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ENDOGENOUS WORST-CASE BELIEFS IN FIRST-PRICE AUCTIONS

VITALI GRETSCHKO AND HELENE MASS

ZEW MANNHEIM AND UNIVERSITY OF COLOGNE

Abstract. Bidding in first-price auctions crucially depends on the beliefs of the bidders about
their competitors’ willingness to pay. We analyze bidding behavior in a first-price auction in
which the knowledge of the bidders about the distribution of their competitors’ valuations is
restricted to the support and the mean. To model this situation, we assume that under such
uncertainty a bidder will expect to face the distribution of valuations that minimizes her expected
utility, given her bid is an optimal reaction to the bids of her competitors induced by this distri-
bution. This introduces a novel way to endogenize beliefs in games of incomplete information.
We find that for a bidder with a given valuation her worst-case belief just puts sufficient proba-
bility weight on lower valuations of her competitors to induce a high bid. At the same time the
worst-case belief puts as much as possible probability weight on the same valuation in order to
minimize the bidder’s winning probability. This implies that even though the worst-case beliefs
are type dependent in a non-monotonic way, an efficient equilibrium of the first-price auction
exists.

JEL classification: D44, D81, D82

Keywords: Auctions, mechanism design, beliefs, uncertainty

1. Introduction

Consider a company preparing a bid for a first-price procurement auction. The company’s

optimal bidding strategy will crucially depend on their belief about the costs of its competitors.

Typically, this company would spend a considerable amount of resources to reverse-engineer the

products of their competitors and learn about their cost structure. However, such learning has

its limits. For example, reverse-engineering may inform the company about the used components

and the general complexities in producing this part. But it cannot inform about the production

processes and the used equipment of its competitors. Thus, it is reasonable to assume that

learning about the distribution of the competitors’ costs is not perfect and just specifies some

summary statistic of the underlying distribution like the support and the mean. How to weigh

the probabilities of certain costs within this support is subjective and hard to objectify. Thus,

in order to submit a bid in the auction, the company has to form a subjective belief.

In this paper we consider the problem of a bidder in a first-price auction whose only informa-

tion about the valuations of her competitors is the support and the mean of their distribution.

Given such a large uncertainty, it seems natural for this bidder to prepare for the worst case.1

Thus, we assume that for a given bidding strategy of her competitors the bidder will tailor her

1From our own experience in consulting bidders in high-stakes (procurement) auctions, it is a typical approach
taken by bidders to generate several scenarios with respect to the valuations (costs) of their competitors and
than to tailor their strategy to the worst-case.

1
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bid to be optimal given that she expects to face the worst distribution of of her competitors’

valuations among all distributions with the same support and mean. Worst distribution, in this

context, means the bidder will expect to face the distribution of valuations that minimizes her

expected utility, given her bid is an optimal reaction to the bids of her competitors induced

by this distribution. In other words, the worst-case belief of a bidder minimizes her maximum

possible expected utility. We assume that every bidder in the auction follows a similar logic

when preparing her bid. In this case, a profile of bids is an equilibrium if each bidder chooses

her optimal bid given her valuation (type), the bidding strategy of her competitors, and the

worst-case belief as defined above. In particular, this implies that the worst-case belief of a

bidder will crucially depend on her type (valuation) in a non-monotonic way.

Our contribution is threefold. Our first contribution is to introduce a novel way to model

endogenous beliefs in a first-price auction. Endogenous, in this case, means that a bidder’s

beliefs about the valuations of the competitors are not assumed as a primitive of the environment

but arise naturally as worst-case beliefs from the game induced by the rules of the first-price

auction.2 This can be viewed as a relaxation of the paradigm of symmetric independent private

value (IPV) auctions that each bidder’s valuation for the object is drawn from a distribution

that is common knowledge among all bidders. Moreover, our solution concept constitutes a novel

way to analyze games with asymmetric information and can be straightforwardly extended to

any kind of such game.

