the auction without commitment literature. For example, we derive

sufficient conditions such that the full-commitment outcome is implementable.

Apart from auctions, there is also a growing literature on mechanism design with

limited commitment. Bester and Strausz (2001), Bester and Strausz (2007) and Poll-

rich (2017) study the problem of a principal who contracts with a privately informed

agent. The principal can commit to some decisions, but some other decisions remain

at his discretion. As in our model, the agent takes into account the information con-

veyed in her communication with the principal, in particular, its effect on the princi-

pal’s subsequent decisions. Bester and Strausz (2001) show a version of the revelation

principle when communication is bound to be one-shot.32 In a similar setting, Bester

and Strausz (2007) highlight the profitability of indirect communication protocols over

the use of one-shot communication. Pollrich (2017) studies a specific setting where the

principal can audit the agent after executing the contract, but cannot contractually

commit to audit frequencies. He shows that optimal contracts involve communication

via an impartial mediator, who correlates the agent’s (revealed) information with the

principal decision to audit. The general insight is that it is beneficial to obscure some

of the information generated by the mechanism. In an auction framework, some pric-

ing rules like the second-price rule achieve this in a natural way. However, standard

pricing rules fail to do so optimally.

31See Liu et al. (2019) and the references therein for a comprehensive overview.
32Their result does not extend to the case with multiple agents, see Bester and Strausz (2000).
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Our model exhibits some similarities with models of sequential auctions, auctions

with resale and mechanism design with aftermarkets. In all cases, information re-

lease influences subsequent play. However, the mechanism designer herself does not

directly care about the released information. In particular, she can design arbitrary

information regimes and even conceal the winner and/or the price in stage one. This

is not possible in our model. As delivery has to take place in period one the buyer

necessarily observes the allocation and the transfer.

The literature on sequential auctions focuses mainly on three informational regimes

in first-price auctions: all bids disclosed, winning bid disclosed, no bids disclosed.

Bergemann and Hörner (2018) investigate a model of infinitely repeated first-price

auctions among bidders with binary and persistent types. When either all bids or

only the winner’s bid are disclosed, equilibrium multiplicity obtains. As in our results,

they find pooling, separating and semi-separating equilibria. Also, comparative statics

are similar: pooling equilibria exist when the future becomes sufficiently important

(measured in terms of the discount factor in their model) or the number of bidders

is sufficiently large. However, they do not compare different auction formats and

disclosure regimes. Thomas (2010) studies a setting where two suppliers compete for

two procurement projects in sequential first-price auctions. He employs a setting with

binary and persistent types. Crucially, both projects are of equal size, eliminating the

possibility for pooling. Auction revenues are highest when no information on bids and

prices is revealed, a regime that is inherently ruled out in our model. Cason et al.

(2011) investigate sequential first-price auctions experimentally. In a setting with

binary and persistent types, they find that with low competition disclosing all bids

is better than disclosing only the winning bid. With high competition, the ranking

reverses.

In the literature on auctions with aftermarkets, all bidders interact with each other

after the auction with payoffs depending on all bidders’ types. Information revealed

during the auction affects the aftermarket interaction and thereby indirectly bidding

behavior. Haile (2003) studies an auction with symmetric bidders, where the winner

has the opportunity to resell the item to one of the losing bidders. He compares dif-

ferent auction formats and shows that revenue equivalence may fail, due to differences

in information leakage of the auction formats.33 Goeree (2003) studies a situation in

which bidders bid in first-price, second-price, or English auctions for a competitive

advantage in an aftermarket game. In his model, bidders profit from overstating their

value. Thus, they try to signal their value through high bids. Separating equilibria

exist in all considered auction formats and revenue is highest in the English auction.

33Auctions with resale are also studied in, e.g., Zheng (2002); Garratt and Tröger (2006); Hafalir
and Krishna (2008), and Carroll and Segal (ming).
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In our model, bidders benefit from understating their value. This makes our analysis

different. The revenue ranking can be reversed and separating equilibria may fail to

exist.

In the last strand of literature, instead of interacting with losing bidders, the

winning bidder interacts with a third party in the aftermarket. The mechanism de-

signer affects the aftermarket interaction by revealing information about the winner.

Calzolari and Pavan (2006a) study a monopolist who sells to a buyer with a binary

valuation. The buyer can then resell the good to a third party. Revenue maximizing

mechanisms involve randomization and non-trivial information disclosure beyond the

fact whether the good is sold. In their model aftermarket interaction is beneficial for

the seller as she can extract revenues from resale. In our case, future interaction can

hurt the mechanism designer. Calzolari and Pavan (2006b) study information release

when a sequence of principals contract with the same agent. They provide sufficient

conditions for the optimality of agent privacy along the hierarchy. Agent privacy is

not an option in our model as the future interaction is with the original mechanism

designer. Dworczak (2017) analyzes information disclosure in mechanism design with

abstract aftermarkets (not limited to resale). He provides conditions under which

optimal information release is limited to the minimal information: no information

beyond the fact that the good was allocated is released.
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A Proofs

A.1 Proofs of Section 3

Proof of Lemma 2.

First observe that
µ2 · Fl(c) + (1− µ2) · Fh(c)
µ2 · fl(c) + (1− µ2) · fh(c)

is increasing in µ2. Differentiating with respect to µ2 gives (we omit the argument c)

µ2 · (fl − fh) · (Fl − Fh) + fh · (Fl − Fh)− Fh · (fl − fh)− µ2 · (fl − fh) · (Fl − Fh)(
µ2 · fl + (1− µ2) · fh

)2

=
fh · Fl − Fh · fl(

µ2 · fl + (1− µ2) · fh
)2 > 0,

where the last equality follows from Assumption 1.
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Now assume µ2, µ
′
2 ∈ [0, 1] with µ2 < µ′2. Clearly, if P (µ2) = ch we have P (µ2) ≥

P (µ′2). Hence, assume P (µ2) < ch. First-order stochastic dominance implies

R− ch < (R− P (µ2)) ·
(
µ2 · Fl(P (µ2)) + (1− µ2) · Fh(P (µ2))

)
≤ (R− P (µ2)) ·

(
µ′2 · Fl(P (µ2)) + (1− µ′2) · Fh(P (µ2))

)
.

So P (µ′2) < ch. Both P (µ2) and P (µ′2) are determined by the first-order condition

(1). Using our initial observation and the first-order condition for P (µ2) we have for

all P > P (µ2)

R− P < R− P (µ2) =
µ2 · Fl(P (µ2)) + (1− µ2) · Fh(P (µ2))

µ2 · fl(P (µ2)) + (1− µ2) · fh(P (µ2))

≤ µ′2 · Fl(P (µ2)) + (1− µ′2) · Fh(P (µ2))

µ′2 · fl(P (µ2)) + (1− µ′2) · fh(P (µ2))

≤ µ′2 · Fl(P ) + (1− µ′2) · Fh(P )

µ′2 · fl(P ) + (1− µ′2) · fh(P )
,

where the last inequality follows from Assumption 1. Consequently, we must have

P (µ′2) ≤ P (µ2), which proves the first claim. Finally, observe that for all µ2 < µ′2

π2(cθ, µ2) = Eθ
[
(P (µ2)− c)+

]
≤ Eθ

[
(P (µ′2)− c)+

]
= π2(cθ, µ

′
2).

Proof of Proposition 1.

We start the proof by arguing that the proposed behavior indeed constitutes an equi-

librium. In the second part, we will establish that this equilibrium is the unique

symmetric Bayes-Nash equilibrium. For both parts, observe, that off-path beliefs of

the principal are irrelevant for the bidders incentives.34 If a deviating bidder wins the

auction, the price will be set by one of the other bidders and thus the buyer’s updated

belief comes from the set of on-path beliefs. If a deviating bidder loses the auction,

he will not participate in the second period. Thus, the off-path beliefs of the buyer

are irrelevant, even if a bidder thinks of placing an off-path bid.