Our second contribution is to show that even though the endogenous beliefs that arise from

our solution concept are type dependent in a non-monotonic way, an ex-post efficient equilibrium

exists. That is, even though the worst-case beliefs of bidders with a higher valuation do not

imply that they believe to face a stronger competition in the auction than bidders with a lower

valuation, in equilibrium the object is allocated with probability one to the bidder with the

highest valuation.

Our third contribution is to introduce a novel proof method that we use in order to derive

the worst-case strategies and beliefs in the efficient equilibrium. The method encompasses an

elegant way to compare the solutions of an infinite set of minimization problems. To fix ideas

and to gain some intuition for our results, consider the case that the valuation of a bidder can

take one of three valuations 0, θ and 1. Suppose furthermore that it is common knowledge

among the bidders that the mean of the distribution of valuations is µ with µ < θ. In this case,

the efficient equilibrium takes the following form: all bidders with valuation 0 bid 0, all bidders

with valuation θ mix between 0 and some bθ, and all bidders with a valuation of 1 mix between

bθ and some b1. The beliefs of a bidder with valuation 0 are arbitrary as she will always bid

0 and expect a utility of 0. A bidder with valuation θ believes that she is facing only bidders

2A different auction format would generate different worst-case beliefs.
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with valuations 0 and θ with probabilities such that the mean of her belief is µ. A bidder with

valuation 1 believes that she is facing bidders with valuations 0, θ, and 1 with probabilities

such that she is indifferent between mixing in
[
bθ, b1

]
and bidding 0 and such that the mean

of her belief is µ. Given their beliefs, all bidders best reply to the bidding strategies of their

competitors. Given the bidding strategies, the beliefs make each bidder worst off given her type.

It may appear counterintuitive that, given her bid, the worst-case scenario for a bidder with

valuation θ is that she is the strongest bidder. However, given the bidding strategies in the

efficient equilibrium, the utility of a bidder with a valuation of θ depends only on the probability

that she is facing bidders with a valuation of 0. Given that the mean of the belief is fixed, this

probability is minimized if the probability of facing bidders with a valuation of 1 is zero. In

other words, for a bidder with a valuation of θ it is the worst-case that the probability that she

will face only bidders with a valuation of 0, against whom she will win for sure, is minimized.

For bidders with a valuation of 1, the worst-case is determined by minimizing her winning

probability while keeping the incentives intact to bid above bθ. Thus, the belief of a bidder with

a valuation of 1 puts just enough probability weight on 0 and θ such that she will bid above the

highest bid of a bidder with a valuation of θ and then as much probability as possible on 1.

The intuitions from the case with three types carry over to the general model. In particular,

the worst-case belief of a bidder with a given valuation just puts enough probability weight on

lower valuations to induce that for this bidder it is optimal to outbid each bidder with a lower

valuation. The remaining probability weight is put on the valuation of the bidder in question in

order to minimize her winning probability. It follows directly that such beliefs induce bidding

that leads to an efficient allocation.

In order to show that the proposed strategies indeed constitute an equilibrium with worst-

case beliefs, it remains to show that there is no other belief that would induce a bid that would

make a bidder worse off than in the proposed equilibrium. For this we introduce a novel proof

method. The underlying idea of the proof is to show that we can switch from comparing different

beliefs and their induced utilities to comparing different bids and their induced utilities. This

is due to the fact that a given best reply b can be induced by a multitude of beliefs (given the

bidder’s valuation and the other bidders’ strategies). It follows that every bid b can be identified

by a minimization problem: among all distribution functions with mean µ which induce bid

b as a best reply it suffices to consider the belief which leads to the minimum utility. Using

this concept, we can map every bid to a belief and a corresponding utility. Therefore, checking

whether the utility induced by b is lower than the utility induced by some other b′ establishes a

transitive total order on the set of bids.

We use three different tools with which we can compare different bids with respect to the

introduced transitive order. The first tool is to show that for certain types there exists only
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one distribution which induces a particular bid. This allows to directly compute the minimum

expected utility which can be induced by this bid for these types. The second tool constitutes

a connection between binding constraints in the minimization problem corresponding to a bid b

and bids which are lower than b with respect to our order. Third, we show that for a given type

there exist bids which can never be a best reply independent of the subjective belief. Hence,

these bids cannot be possible deviations from the proposed worst-case equilibrium for the given

type. Using these three tools, we construct a chain where all bids are arranged with respect to

our order and the efficient equilibrium bids are the lowest. Due to the transitivity of our relation,

this excludes all other bids as possible deviations from the proposed equilibrium strategy.

Besides specifying an efficient worst-case belief equilibrium, we provide a comparison of ex-

pected revenues of a second-price auction and a first-price auction under endogenous worst-case

beliefs for the case where bidders can have three discrete valuations 0, θ and 1. We show that for

certain parameter constellations of θ and µ the first-price or the second-price auction perform

better in terms of expected revenue independent of the true valuation distribution. There also

exist parameters θ and µ such that the revenue-maximizing choice of the auction format depends

on the true valuation distribution.

The remainder of the paper is organized as follows. We conclude the introduction with an

overview over the related literature. The second section contains the formal model including the

formal description of our solution concept, the worst-case belief equilibrium. In the third section

we show the existence of an efficient worst-case belief-equilibrium and derive the corresponding

beliefs and strategies for the special case of two bidders and three types. We consider this

special case in order to focus on the intuition of the results and to illustrate the techniques of

our proof. In the fourth section we conduct the revenue comparison between the first-price and

the second-price auction under endogenous worst-case beliefs for the case of two bidders and

three valuations. The fifth section contains the formal model and an outline of the proof for

the general case with an arbitrary number of bidders and discrete valuations. We conclude in

section six and section seven provides an overview over the most used notation and definitions.

The appendix contains the proofs not provided in previous sections. We provide all proofs in

the Appendix for the case of two bidders and three valuations and the general case separately.

The proofs for the special case are provided in order to give an intuition for the general case.

However, the model for the general case in the fifth section as well as the proofs for the general

case can be also understood without reading the special case first.

Relation to the literature. Our paper complements two strands of literature: the literature

on robust auction design and the literature on first-price auctions with non-standard priors.

Both strands of literature relax the typically strict assumptions that are placed on the beliefs of

the designer and the participants of an auction.
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Contrary to the literature on robust auction design that focuses on the problem of the designer

who does not have precise beliefs about the bidders, we focus on the problem of the bidder who

does not have precise beliefs about her competitors. Departing from the ideas posed in this

literature, we propose that not only the designer may be uninformed about the environment

but also the bidders, if they do not interact frequently, may have some uncertainty. We then

use modeling techniques developed in this literature and develop a novel solution concept to

analyze this problem. For example, ? consider optimal monopoly pricing under uncertainty

about demand distribution with a seller who either maximizes worst-case expected utilities

or minimizes the maximal regret. They find that the optimal pricing policy hedges against

uncertainty by randomizing over a range of prices. Buyers with low valuations cannot generate

substantial regret and are priced out of the market. ? consider a robust version of the classic

problem of optimal monopoly pricing with incomplete information. The seller faces model

uncertainty and only knows that the true demand distribution is in the neighborhood of a given

model distribution. They find that the equilibrium price under either criterion is lower then

in the absence of uncertainty. The concern for robustness leads the seller to concede a larger

information rent to all buyers with valuations below the optimal price without uncertainty.

? analyze the optimal selling mechanism if the seller maximizes worst-case expected profits

and is only informed about one moment of the distribution of the buyer’s valuations. They

show that the optimal mechanism entails distortions at the intensive margin, e.g., except for

the highest valuation buyer, sales will take place with probability strictly smaller than one.

The seller can implement such allocation by committing to post prices drawn from a non-

degenerate distribution, so that randomizing over prices is an optimal robust selling mechanism.

? considers the mechanism design problem of a seller who is uninformed about demand, while

potential buyers are well-informed. The seller’s goal is to maximize the minimum ratio between

expected revenue and the expected efficient utility. He characterizes simple mechanisms that

maximize the minimum extraction ratio. In these mechanisms, the seller runs a second-price

auction and simultaneously surveys the beliefs of buyers about other’s valuations. ? considers

a moral hazard problem where the principal is uncertain what the agent can and cannot do:

She knows some actions available to the agent, but other, unknown actions may also exist. The

principal demands robustness, evaluating possible contracts by their worst-case performance,

over unknown actions the agent might potentially take. He finds that the optimal contract from

the point of view of the principal is linear.