In the second stage, it is always optimal for suppliers to accept the offers if these

are weakly larger than their costs.

By Lemma 1 the second-period offers of the buyer are the optimal mechanism

given her belief. The beliefs are calculated by using Bayes rule given the strategy of

the suppliers in period 1 and the observed price.

A high-cost supplier with cost ch expects a profit of zero from his bid given the

34We say a price p is on path if p ∈ supp(Bh) or p ∈ supp(Bl). The belief of the principal formed
after observing a price on path is called an on-path belief.
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strategy of the buyer. All smaller bids above the bid of a low-cost supplier bl yield

also a profit of 0. Any bid equal or below the bid of a low-cost supplier bl yields a

strictly negative expected profit by Lemma 2. Bidding above his equilibrium bid does

not improve the supplier’s expected profit, because such bids are never accepted given

the strategy of his competitors.

Now consider a low-cost supplier with cost cl. Bidding b > bl yields the same

expected profit as the equilibrium bid if p > b or if p < bl. In the case that the

first-period price is b > p ≥ bl, bidding b yields a pay-off of 0. Thus, the equilibrium

bid yields a strictly higher expected profit.

Bidding b < bl yields the same profit as in equilibrium if the first-period price

is p ≥ bl or if p < b. If the first-period price is b ≤ p < bl, she makes a negative

expected profit. Thus, bidding below the equilibrium bis is weakly dominated by the

equilibrium bid.

We turn our attention to proving that the proposed equilibrium is the unique

symmetric equilibrium. We proceed in three steps. First, we will show that the low-

cost type places lower bids in equilibrium than the high-cost type. That is, every

equilibrium is weakly monotonic. It follows directly that the on-path belief of the

buyer is weakly decreasing in the prices. That is, a lower observed price leads to

a weakly higher probability of facing the low-cost type. Second, we will use this to

demonstrate that every equilibrium is in pure strategies. Third, we show that any

equilibrium bid bθ yields an expected pay-off of zero to the bidder if p = bθ.

In what follows we will denote by Prob(b) the probability of winning with bid b in

a previously selected equilibrium. Denote by G(p) = 1−Prob(p) as the distribution of

the lowest of the other bidders’ bids (i.e. the price) in equilibrium. Let p = min{bl, bh}
and p̄ = max{b̄l, b̄h} denote the infinum and supremum of the support of G.

Step 1: b̄l ≤ bh. That is, the low-cost type places lower bids than the high-cost

type.

Proof. Suppose otherwise. In this case, there exists bids b′ > b′′ with Prob(b′′) >

Prob(b′) such that

Prob(b′′) · (E [p | p ≥ b′′]− ch + E [Q · π2(cl, µ2(p)) | p ≥ b′′]) ≥

Prob(b′) · (E [p | p ≥ b′]− ch + E [Q · π2(cl, µ2(p)) | p ≥ b′]) (21)

and

Prob(b′) · (E [p | p ≥ b′]− cl + E [Q · π2(ch, µ2(p)) | p ≥ b′]) ≥

Prob(b′′) · (E [p | p ≥ b′′]− cl + E [Q · π2(ch, µ2(p)) | p ≥ b′′]) . (22)
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Subtracting both inequalities gives

Prob(b′) · (c̄− c+ E [Q · π2(cl, µ2(p)) | p ≥ b′]− E [Q · π2(ch, µ2(p)) | p ≥ b′]) ≥

Prob(b′′) · (c̄− c+ E [Q · π2(cl, µ2(p)) | p ≥ b′′]− E [Q · π2(ch, µ2(p)) | p ≥ b′′]) . (23)

Thus, for a contradiction we will show that

Prob(b′) · E [π2(cl, µ2(p)) | p ≥ b′]− Prob(b′) · E [π2(ch, µ2(p)) | p ≥ b′]

≤ Prob(b′′) · E [π2(cl, µ2(p)) | p ≥ b′′]− Prob(b′′) · E [π2(ch, µ2(p)) | p ≥ b′′] . (24)

It follows∫ p̄

b′
π2(cl, µ2(p))dG(p)−

∫ p̄

b′
π2(ch, µ2(p))dG(p)

≤
∫ p̄

b′′
π2(cl, µ2(p))dG(p)−

∫ p̄

b′′
π2(ch, µ2(p))dG(p). (25)

This is equivalent to

0 ≤
∫ b′

b′′
π2(cl, µ2(p))dG(p)−

∫ b′

b′′
π2(ch, µ2(p))dG(p). (26)

This is obviously a true statement as π2(cl, µ2(p)) ≥ π2(ch, µ2(p)) for all p ∈ [p, p̄].

We have shown that in any equilibrium the low-cost type places lower bids than

the high-cost type. It follows directly that in any equilibrium and for any pair of

on-path prices p′ and p′′ with p′ ≤ p′′ it follows that µ2(p′) ≥ µ2(p′′).

Step 2: In any symmetric equilibrium all bidders play pure strategies.

Proof. Suppose otherwise. In this case, there exist b′ > b′′ with Prob(b′′) > Prob(b′)

such that

Prob(b′′) · (E [p | p ≥ b′′]− cθ + E [Q · π2(cθ, µ2(p)) | p ≥ b′′]) =

Prob(b′) · (E [p | p ≥ b′]− cθ + E [Q · π2(cθ, µ2(p)) | p ≥ b′]) . (27)

This is equivalent to

0 =

∫ b′

b′′
pdG(p)− cθ · (P (b′′)− Prob(b′)) +

∫ b′

b′′
Q · π2(cθ, µ2(p))dG(p). (28)

Observe that due to Prob(b′′) > Prob(b′),
∫ b′
b′′
pdG(p) is strictly larger than

∫ b′
b′′
b′′dG(p).
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Moreover, due to the monotonic on-path belief of the principal and Lemma 2,∫ b′

b′′
Q · π2(cθ, µ2(p))dG(p) ≥

∫ b′

b′′
Q · π2(cθ, µ2(b′′))dG(p).

Thus, ∫ b′

b′′
pdG(p)− cθ · (Prob(b′′)− Prob(b′)) +

∫ b′

b′′
Q · π2(cθ, µ2(p))dG(p) (29)

is strictly larger than∫ b′

b′′
b′′dG(p)− cθ · (Prob(b′′)− Prob(b′)) +

∫ b′

b′′
Q · π2(cθ, µ2(b′′))dG(p). (30)

This is equivalent to

(b′′ − cθ +Q · π2(cθ, µ2(b′′))) · (Prob(b′′)− Prob(b′)). (31)

b′′ − cθ + Q · π2(cθ, µ2(b′′)) is the profit from winning at a price of b′′. Thus, this

expression has to be larger or equal to 0 otherwise it would be a profitable deviation

to bid slightly above b′′. It follows that

0 <

∫ b′

b′′
pdG(p)− cθ(Prob(b′′)− Prob(b′)) +

∫ b′

b′′
Q · π2(cθ, µ2(p))dG(p), (32)

a contradiction.

Step 3: Any equilibrium bid bθ yields an expected pay-off of zero to the bidder if

p = bθ.

Proof. We present the argument for the low-cost type cl. The argument for the high-

cost type works in the same way. Suppose that the equilibrium bid bl is such that

bl− cl +Q · π2(cl, µ2(bl)) > 0. In any monotonic, pure-strategy equilibrium, whenever

a bidder with the low-cost type faces at least another bidder with a low-cost type his

probability of winning is strictly below 1, as he ties with this bidder. However, if he

bids below bl he will never tie with other bidders and win the project with probability

1 without revealing any additional information to the buyer as the price will be set by

one of the other bidders. As bl − cl +Q · π2(cl, µ2(bl)) > 0 this is a strictly profitable

deviation and thus a contradiction.