The literature on first-price auctions with non-standard priors relaxes the assumptions placed

on the priors of the bidders by the standard IPV model. For example, ? consider parametric

examples of symmetric two-bidder private valuation auctions in which each bidder observes her

own private valuation as well as noisy signals about her opponent’s private valuation. They show
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that in such environments the revenue equivalence between the first and second-price auction

(SPA) breaks down and there is no definite revenue ranking; while the SPA always allocates

efficiently, the first price auction (FPA) may be inefficient; equilibria may fail to exist for the

FPA. ? study auctions in which bidders may know the types of some rival bidders but not others.

They show that the first-price auction results in an inefficient allocation and that this inefficient

allocation translates into a poor revenue performance. ? characterize the set of all possible

outcomes that may arise in a first-price auction under any given information structure among the

bidders. They find that revenue is maximized when buyers know who has the highest valuation,

but the highest valuation buyer has partial information about others’ valuations. Revenue

is minimized when buyers are uncertain about whether they will win or lose and incentive

constraints are binding for all upward bid deviations. Contrary to this literature, we do not

assume an exogenously given prior but rather introduce a novel way to model endogenous beliefs

that will depend on the specific game structure. We find, in contrast to most findings in this

literature, that the first-price auction allocates efficiently.

2. Model

2.1. Setup. There are n risk-neutral bidders competing in a first-price sealed-bid auction for

one indivisible object. Before the auction starts, each bidder i ∈ {1, . . . , n} privately observes

her valuation (type) θi ∈ Θ =
{

0 = θ1, θ2, . . . , θm−1, 1 = θm
}
. The valuation distributions are

unknown to the bidders. However, it is common knowledge among the bidders that the mean

of this distribution is µ. Hence, every bidder knows that the probability mass function of the

other bidders’ valuations is an element from

Fn−1
µ =

f1 × · · · × fn−1 : Θn−1 → [0, 1]

∣∣∣∣∣∣
m∑
j=1

θjfi
(
θj
)

= µ for all i ∈ {1, . . . , n− 1}

∣∣∣∣∣∣
 ,

where for every i ∈ {1, . . . , n− 1} and every j ∈ {1, . . . ,m}, fi(θj) denotes the probability with

which valuation θj occurs according to the probability mass function fi. In other words, this is

the set of all probability mass functions of independently drawn valuations from the set Θ for

n − 1 bidders with mean µ. For a shorter notation we will use the term probability function

instead of probability mass function.

In the auction the bidders submit bids, the bidder with the highest bid wins the object and

pays her bid. In addition, we assume an efficient tie-breaking rule3. Thus, the utility of bidder

i with valuation θi and bid bi given that the other bids are b−i is denoted by 4

3We assume an efficient tie-breaking rule since it simplifies notation. With a random tie-breaking rule one would
need to assume a discrete bid grid (which may be arbitrarily fine) in order to ensure equilibrium existence.
However, the equilibrium strategies under both tie breaking rules would differ by at most one bid step in the bid
grid.
4For a vector (v1, . . . , vn) we denote by v−i the vector (v1, . . . , vi−1, vi+1, . . . , vn).
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ui (θi, bi, b−i) =



θi − bi if bi > max
j 6=i

bj

θi − bi if bi = max
j 6=i

bj and θi > max
j 6=i
{θj | bj = bi}

0 if bi = max
j 6=i

bj and θi < max
j 6=i
{θj | bj = bi}

1
k (θi − bi) if bi = max

j 6=i
bj and θi = max

j 6=i
{θj | bj = bi}

0 if bi < max
j 6=i

bj

where θj denotes the valuation of bidder j with bid bj for j ∈ {1, ..., n} and k = #{max{θj |bj =

bi}}.