Combining step 2 and 3 yields the result that the proposed equilibrium is the

unique symmetric equilibrium.
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Proof of Proposition 2.

Observe that pooling is an equilibrium whenever we set the off-path beliefs of the

principal to µ2(p) = 1 if p 6= b and for both types, cl and ch the pay-off from pooling

is larger than the payoff from undercutting b by an arbitrarily small amount. The

payoff from pooling is
1

n
(b− cθ +Q · π2(cθ, µ1)). (33)

The payoff from undercutting is

b− cθ +Q · π2(cθ, 1). (34)

Thus, pooling is more beneficial than undercutting whenever

(n− 1) · cθ ≥ (n− 1) · b+ n ·Q · π2(cθ, 1))−Q · π2(cθ, µ1). (35)

The lower bound for b is determined by setting the expected pay-off of the high-cost

type to zero. This shows that conditions (2), (3) and (4) are necessary and sufficient

for a pooling equilibrium to exist.

Proof of Proposition 3.

To prove the claim, we first show that the low-cost type cl is indifferent between all

bids in [bl, b). Second, we demonstrate that Bl(̃b) is a distribution. Third, we show

that conditions (6), (7) and (8) ensure that the low-cost type does not want to deviate

to b and the high-cost type does not want to undercut b. To see that the low-cost

type cl is indifferent between all bids in [bl, b) consider the pay-off of a low-cost type

from bidding some b̃ ∈ [bl, b) given that the other bidders play the proposed strategy:(
1− µ1 + µ1 · (1− Bl(̃b))

)n−1

·
(
b̃+ π2(cl, 1)− cl

)
substituting Bl(̃b) from (8) and rearranging yields:

bl +Q · π2(cl, 1)− cl.

As the last expression is independent of b , the low-cost type is indifferent between all

bids in b ∈ [bl, b). We now demonstrate that Bl(̃b) is a distribution. It is easy to see

that Bl(̃b) is increasing in b̃. Thus, it remains to show that Bl(b) = 1 and Bl(bl) = 0.
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Observe that substituting bl from expression (10) into (9) yields

Bl(b) = 1−
(

(1− µ1)n−1 · (b+Q · π2(cl, 1)− cl)
µn−1

1 (b+Q · π2(cl, 1)− cl)

) 1
n−1

+
1− µ1

µ1

.

Hence,

Bl(b) = 1−
(

(1− µ1)n−1

µn−1
1

) 1
n−1

+
1− µ1

µ1

= 1.

Moreover,

Bl(bl) = 1−
(

bl +Q · π2(cl, 1)− cl
µn−1

1 (bl +Q · π2(cl, 1)− cl)

) 1
n−1

+
1− µ1

µ1

= 1−
(

1

µn−1
1

) 1
n−1

+
1− µ1

µ1

= 0.

Bidding strictly below bl is not a profitable deviation. The winning probability

does not increase but the profit in case of winning decreases. Bidding above b yield

an expected profit of 0 and is therefore not a profitable deviation. Thus, it remains

to show that the low-cost type does not want to deviate to b and the high-cost type

does not want to undercut b.

The payoff from bidding b is

(1− µ1)n−1 · 1

n
· (b− cθ +Q · π2(cθ, 0)). (36)

The payoff from undercutting is

(1− µ1)n−1 · (b− cθ +Q · π2(cθ, 1)). (37)

Thus, bidding b is more beneficial than undercutting whenever

(n− 1) · cθ ≥ (n− 1) · b+ n ·Q · π2(cθ, 1))−Q · π2(cθ, 0). (38)

This shows that conditions (6), (7) and (8) are necessary and sufficient for a

separating equilibrium to exist.

Proof of Proposition 4.

To prove the claim, we first show that the low-cost type cl is indifferent between all

bids in [bl, b). Second, we show that conditions (12), (13) and (14) ensure that the

low-cost type is indifferent between a bid in [bl, b) and b and the high-cost type does

not want to undercut b. Third, we demonstrate that Bl(̃b) is a distribution. Fourth,
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we show that whenever there is no separating or full pooling equilibrium in the first-

price auction, there exists a µ and a b such that conditions (12), (13) and (14) are

fulfilled.

To see that the low-cost type cl is indifferent between all bids in [bl, b) consider the

pay-off of a low-cost type from bidding some b̃ ∈ [bl, b) given that the other bidders

play the proposed strategy:(
1− µ1 + µ1 · pµ + µ1 · (1− pµ) · (1− Bl(̃b))

)n−1

·
(
b̃+ π2(cl, 1)− cl

)
substituting Bl(̃b) from (15) and rearanging yields:

bl +Q · π2(cl, 1)− cl.

As the last expression is independent of b, the low-cost type is indifferent between all

bids in b ∈ [bl, b).

Bidding strictly below bl is not a profitable deviation. The winning probability

does not increase but the profit in case of winning decreases. Bidding above b yields

an expected profit of 0 and is therefore not a profitable deviation. Thus, it remains

to show that the low-cost type is indifferent between bidding in [bl, b) and b and that

the high-cost type does not want to undercut b. The payoff from bidding b is

(1− µ1 + p · µ1)n−1 · 1

n
· (b− cθ +Q · π2(cθ, µ)). (39)

The payoff from slightly undercutting is

(1− µ1 + p · µ1)n−1 · (b− cθ +Q · π2(cθ, 1)). (40)

Thus, bidding b is more beneficial than undercutting whenever

(n− 1) · cθ > (n− 1) · b+ n ·Q · π2(cθ, 1)−Q · π2(cθ, µ). (41)

A bidder is indifferent between bidding b and undercutting whenever

(n− 1) · cθ = (n− 1) · b+ n ·Q · π2(cθ, 1)−Q · π2(cθ, µ). (42)

Thus, condition (12) ensures that the low-cost type is indifferent and condition (13)

ensures that the high-cost type does not want to deviate to a lower bid.

We now demonstrate that Bl(̃b) is a distribution. It is easy to see that Bl(b) is

increasing in b. Thus, it remains to show that Bl(b) = 1 and Bl(bl) = 0. Observe that
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substituting bl from expression (16) into (15) yields

Bl(b) = 1−
(

(1− µ1 + pµ · µ1)n−1 (b+Q · π2(cl, 1)− cl)
(1− pµ)n−1 · µn−1

1 · (b+Q · π2(cl, 1)− cl)

) 1
n−1

+
1− µ1 + pµ · µ1

(1− pµ) · µ1

.

Hence,

Bl(b) = 1−
(

(1− µ1 + pµ · µ1)n−1

(1− pµ)n−1 · µn−1
1

) 1
n−1

+
1− µ1 + pµ · µ1

(1− pµ) · µ1

= 1.

Moreover,

Bl(bl) = 1−
(

bl +Q · π2(cl, 1)− cl
µn−1

1 · (1− pµ)n−1 · (bl +Q · π2(cl, 1)− cl)

) 1
n−1

+
1− µ1 + pµ · µ1

(1− pµ) · µ1

= 1−
(

1

µn−1
1 · (1− pµ)n−1

) 1
n−1

+
1− µ1 + pµ · µ1

(1− pµ) · µ1

= 0.

Proof of Proposition 5.

The proof will proceed along nine steps that will build upon each other.

1. In any equilibrium supp(Bl) ∩ supp(Bh) is of measure 0 with respect to Bl and

Bh or supp(Bl) ∩ supp(Bh) contains only one bid with a positive mass. That is,

the supports of the strategy of the low-cost type and the high-cost type almost

surely overlap in at most one bid.

2. b̄l ≤ bh. That is, the low-cost type places lower bids than the high-cost type.

3. In any equilibrium b̄l = bh. That is, the supremum of the bids of the low-cost

type is equal to the infinum of the bids of the high-cost type.

4. In any equilibrium Bl has no mass points beyond b̄l.

5. In any equilibrium Bh has no mass points beyond bh.

6. In any equilibrium supp(Bl) and supp(Bh) are connected. That is, the supports

of the strategy of the low-cost type and the high-cost type do not have gaps.

7. bh ≥ ch − Q · π2(ch, µ2) with µ2 = s · µ1/(1− µ1 + s · µ1) and s the probability

that a bidder of type cl chooses bid bh. That is, the high-cost type bids such

that with every bid he makes at least an overall profit of 0.

8. bh = b̄h. That is, the high-cost type plays a pure strategy in any equilibrium.

9. An equilibrium of the first-price auction always exists.
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In what follows we will denote by Prob(b) the probability of winning with bid b

in a previously selected equilibrium and µ2(b) the equilibrium belief of the principal

after observing the price p = b.

Step 1: In any equilibrium supp(Bl) ∩ supp(Bh) is of measure 0 with respect to Bl
and Bh or supp(Bl)∩supp(Bh) contains only one bid with a positive mass. That is, the

supports of the strategy of the low-cost type and the high-cost type almost sure overlap

in at most one bid

Suppose otherwise, that is, an equilibrium where the supports overlap exists. In

this case there exists b′, b′′ in supp(Bl) ∩ supp(Bh) such that

Prob(b′) · (b′ − cl +Q · π2(cl, µ2(b′))) = Prob(b′′) · (b′′ − cl +Q · π2(cl, µ2(b′′)))

and

Prob(b′) · (b′ − ch +Q · π2(ch, µ2(b′))) = Prob(b′′) · (b′′ − ch +Q · π2(ch, µ2(b′′))).

In other words, as b′ and b′′ are both in supp(Bl) ∩ supp(Bh) both types of supplier

must be indifferent between bidding b′ and b′′. Subtracting both equations from each

other yields

(Prob(b′)− Prob(b′′)) · (cl − ch +Q · π2(ch, µ2(b′′))−

Q · π2(cl, µ2(b′′)) +Q · π2(ch, µ2(b′))−Q · π2(cl, µ2(b′))) = 0.

As cl − ch +Q · π2(ch, µ2(b′′))−Q · π2(cl, µ2(b′′)) +Q · π2(ch, µ2(b′))−Q · π2(cl, µ2(b′))

is strictly below zero, this implies that Prob(b′)− Prob(b′′) has to be zero. This is a

contradiction to the initial assumption.

Step 2: b̄l ≤ bh. That is, the low-cost type places lower bids then the high-cost

type.

Suppose otherwise. In this case, by Step 1, there exists an equilibrium, b′ ∈
supp(Bl) \ supp(Bh) and b′′ ∈ supp(Bh) \ supp(Bl) such that Prob(b′′) > Prob(b′) and

Prob(b′) · (b′ − cl +Q · π2(cl, 1)) ≥ Prob(b′′) · (b′′ − cl +Q · π2(cl, 0))

and

Prob(b′′) · (b′′ − ch +Q · π2(ch, 0)) ≥ Prob(b′) · (b′ − ch +Q · π2(ch, 1)).
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Subtracting both inequalities gives

Prob(b′)·(ch−cl+Q·π2(cl, 1)−Q·π2(ch, 1)) ≥ Prob(b′′)·(ch−cl+Q·π2(cl, 0)−Q·π2(ch, 0)).

Thus, for a contradiction it remains to show that

π2(cl, 1)− π2(ch, 1) ≤ π2(cl, 0)− π2(ch, 0).

By Definition 1 this is

∫ P (1)

cl

(P (1)− c)dFl(c)−
∫ P (1)

ch

(P (1)− c)dFh(c)

≤
∫ P (0)

cl

(P (0)− c)dFl(c)−
∫ P (0)

ch

(P (0)− c)dFh(c). (43)

Due to P (1) < P (0), inequality (43) is true if

∫ P (1)

cl

(P (1)− c)dFl(c)−
∫ P (0)

ch

(P (1)− c)dFh(c)

≤
∫ P (1)

cl

(P (0)− c)dFl(c)−
∫ P (0)

ch

(P (0)− c)dFh(c)

is true. Rearanging gives∫ P (1)

cl

P (1)− P (0)dFl(c)−
∫ P (0)

ch

P (1)− P (0)dFh(c) ≤ 0,

which is true by Assumption 1 and Lemma 2.

Step 3: In any equilibrium b̄l = bh. That is, the supremum of the bids of the

low-cost type is equal to the infinum of the bids of the high-cost type.

For a contradiction suppose b̄l < bh.
35 In this case, b̄l cannot be a mass point as

Prob(b̄l) < limε→0 Prob(b̄l− ε). Consequently, the expected payoff of a bidder of type

cl, Prob(b) · (b− cl +Q · π2(cl, 1)), exhibits a jump at b̄l and we have limε→0 Prob(b̄l−
ε) · (b̄l− ε− cl +Q ·π2(cl, 1)) > Prob(b̄l) · (b̄l− cl +Q ·π2(cl, 1)).36 This contradicts that

b̄l is in the support of the equilibrium bid distribution. As b̄l cannot be a mass point,

b̄l < bh implies limε→0 Prob(bh − ε) = Prob(b̄l). Thus, limε→0 Prob(bh − ε) · (bh − ε−
cl +Qπ2(cl, 1)) > Prob(b̄l) · (b̄l − cl +Qπ2(cl, 1)). A contradiction.

Step 4: In any equilibrium Bl has no mass points beyond b̄l.

Suppose otherwise, that is, there is an equilibrium with a b′ < b̄l such that

35b̄l > bh is ruled out by Step 2.
36µ2 = 1 by Step 1 and Step 2.
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bl(b
′) > 0. In this equilibrium Prob(·) exhibits a jump at b′ in particular, Prob(b′) <

limε→0 Prob(b
′− ε). Consequently, the expected payoff of a bidder of type cl, Prob(b) ·

(b− cl +Q · π2(cl, 1)), exhibits a jump at b′ and we have limε→0 Prob(b
′− ε) · (b′− ε−

cl + Q · π2(cl, 1)) > Prob(b′) · (b′ − cl + Q · π2(cl, 1)).37 This contradicts that b′ is in

the support of the equilibrium bid distribution.

Step 5: In any equilibrium Bh has no mass points beyond bh.

Suppose otherwise, that is, there is an equilibrium with a mass point in b′ >

bh. In this equilibrium Prob(·) exhibits a jump at b′ in particular, Prob(b′) <

limε→0 Prob(b
′−ε). Consequently, the expected payoff of a bidder of type ch, Prob(b) ·

(b− ch+π2(ch, 0)), exhibits a jump at b′ and we have limε→0 Prob(b
′− ε) · (b′− ε− ch+

π2(ch, 0)) > Prob(b′) · (b′− ch + π2(ch, 0)).38 This contradicts that b′ is in the support

of the equilibrium bid distribution.

Step 6: In any equilibrium supp(Bl) and supp(Bh) are connected. That is, the

supports of the strategy of the low-cost type and the high-cost type do not have gaps.

Suppose otherwise, that is, there exists an interval (b′, b′′) with b′ > bl and b′′ < b̄l,

bl(b) = 0 for all b ∈ (b′, b′′) and b′, b′′ ∈ supp(Bl).39 By Step 1 and Step 2 it follows that

also bh(b) = 0 for all b ∈ [b′, b′′]. Thus, by Step 1 to Step 3, it follows that Prob(b′) =

Prob(b′′) and the payoff of type cl from bidding b′, Prob(b′) · (b′ − cl + π2(cl, 1)), is

strictly smaller then the payoff from bidding b′′, P (b′′) · (b′′ − cl + π2(cl, 1)). This

contradicts that b′ is in the support of the equilibrium bid distribution.

Step 7: bh ≥ ch−Q ·π2(ch, µ2) with µ2 = s ·µ1/(1−µ1 +s ·µ1) and s the probability

that a bidder of type cl chooses bid bh. That is, the high-cost type bids such that with

every bid he makes at least an overall profit of 0.