A (mixed) strategy βi of a bidder i maps the valuation (type) of a bidder to a distribution of

bids:

βi : Θ→ ∆R+

θi 7→ βi (θi)

where ∆R+ is the set of all probability distributions on R+. For bidder i with valuation θi it is

a cumulative distribution function of bids, denoted by Gβiθi with corresponding density gβiθi and

support supp (βi(θi)). A pure strategy of bidder i with valuation θi is a mapping

βi : Θ→ R+

θi 7→ βi (θi) ,

i.e. this is a mapping from the set of valuations to the set of bids.5 The expected utility of

a bidder i with valuation θi, belief f−i ∈ Fn−1
µ and bid bi given that her competitors employ

bidding strategies β−i can be written as

Ui (θi, f−i, bi, β−i) =

ˆ
θ−i

ˆ
b−i

ui (θi, bi, b−i)
∏
j 6=i

g
βj
θj

(bj)dθ−jf−i (θ−i) dθ−i.

2.2. Solution Concept. We are interested in the bidding behavior of a bidder who apart

from the support and mean has no information about the distribution of the valuations of her

competitors. Thus, in order to derive a bid, the bidder has to form a subjective belief. We

assume that this bidder will prepare for the worst case. Prepare means that the bidder will

choose her optimal bid given she expects to face the worst-case distribution of valuations. That

is, the bidder will expect to face the distribution of valuations that minimizes her expected utility,

given her bid is an optimal reaction to the bids of her competitors induced by this distribution

5A pure strategy can be interpreted as distribution of bids which puts probability weight 1 on one bid. We abuse
notation since in the case of a pure strategy, βi (θi) denotes an element in R+ while in the case of a (mixed)
strategy βi (θi) denotes an element in ∆R+. However, in the following it will be clear whether βi is a pure or a
mixed strategy. In addition, we will also use the notation Gβiθi instead of βi(θi) in case of mixed strategies.
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and their bidding strategy. We will introduce the concept in several steps. First, we define the

best reply of bidder i to a given belief f−i and a given bidding strategy of the competitors β−i.

Second, we introduce the worst-case belief for a given bidding strategy of the competitors β−i.

That is, we derive the belief that minimizes the expected utility of bidder i given her best reply

to this belief and the bidding strategy of her competitors. Third, we will define the worst-case

belief equilibrium in which each type of each bidder bids the optimal bid given her worst-case

belief and the bidding strategy of her competitors.

Best reply to a belief and the competitors’ strategies. For bidder i with valuation θi and

for each belief f−i about the other bidders’ valuations and bidding strategies β−i, the set of best

replies of bidder i is given by

Br
i (θi, f−i, β−i) = arg max

bi

Ui (θi, f−i, bi, β−i) .

Bidder i’s best reply induces an expected utility of

U (θi, f−i, b
r
i (θi, f−i, β−i) , β−i)

for bri (θi, f−i, β−i) ∈ Br
i (θi, f−i, β−i) .

Worst-case belief given a best reply and the competitors’ strategies. As argued before,

we will assume that a bidder prepares for the worst case, i.e. she will assume that the distribution

of her competitors’ valuations induces the worst utility given her best reply and the bidding

strategy of her competitors. Since after forming a belief, a bidder will choose an optimal bid

given this belief, a distribution induces the worst outcome for a bidder if it minimizes the

expected utility of a bidder given her optimal bid. That is, the worst-case belief minimizes

the maximum expected utility of the bidder. Formally, a worst-case belief fθi−i of bidder i with

valuation θi is given by

fθi−i = arg min
f−i∈Fn−1

µ

Ui (θi, f−i, b
r (θi, f−i, β−i) , β−i)

= arg min
f−i∈Fn−1

µ

max
bi

Ui (θi, f−i, bi, β−i) .

Given the other bidders’ strategies β−i, a bidder i with type θi calculates her best reply

to each belief in Fn−1
µ and the corresponding utility. The worst-case belief of bidder i is the

one inducing the lowest utility. In other words, the worst-case belief minimizes the maximum

possible expected utility of a bidder given her valuation and the other bidders’ strategies. Note

that a worst-case belief is not necessarily unique but every worst-case belief yields the same

utility.

Worst-case belief equilibrium. In equilibrium, after forming a worst-case belief as described

above, each bidder will choose an optimal bid given her valuation, her worst-case belief and
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the other bidders’ strategies. That is, in equilibrium it has to hold for every valuation of every

bidder that

(i) Given her valuation, her belief, and the other bidders’ strategies the bid of a bidder

maximizes her expected utility.

(ii) For every bidder there does not exists another belief such that a best reply to this belief

induces a lower expected utility.

This leads to the following definition.

Definition 1 (Worst-case belief equilibrium). A profile of bidding strategies (β1, . . . , βn) to-

gether with a profile of beliefs
(

[fθ
1

−1, . . . , f
θm−1

−1 , fθ
m

−1 ], . . . , [fθ
1

−n, . . . , f
θm−1
−n fθ

m

−n ]
)
∈
(
Fn−1
µ

)m form

a worst-case belief equilibrium if for all i ∈ {1, ..., n}, all θi ∈ Θ, all f−i ∈ Fn−1
µ and all

bi ∈ supp (βi(θi)) it holds that

(1) bi ∈ Br
i

(
θi, f

θi
−i, β−i

)
and

(2) Ui

(
θi, f

θi
−i, bi, β−i

)
≤ Ui (θi, f−i, b

r (θi, f−i, β−i) , β−i) .

In the following we will refer to the first condition as the best-reply condition and to the second

condition as the worst-case belief condition.

3. Worst-case belief equilibrium: two bidders, three valuations

This section focuses on our main result which states that an efficient worst-case belief equilib-

rium exists. We characterize the beliefs and strategies in the worst-case belief equilibrium and

illustrate the techniques of our proof. We start our analysis with the case of two bidders, A and

B and and three possible valuations 0, θ and 1. This allows us to focus on the main features of

the concept without complex notation. The general case with n bidders and m types is analyzed

in section ??.

3.1. Efficient worst-case belief equilibrium.

Theorem 1. In a first-price auction there exists an efficient worst-case belief equilibrium.

In order to prove the existence of an efficient worst-case equilibrium, we specify a profile of

increasing strategies and beliefs and show that they constitute a worst-case belief equilibrium.

The underlying idea of the proof is to show that we can switch from comparing different beliefs

and their induced utilities to comparing different bids and their induced utilities. This is due to

the fact that a given best reply b can be induced by a multitude of beliefs (given the bidder’s

valuation and the other bidders’ strategies). It follows that every bid b can be identified by
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a minimization problem: among all distribution functions with mean µ which induce bid b as

a best reply it suffices to consider the belief which leads to the minimum utility. Using this

concept, we can map every bid to a belief and a corresponding utility. Therefore, checking

whether the utility induced by b is lower than the utility induced by some other b′ establishes a

transitive total order on the set of bids.

We use three different tools with which we can compare different bids with respect to the

introduced transitive order. The first tool is to show that for certain types there exists only

one distribution which induces a particular bid. This allows to directly compute the minimum

expected utility which can be induced by this bid for these types. The second tool constitutes

a connection between binding constraints in the minimization problem corresponding to a bid

b and bids which are lower than b with respect to our order. Third, we show that for a given

type there exist bids which can never be a best reply independent of the belief. Hence, these

bids cannot be possible deviations from the proposed worst-case equilibrium for the given type.

Using these three tools, we construct a chain where all bids are arranged with respect to our

order and the efficient equilibrium bids are the lowest. Due to the transitivity of our relation,

this excludes all other bids as possible deviations from the proposed worst-case strategy.

We start with the formal description of the strategies and beliefs we claim to constitute a

worst-case belief equilibrium. We will consider two possible cases: θ ≤ µ and θ > µ.

3.2. Characterization of the efficient worst-case belief equilibrium for θ ≤ µ. We start

with the simpler case θ ≤ µ and claim that the following strategies and beliefs constitute a worst-

case belief equilibrium. The proof of this claim is provided in section ??. Since both bidders

will have symmetric beliefs and strategies, we omit the identity of the bidder in the notation of

beliefs and strategies.