The proof of step 7 is obvious.

Step 8: bh = b̄h. That is, the high-cost type plays a pure strategy in any equilibrium.

Suppose otherwise. In this case, due to Step 5, Prob(b̄h) = 0. Moreover, due to

Step 7, there exists a b′ < b̄h such that b′ − ch + π2(ch, 0) > 0 and Prob(b′) > 0 and

thus Prob(b′) · (b′ − ch + π2(ch, 0)) > 0, a contradiction.

Step 9: An equilibrium of the first-price auction exists. Consider the equilibrium

characterizations from Proposition 2, Proposition 3, and Proposition 4. Suppose there

is no separating or full pooling equilibrium, then there exists a µ2 and a bh such that

conditions (12), (13) and (14) define µ2 implicitly by the solution to

Q · [(n− 1) · π2(ch, µ2) + π2(cl, µ2)− n · π2(cl, 1)] = (n− 1) · (ch − cl) (44)

and bh by bh = ch −Q · π2(ch, µ2). Observe that if no full pooling equilibrium exists,

37µ2 = 1 by Step 1 and Step 2.
38µ2 = 0 by Step 1 and Step 2.
39The argument for ch proceeds in exactly the same manner.
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conditions (2), (3), and (4) imply

Q · [(n− 1) · π2(ch, µ1) + π2(cl, µ1)− n · π2(cl, 1)] < (n− 1) · (ch − cl). (45)

Moreover, if no separating equilibrium exists, conditions (6), (7), and (8) imply

Q · [(n− 1) · π2(ch, 0) + π2(cl, 0)− n · π2(cl, 1)] > (n− 1) · (ch − cl). (46)

Thus, a solution to equation (44) exists and µ2 is well defined. Obviously bh then

satisfies conditions (12), (13), and (14). Summing up, whenever a separating and

pooling equilibrium fails to exist, there exists a partial-pooling equilibrium. It follows,

an equilibrium of the first-price auction always exists.

A.2 Proofs of Section 4

Proof of Lemma 3.

Observe that in a full pooling equilibrium the expected second-period buyer surplus

is strictly higher in the second-price auction than in the first-price auction. This

is due to the fact that in the second-price auction the types separate with positive

probability and the buyer receives some information for the second period. In the

full pooling equilibrium of the first-price auction, the types never separate and the

buyer will decide in the second period based on her prior. Thus, the buyer surplus

is always better in the second-price auction than in the full pooling equilibrium of

the first-price auction. To prove the claim we show that the second-price auction also

generates a higher buyer surplus in the first period. This, however, is obvious as the

highest possible bid in the second-price auction

ch −Q · π2

(
ch,

n · (1− µ1)n−1 · µ1

n · (1− µ1)n−1 · µ1 + (1− µ1)n

)
is by Lemma 2 smaller than the lowest possible bid in the pooling equilibrium of the

first-price auction

ch −Q · π2 (ch, µ1) .

Proof of Proposition 6

If Condition (5) holds, Corollary 1 ensures that there exists a Qpool such that for all

Q > Qpool a pooling equilibrium exists in the first-price auction.

Comparing conditions (12),(13), and (14) from Proposition 4 ensures that when-

ever Condition (5) holds, there exists a Qpart such that a partial pooling equilibrium
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fails to exist for all Q > Qpart.

If n·(π2(ch, 1)−π2(cl, 1))+π2(cl, 0)−π2(ch, 0) > 0, there exist aQsep such that for all

Q > Qsep condition (6) and condition (8) contradict each other and thus a separating

equilibrium fails to exist. We show that n·(π2(ch, 1)−π2(cl, 1))+π2(cl, 0)−π2(ch, 0) > 0

is implied by Condition (5). That is, we have to show that

π2(cl, µ1)− π2(ch, µ1) > n ·
[
π2(cl, 1)− π2(ch, µ1)

]
⇒

π2(cl, 0)− π2(ch, 0) > n ·
[
π2(cl, 1)− π2(ch, 1)

]
. (47)

As π2(ch, µ1) ≥ π2(ch, 1) it suffices to show that π2(cl, 0) − π2(ch, 0) ≥ π2(cl, µ1) −
π2(ch, µ1) which can be rearanged to give∫ P (0)

cl
(P (0)− c)dFl −

∫ P (0)

ch
(P (0)− c)dFh ≥

∫ P (µ1)

cl
(P (µ1)− c)dFl

−
∫ P (µ1)

ch
(P (µ1)− c)dFh

⇔
∫ P (0)

cl
(P (0)− c)dFl −

∫ P (µ1)

cl
(P (µ1)− c)dFl ≥

∫ P (0)

ch
(P (0)− c)dFh

−
∫ P (µ1)

ch
(P (µ1)− c)dFh

⇐
∫ P (0)

ch
(P (0)− c)dFl −

∫ P (µ1)

ch
(P (µ1)− c)dFl ≥

∫ P (0)

ch
(P (0)− c)dFh

−
∫ P (µ1)

ch
(P (µ1)− c)dFh

⇐
∫ P (0)

ch
((P (0)− P (µ1))dFl +

∫ P (µ1)

P (0)

(c− P (µ1))dFl ≥
∫ P (0)

ch
((P (0)− P (µ1))dFh+∫ P (µ1)

P (0)

(c− P (µ1))dFh.

The last inequality is true by assumption 1 part 2.

Set Q̄ = max{Qpool, Qpart, Qsep}. Then for all Q > Q̄ the only equilibria of the

first-price auction are pooling equilibria. By Lemma 3, the best such equilibrium

yields a lower buyer surplus then the second-price auction.
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Proof of Proposition 7.

Observe that in a separating equilibrium the expected second-period buyer surplus is

strictly higher in the first-price auction than in the second-price auction. This is due

to the fact, that in a separating equilibrium the buyer receives the best possible infor-

mation for her decision in the second period. In the second-price auction, whenever

the buyer observes the higher bid

ch −Q · π2

(
ch,

n · (1− µ1)n−1 · µ1

n · (1− µ1)n−1 · µ1 + (1− µ1)n

)
she is not fully sure whether she faces the low-cost or the high-cost type. Thus, the

buyer surplus for the second period is always better in the separating equilibrium

of the first-price auction. To prove the claim we show that the first-price auction

also generates a higher buyer surplus in the first period. Observe, that the allocation

in both, the separating equilibrium of the first-price auction and the second-price

auction, are efficient. To show that the first-price auction generates more revenue, we

demonstrate that the surplus of the bidders in period one is lower in the separating

equilibrium of the first-price auction than in the second-price auction.

Consider first the high-cost type ch. His surplus from period one in the separating

equilibrium of the first-price auction:

1

n− 1
· (1− µ1)n−1 · (ch −Q · π2(ch, 0)− ch) .

The payoff of the high-cost type from period one of the second-price auction is:

1

n− 1
· (1− µ1)n−1 ·

(
ch −Q · π2

(
ch,

n · (1− µ1)n−1 · µ1

n · (1− µ1)n−1 · µ1 + (1− µ1)n

)
− ch

)
.