We denote the strategy which we claim to be played in a worst-case belief equilibrium by β∗.

We define

(3) β∗ (0) = 0, β∗ (θ) = θ, β∗ (1) = G∗1.

That is, a bidder with valuation zero bids zero, a bidder with valuation θ bids θ and a bidder

with valuation 1 plays a mixed strategy on the interval [θ, b1] according to a continuous bid

distribution G∗1. We will calculate G∗1 and the exact valuation of b1 further below. One can

immediately see that these strategies constitute an efficient equilibrium, that is, the bidder with

the highest valuation wins the auction with probability 1.

We will denote the belief which we claim to constitute a worst-case belief equilibrium together

with the strategies specified above, by f θ̂,∗ =
(
f θ̂,∗0 , f θ̂,∗θ , f θ̂,∗1

)
for θ̂ ∈ {0, θ, 1}.6 That is, f θ̂,∗0

6In the following we will refer to β∗ and f θ̂
∗
as the worst-case strategy and the worst-case beliefs.
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denotes the probability with which bidder A with valuation θ̂ believes that bidderB has valuation

zero (and analogously for other valuations and bidder B).

The subjective worst-case beliefs are defined as follows. Type zero can have any belief from

the set Fn−1
µ . A bidder with valuation θ has the subjective worst-case belief that the probability

weight in the other bidder’s probability function is solely distributed between valuations θ and

1. Since probabilities have to add up to one and the mean has to be preserved, it must hold

that

fθ,∗0 + fθ,∗θ + fθ,∗1 = 1

and

fθ,∗0 0 + fθ,∗θ θ + fθ,∗1 1 = µ.

In the following we will refer to these two constraints as the first and second probability constraint.

If it holds that fθ,∗0 = 0, it follows from these constraints that

(4) fθ,∗0 = 0, fθ,∗θ =
1− µ
1− θ

, fθ,∗1 =
µ− θ
1− θ

.

We define the subjective worst-case belief of a bidder with valuation 1 to be the solution of the

following minimization problem which we denote by M1
<θ:

min
(f0,fθ,f1)

(f0 + fθ)

s.t. fθ̂ ≥ 0 for all θ̂ ∈ {0, θ, 1}

f0 + fθ + f1 = 1

fθθ + f1 = µ

(f0 + fθ) (1− θ) ≥ f0.7

The second and third constraints are the above described probability constraints. The last

constraint ensures that bidding θ is weakly better for a bidder with valuation 1 than bidding

any lower bid given the other bidder’s strategy.8 That is, there is just enough probability weight

on lower types in order to induce a bid of at least θ for type 1. It is sufficient to consider only a

possible deviation to bid 0 because all bids in the interval (0, θ) are placed with zero probability

and therefore are never best replies. Note that the feasible set of this minimization problem is

not empty since the worst-case belief of type θ is an element of the feasible set.

7We use the expression “the solution” instead of “a solution” since we will show that this minimization problem
has a unique solution. Also in the remainder of the paper we will use the term “the solution” in order to indicate
that we will show that the particular minimization problem has a unique solution.
8In the following we will use the notation with subscript "<" like inM1

<θ in order to indicate that a minimization
problem does not contain all possible constraints but only the constraints which ensure that bidding a given bid
is weakly better than bidding any lower bid.
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In the case with three types such that θ ≤ µ the solution of minimization problem M1
<θ can

be obtained directly. Consider the minimization problem

min
(f0,fθ,f1)

(f0 + fθ)

s.t. fθ̂ ≥ 0 for all θ̂ ∈ {0, θ, 1}

f0 + fθ + f1 = 1

fθθ + f1 = µ.

The solution of this minimization problem puts zero probability weight on type θ. Such a

solution does not fulfill the constraint

(f0 + fθ) (1− θ) ≥ f0.

Since this is the only constraint besides the probability constraints, this constraint has to be

binding in minimization problem M1
<θ. Therefore, the solution of minimization problem M1

<θ is

the unique solution of a system of three linear equations with three unknowns. It holds that

(5) f1,∗0 =
1− µ
1 + θ

, f1,∗θ =
θ (1− µ)

1− θ2
, f1,∗1 =

µ− θ2

1− θ2
.