Due to Lemma 2 the former is lower than the later. Now consider the payoff of the

low-cost type. From expression (37) we get his overall expected payoff from both

periods. Thus, subtracting the expected second-period payoff we get for the expected

first-period payoff of the low-cost type in the separating equilibrium of the first-price

auction:

(1− µ1)n−1 · (ch −Q · π2(ch, 0) + π2(cl, 1)− cl)− (1− µ1)n−1 · π2(cl, 1)

−
n−1∑
k=1

1

k
· µk1 · (1− µ1)n−1−k · π2(cl, 1).
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Which is equal to

(1− µ1)n−1 · (ch −Q · π2(ch, 0)− cl)−
n−1∑
k=1

1

k
· µk1(1− µ1)n−1−k · π2(cl, 1). (48)

For the second-price auction the same approach yields

(1− µ1)n−1 ·
(
ch −Q · π2

(
ch,

n · (1− µ1)n−1 · µ1

n · (1− µ1)n−1 · µ1 + (1− µ1)n

)
+ π2

(
cl,

n · (1− µ1)n−1 · µ1

n · (1− µ1)n−1 · µ1 + (1− µ1)n

)
− cl

)
− (1− µ1)n−1 · π2

(
cl,

n · (1− µ1)n−1 · µ1

n(1− µ1)n−1 · µ1 + (1− µ1)n

)
−

n−1∑
k=1

1

k
· µk1 · (1− µ1)n−1−k · π2(cl, 1).

Which is equal to

(1− µ1)n−1 ·
(
ch −Q · π2

(
ch,

n · (1− µ1)n−1 · µ1

n · (1− µ1)n−1 · µ1 + (1− µ1)n

)
− cl

)
−

n−1∑
k=1

1

k
· µk1 · (1− µ1)n−1−k · π2(cl, 1). (49)

Due to Lemma 2 directly comparing (48) and (49) yields that the low-cost type earns

a lower payoff in the separating equilibrium.

A.3 Proofs of Section 5.

Proof of Lemma 4.

Invoking a revelation principle allows us to focus on direct mechanisms in which

suppliers report their costs truthfully in each period without loss of generality. A

direct mechanism consists of functions x, p, X i and P i, where40

x : C → ∆, (50)

p : C → Rn, (51)

X i : C × [ci, ci]→ [0, 1], (52)

P i : C × [ci, ci]→ [0, 1]. (53)

40Formally, ∆ is defined as ∆ ≡ {(x1, . . . , xn) | 0 ≤ xi ≤ 1 for all i, and
∑

i x
i ≤ 1}.
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The mechanism asks suppliers’ to report their first-period costs, which jointly de-

termine the contract supplier (via x(c)) and a first-period payment vector p(c). The

contract supplier enters period two, and is asked for reporting his second-period costs.

The report, together with the vector of first-period reports, determines whether the

good is supplied in period two and the second-period transfer P i(c, c). Notice that the

possible reports in period two directly depend on the contract supplier’s first-period

report: the direct mechanism does not allow for inconsistent reports.

A direct mechanism is incentive compatible if each supplier prefers reporting all

information truthfully. To make this precise we use the following short-hand notations.

For all c ∈ C and c ∈ [ci, ci] let ui(c, c) = P i(c, c) − c · Q · X i(c, c). Further let

ρi(cs) =
∑

c−i Prob(c
−i) · pi(cθ, c−i) for θ = l, h and let

U i(cθ) = ρi(cθ) +
∑
c−i

Prob(c−i) · xi(cθ, c−i)

[
−cθ +

∫ cθ

cθ

ui(cθ, c
−i, c)dFθ(c)

]
.

A direct mechanism is incentive compatible, if

(i) it is incentive compatible with respect to the second-period type

ui(c, c) ≥ P i(c, c′)− c ·Q ·X i(c, c′) for all ~c ∈ C, and c, c′ ∈ [ci, ci], (54)

(ii) it is incentive compatible with respect to the ex-ante type

U i(cθ) ≥ ρi(cθ′) +
∑
c−i

Prob(c−i) · xi(cθ′ , c−i) ·
[
− cθ

+

∫ cθ

cθ

P i(cθ′ , c
−i, ϕ(c))− c ·Q ·X i(cθ′ , c

−i, ϕ(c))dFθ(c)

] (55)

for all θ, θ′ ∈ {l, h} and all mappings ϕ : [cθ, cθ]→ [cθ′ , cθ′ ].

The latter constraint explicitly takes into account double deviations, where the sup-

plier misrepresents her first-period costs and subsequently mis-represents her second-

period costs as well. In contrast, the first constraint is only posed for truthful first-

period reports.41

Second-period incentive constraints are straightforward to characterize, we have

the following:

41Note, that we need to specify second-period incentive constraints only along the equilibrium
path, i.e. for cost reports that are consistent with the supplier’s announcement in period one. For
any inconsistent report we can set the supplier’s transfer to a large negative number deterring such
report profiles.
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Lemma A.1. Second-period incentive constraints (54) are satisfied if and only if (i)

X i(c, c) is non-increasing for all c ∈ C, (ii) ∂ui(c, c)/∂c = X i(c, c) almost everywhere,

and (iii)

ui(c, c) = ui(c, ci) +Q ·
∫ ci

c

X i(c, s) ds (56)

Proof. The proof is standard and therefore omitted.

In the following we consider a relaxed program that disregards the high-cost sup-

plier’s incentive constraint. In this relaxed program a low-cost supplier’s first-period

incentive constraint and a high-cost supplier’s participation constraint are both bind-

ing. The latter yields U i(ch) = 0. Notice that following (54) the supplier who reported

ch in period one and was selected as contract supplier reports her second period costs

truthfully whenever these lie in the interval [ch, ch]. However, if c < ch the supplier

can not report second-period costs truthfully, since he is only allowed to report costs

in the interval [ch, ch]. Following Lemma A.1, we have for all c′ ∈ [ch, ch]

P i(ch, c
−i, c′)− c ·X i(ch, c

−i, c′) = ui(ch, c
−i, c′) + (c′ − c) ·X i(ch, c

−i, c′). (57)

Hence,

P i(ch, c
−i, c′)− c ·X i(ch, c

−i, c′) = P i(ch, c
−i, ch)− c ·X i(ch, c

−i, ch)

+

∫ c′

ch

(
X i(ch, c

−i, c′)−X i(ch, c
−i, s

)
ds

+(ch − c) ·
(
X i(ch, c

−i, c′)−X i(ch, c
−i, ch)

)
≤ P i(ch, c

−i, ch)− c ·X i(ch, c
−i, ch).

The last inequality uses that X2
i (ch, c

−i, s) weakly decreases in s. Hence, the contract

supplier’s optimal reporting strategy satisfies

ϕ(c) =

c, c ≥ ch,

ch, c < ch.
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Using this, we get

U i(cl) = ρi(ch) +
∑
c−i

Prob(c−i)xi(ch, c
−i)

[
− cl

+

∫ cl

cl

max
r∈[ch,ch]

P i(ch, c
−i, r)− cQX i(ch, c

−i, r) dFl(c)

]
= U i(ch) +

∑
c−i

Prob(c−i)xi(ch, c
−i)

{
∆c−

∫ ch

ch

ui(ch, c
−i, c) dFh(c)

+

∫ cl

min{cl,ch}
ui(ch, c

−i, c) dFl(c)

+

∫ min{cl,ch}

cl

ui(ch, c
−i, ch) +Q(ch − c)X i(ch, c

−i, ch) dFl(c)

}

= U i(ch) +
∑
c−i

Prob(c−i)xi(ch, c
−i)

{
∆c−Q

∫ ch

ch

X i(ch, c
−i, c)Fh(c) dc

+Q1{ch<cl}

{∫ cl

ch

(
Fl(c)− Fl(ch)

)
X i(ch, c

−i, c) dc

+
(
1− Fl(ch)

) ∫ ch

cl

X i(ch, c
−i, c) dc+ Fl(ch)

∫ ch

ch

X i(ch, c
−i, c) dc

}

+Q1{ch≥cl}

∫ ch

ch

X i(ch, c
−i, c) dc+QX i(ch, c

−i, ch)

∫ min{cl,ch}

cl

(ch − c)dc

= U i(ch) +
∑
c−i

Prob(c−i)xi(ch, c
−i)

{
∆c+Q

∫ ch

ch

X i(ch, c
−i, c)

(
Fl(c)− Fh(c)

)
dc

+QX i(ch, c
−i, ch)

∫ min{cl,ch}

cl

(ch − c)dc
}
.
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Using the obtained expressions for U i(ch) and U i(cl), the expected buyer surplus is

Sur =
n∑
i=1

µ1

{∑
c−i

Prob(c−i) · xi(cl, c−i) {R− cl

+

∫ cl

cl

Q · (R− c) ·X i(cl, c
−i, c) dFl(c)

}}

+
n∑
i=1

(1− µ1)

{∑
c−i

P (c−i) · xi(cl, c−i)
{
R− ch −

µ1

1− µ1

·∆c

+Q ·
∫ ch

ch

(
R− c− µ1

1− µ1

· Fl(c)− Fh(c)
fh(c)

)
X i(ch, c

−i, c) dFh(c)

−Q · µ1

1− µ1

·X i(ch, c
−i, ch)

∫ min{ch,cl}

cl

(ch − c) dFl(c)

}}
.

The buyer maximizes the latter expression with respect to X i(cl, c
−i, c), X i(ch, c

−i, c)

and the vectors x(c), while respecting the monotonicity constraints implied by Lemma

A.1. We have R > cl by assumption and thus

X i(cl, c
−i, c) ≡ 1 for all c ∈ [cl, cl]. (58)

X i(ch, c
−i, c) has to be non-increasing by Lemma A.1 and takes values only in the

interval [0, 1]. Using similar arguments as used in static screening, e.g. Riley (1979),

the term ∫ ch

ch

(
R− c− µ1

1− µ1

· Fl(c)− Fh(c)
fh(c)

)
·X i(ch, c

−i, c)dFh(c)

is maximized for a step function. That is, there is a cutoff c∗ ∈ [ch, ch] such that

X i(ch, c
−i, c) =

X i(ch, c
−i, ch), c < c∗,

0, c > c∗.

We still have to determine the optimal values c∗ and X i(ch, c
−i, ch). Using the prop-
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erties obtained so far, we get

Sur =
n∑
i=1

µ1

{∑
c−i

Prob(c−i) · xi(cl, c−i)
{
R− cl +Q ·

(
R− El(c)

)}}

+
n∑
i=1

(1− µ1)

{∑
c−i

P (c−i) · xi(cl, c−i)
{
R− ch −

µ1

1− µ1

·∆c

+Q ·X i(ch, c
−i, ch)

[ ∫ c∗

ch

(
R− c− µ1

1− µ1

· Fl(c)− Fh(c)
fh(c)

)
dFh(c)

− µ1

1− µ1

·
∫ min{ch,cl}

cl

(ch − c) dFl(c)

]}}
.

Recall we seek to give conditions such that c∗ = ch and X i(ch, c
−i, ch) = 1. Clearly, a

sufficient condition for c∗ = ch is given by∫ ch

ch

R− c− µ1

1− µ1

· Fl(c)− Fh(c)
fh(c)

dFh(c) ≥
∫ c∗

ch

R− c− µ1

1− µ1

· Fl(c)− Fh(c)
fh(c)

dFh(c)

for all c∗ ≤ ch. The latter is equivalent to

R ≥ R1 := sup
c∗

Eh(c|c ≥ c∗) +
µ1

1− µ1

· 1

1− Fh(c∗)
·
∫ ch

c∗
Fl(c)− Fh(c)dc. (59)

Lemma A.2. We have that R1 <∞.

Proof. For all ζ ∈ [ch, ch] define the function H via

H(ζ) = Eh(c|c ≥ ζ) +
µ1

1− µ1

· 1

1− Fh(ζ)
·
∫ ch

ζ

Fl(c)− Fh(c)dc.

Observe that

lim
ζ→ch

H(ζ) = ch +
µ1

1− µ1

· lim
ζ→ch

∫ ch
ζ
Fl(c)− Fh(c)dc
1− Fh(ζ)

= ch +
µ1

1− µ1

· lim
ζ→ch

Fl(ζ)− Fh(ζ)

−fh(ζ)

= ch +
µ1

1− µ1

· Fl(ch)− Fh(ch)
−fh(ch)

= ch.

Now fix κ > 0. By continuity, there is ε > 0 such that H(ζ) < ch + κ for all

ζ ∈ (ch − ε, ch]. Lastly, for ζ ≤ ch − ε we have

H(ζ) ≤ ch +
µ1

1− µ1

· 1

1− Fh(ζ)
·
∫ ch

ζ

Fl(c)− Fh(c)dc < ch +
µ1

1− µ1

· 1

1− Fh(ch − ε)
.
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Thus, H(·) is uniformly bounded and R1 = supch≤ζ≤ch H(ζ) <∞.

To guarantee that in addition X i(ch, c
−i, ch) = 1 it has to hold that

R ≥ Eh(c) +
µ1

1− µ1

·

(∫ ch

ch

Fl(c)− Fh(c)dc+

∫ min{ch,cl}

cl

(ch − c) dFl(c)

)

= Eh(c) +
µ1

1− µ1

·
(
Eh(c)− El(c)

)
=: R2. (60)

Clearly, R2 < ∞. The virtual value from low-cost suppliers always exceeds that of

high-cost suppliers. Hence, xi(ch, c
−i) ≡ 0 if cj = cl for some j 6= i. Furthermore,

symmetry yields

xi(cl, c
−i) =

1

#{j|cj = cl}
, (61)

and xi(ch, . . . , ch) = 1/n as long as

R ≥ R3 :=
1

1 +Q
·
(
ch + Eh(c) +

µ1

1− µ1

·
(
∆c+ Eh(c)− El(c)

))
. (62)

Again, it is clear that R3 < ∞. To summarize, if R ≥ Rc := max{R1, R2, R3}
the optimal mechanism under full commitment implements the efficient allocation.

To implement this allocation the buyer uses a second-price auction with bid space

{bl, bh}, where

bl = cl +Q · El(c)− (1− µ1)n−1 · n− 1

n · Prob(µ1)

(
∆c+Q ·

(
Eh(c)− El(c)

))
,(63)

bh = ch +QEh(c), (64)

and in which low-cost suppliers bid bl, while high-cost suppliers bid bh. Here,

Prob(µ1) =
n−1∑
k=1

µk1 · (1− µ1)n−1−k
(
n− 1

k

)
· 1

k + 1

denotes the probability of winning the auction and receiving the payment bl, when ac-

tually bidding bl. Under full commitment, the supplier is forced to continue production

in period two without additional payments. Equivalently, we can set up a payment

scheme such that the supplier receives a payment always covering her production costs

also in period two. The expected value of this payment needs to be subtracted from

the respective bids bl and bh. It remains to be shown that the second-price auction

has the described equilibrium. Consider first a high-cost supplier. Bidding bh yields
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expected utility of zero. Bidding bl yields

(1− µ1)n−1 ·
(
bh − ch −Q · Eh(c)

)
+ Prob(µ1) ·

(
bl − ch −Q · Eh(c)

)
= −

(
(1− µ1)n−1 · n− 1

n
+ Prob(µ1)

)(
∆c+Q ·

(
Eh(c)− El(c)

))
< 0.

A low-cost supplier obtains (1−µ1)n−1

n
·
(
∆c + Q · (Eh(c) − El(c))

)
from bidding bh.

Bidding bl yields

(1− µ1)n−1 ·
(
bh − cl −Q · El(c)

)
+ Prob(µ1) ·

(
bl − cl −Q · El(c)

)
= (1− µ1)n−1 ·

(
∆c+Q ·

(
Eh(c)− El(c)

))
−
(
n− 1

n
· (1− µ1)n−1

)(
∆c+Q ·

(
Eh(c)− El(c)

))
=

(1− µ1)n−1

n
·
(

∆c+Q ·
(
Eh(c)− El(c)

))
.

Proof of Lemma 5.

ad i) Suppose cl = ch. Define

RL := sup
cl≤ζ≤cl=ch

ch − ζFl(ζ)

1− Fl(ζ)
.

We have that

lim
ζ→ch

ch − ζ · Fl(ζ)

1− Fl(ζ)
= lim

ζ→ch

−Fl(ζ)− ζ · fl(ζ)

−fl(ζ)
=

1 + ch · fl(ch)
fl(ch)

<∞.

Let κ > 0. By continuity, there is ε > 0 such that ch−ζ·Fl(ζ)
1−Fl(ζ)

< 1+ch·fl(ch)
fl(ch)

+ κ for all

ζ ∈ (ch − ε, ch]. Furthermore, for all ζ ≤ ch − ε we have

ch − ζ · Fl(ζ)

1− Fl(ζ)
≤ ch

1− Fl(ch − ε)
<∞.

Consequently, RL <∞. When R > RL we have that (R−c)·Fl(c) ≤ (R−ch)·Fl(ch) =

R − ch for all c ∈ [cl, ch]. By first-order stochastic dominance we have that for any

belief µ ∈ [0, 1] and any c ≤ ch the following holds true

(R− c) ·
[
µ · Fl(c) + (1− µ) · Fh(c)

]
≤ (R− c) · Fl(c) ≤ R− ch.
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Hence, following any belief µ the buyer optimally offers to pay ch for the additional

delivery of Q units in period two. In words, shutdown in period two never occurs

in equilibrium. Thus, a second-price auction implements the efficient allocation as

shown in Proposition 1.

ad ii) Suppose cl < ch. Consider the α-second-price auction with bid space {bl, bh}.
We derive conditions such that this auction exhibits an equilibrium where type θ

supplier bids bθ and the production always continues in period two. Given the pro-

posed equilibrium strategies of the suppliers, the equilibrium beliefs are µl = 1 (if the

winner’s payment is bl or the mechanism revealed the winning bid bl) or

µh =
(1− α) · µ1

1− α · µ1

otherwise. Continued production requires that

1) R− cl ≥ (R− c) · Fl(c) for all c ∈ [cl, cl],

2) R− ch ≥ (R− c) ·
(
µh · Fl(c) + (1− µh) · Fh(c)

)
for all c ∈ [cl, ch].

To satisfy 1) it has to hold that

R ≥ Rl := sup
cl≤c≤cl

cl − c · Fl(c)
1− Fl(c)

.

In the previous case we have already shown that Rl <∞. To satisfy 2) it has to hold

that

R ≥ Rh(α) := sup
cl≤c≤ch

c+
ch − c

1− Fh(c)− (1−α)·µ1
1−α·µ1 · (Fl(c)− Fh(c))

.

Note that

lim
c→ch

Rh(α) = ch + lim
c→ch

−1

−fh(c)− (1−α)·µ1
1−α·µ1 · (fl(c)− fh(c))

= ch +
1

1−µ1
1−α·µ1fh(ch) + (1−α)·µ1

1−α·µ1 fl(ch)
<∞.

Using this observation and similar arguments as before, this establishes Rh(α) < ∞
for all α ∈ [0, 1]. Note that as α increases the term (1−α)·µ1

1−α·µ1 decreases and thus

Rh(α) decreases as well. Taken together, for all α ∈ [0, 1] there is a R 6=(α) such

that no shutdown occurs following the described bidding behavior in a α-second-price

auction.

We next give a condition such that suppliers indeed follow the described bidding
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strategy. A high-cost supplier prefers bidding bh whenever

(1− µ1)n−1

n
·
(
bh − ch +Q ·

(
ch − Eh(c)

))
≥ (1− µ1)n−1 ·

(
bh − ch + α ·Q ·

∫ cl

ch

(cl − c)dFh(c) + (1− α) ·Q · (ch − Eh(c))
)

+ P (µ1) ·
(
bl − ch +Q ·

∫ cl

ch

(cl − c)dFh(c)
)
.

(65)

A low-cost supplier prefers bidding bl whenever

(1− µ1)n−1 ·
(
bh − cl +Q ·

(
α · cl + (1− α) · ch − El(c)

))
+ P (µ1) ·

(
bl − cl +Q ·

(
cl − El(c)

))
≥

(1− µ1)n−1

n
·
(
bh − cl +Q ·

(
ch − El(c)

))
.

(66)

Adding these constraints yield the necessary condition α ≤ ᾱ, where

ᾱ ·Q ·
∫ ch

cl

(c− cl)dFh(c) =

(
P (µ1) +

n− 1

n
· (1− µ1)n−1

)
· ∆c

+
n− 1

n
· (1− µ1)n−1 ·Q ·

(
Eh(c)− El(c)

)
+P (µ1) ·

∫ cl

cl

(cl − c) · (fl(c)− fh(c))dc.

The right-hand side is strictly positive, hence ᾱ > 0. Hence, the α-second-price

auction implements the efficient allocation whenever α ≤ ᾱ and R ≥ R 6=(α). Taken

together, there is some α such that the α-second-price auction implements the efficient

allocation whenever R ≥ R 6=(min{1, ᾱ}) =: R 6=. A regular second-price auction

implements the efficient allocation whenever R ≥ R 6=(1) =: R̂ 6= > R 6=.

Proof of Proposition 8.

For all auctions defined in the proof of Lemma 5 set bh = ch − Q ·
(
ch − Eh(c)

)
, and

determine bl from the binding incentive constraint of the low-cost supplier. Our con-

ditions on implementability ensure that both participation and incentive constraints

are satisfied. In the resulting equilibrium a high-cost type’s expected profit is zero,
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while a low-cost type’s expected profit is

(1− µ1)n−1

n
·
(
∆c+Q ·

(
Eh(c)− El(c)

))
.

Thus, the suppliers’ rents equal those in the optimal mechanism under full commit-

ment. Additionally, the same allocation is implemented. Consequently, the same

buyer-surplus obtains.

B Quantal response equilibrium in the experiment

In order to shed more light on the deviations from the equilibrium bidding behavior,

we estimate a logit quantal response model (QRE), which allows us to compare noise

in the bidding behavior between treatments. The QRE concept was first introduced

by McKelvey and Palfrey (1995) and can be interpreted in a way that individuals do

not always take the best action available, but play better actions more often. This

means the probability with which a certain action is played is determined by the

expected utility associated with this action. This is sometimes referred to as noisy

decision making.

We consider a logit QRE assuming that subjects have a logit choice function.

Consider a subject with a discrete choice set of possible action S = {s1, · · · , sn} and

let U(sj) with sj ∈ S denote the expected utility associated with the choice of action

sj. Then the probability of playing action sj is given by

Pr(sj) =
eλ·U(sj)∑n
k=1 e

λ·U(sk)
.

The parameter λ > 0 is often referred to as the precision parameter and determines

the shape of the probability distribution. The smaller the λ, the larger the noise and

the more probability mass is on worse compared to better decisions. Table 2 reports

the maximum likelihood estimates for the different procurement mechanisms. Once

separately for each of the 18 cohorts and once for each procurement mechanism as a

whole.

The analysis shows that the noise associated with the observed bidding behavior

in smallest in the FPA1 treatment and largest in the SPA2 treatment.
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Table 2: Quantal response equilibrium estimates.

Cohort number λFPA1 λFPA2 λSPA2

1 0.2115 0.3086 0.1910
2 0.3604 0.3136 0.2451
3 0.4773 0.3376 0.2586
4 0.4825 0.3460 0.2837
5 0.5373 0.3688 0.3224
6 0.6130 0.5427 0.5015

All 0.4082 0.3521 0.2873

Notes: Reported are the maximum-likelihood estimates for the precision parameter λ for each in-
dependent cohort and for each treatment as a whole. The estimates are largest for the FPA1 and
lowest for the SPA2, however, the distribution of the estimates does not differ significantly between
the different procurement mechanisms (p = 0.1129, Kruskal-Wallis test).
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