Given the subjective worst-case belief of a bidder with valuation 1, one can compute the upper

endpoint of her bidding interval, denoted by b1, and the bid distribution, denoted by G1.9 The

upper endpoint of this bidding interval is defined by(
f1,∗0 + f1,∗θ

)
(1− θ) = 1− b1.

⇔ b1 = f1,∗1 + θ
(
f1,∗0 + f1,∗θ

)
=
µ− θ2 + θ − µθ

1− θ2
=
θ + µ

1 + θ
.

The bid distribution is defined such that bidders A and B with valuation 1 make each other

indifferent between any bid in their bidding interval. For every s ∈ [θ, b1] it holds that

(6)
(
f1,∗0 + f1,∗θ + f1,∗1 G1 (s)

)
(1− s) =

(
f1,∗0 + f1,∗θ

)
(1− θ) .

3.3. Proving the best-reply and the worst-case belief condition for θ ≤ µ. After spec-

ifying the worst-case beliefs and strategy, we have to show that these indeed constitute a worst-

case belief equilibrium. That is, we have to show that the best-reply and the worst-case belief

condition are fulfilled.

9Since according to the worst-case strategy the support of the bid distribution for every type is an interval
(which may consists only of one point), we use the term "bidding interval" for the support of the bid distribution
prescribed by the worst-case strategy for a given type.
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Proposition 1. Given the worst-case strategy as defined in (??) and the worst-case beliefs as

defined in (??) and (??), it holds for all θ̂ ∈ {0, θ, 1} that

(i) The best-reply condition given by

bθ̂ ∈ B
r
(
θ̂, f θ̂,∗, β∗

)
for all bθ̂ ∈ supp

(
β∗
(
θ̂
))

is fulfilled, i.e. every bidder plays a best reply given her valuation, her worst-case belief

and the other bidder’s worst-case strategy.

(ii) The worst-case belief condition is fulfilled, i.e. for all bθ̂ ∈ supp
(
β∗
(
θ̂
))

it holds that

U
(
θ̂, f θ̂,∗, bθ̂, β

∗
)
≤ U

(
θ̂, f, br

(
θ̂, f, β∗

)
, β∗
)

for all f ∈ Fµ.
10

That is, there does not exist another belief such that a best reply to this belief induces a

lower expected utility than the worst-case belief.

Proof. Part (i): Due to the symmetry of beliefs and strategies, it is sufficient to show the best-

reply condition for bidder A. The result is obvious for a bidder with valuation zero. Given

the subjective worst-case belief of bidder A with valuation θ as defined in (??) and bidder

B’s strategy, bidder A with valuation θ considers θ to be the lowest bid placed by bidder B.

Therefore, she expects a utility of zero and bidding θ is a best reply. It follows from the definition

of the worst-case belief of bidder A with valuation 1 as defined in (??) that she does not earn

a higher expected utility by bidding any bid lower than θ. Bids in the interval (0, θ) are never

played according to β∗ and therefore cannot be a best reply. The constraint

(f0 + fθ) (1− θ) ≥ f0

in minimization problemM1
<θ ensures that bidding zero does not induce a higher expected utility

than bidding θ. Since bidder B does not place bids above b1, it cannot be a best reply for bidder

A to bid above b1. The bid distribution G1 is constructed in a way which makes bidder A with

valuation 1 indifferent between any bid in [θ, b1] which completes the proof of part (i). �

The remainder of this section is dedicated to proving the worst-case belief condition. That

is, for every type we have to consider all probability functions over the valuations 0, θ and 1

with mean µ and have to show that none of these probability functions induces a lower expected

utility than the worst-case beliefs of the given type. Before we can complete the proof of part

(ii), we need to introduce several proof techniques.

As a first step, we will introduce the concept of minimizing probability functions which enables

us to switch from comparing the induced utility of probability functions to comparing the induced

10Since utility functions are symmetric among bidders, we will omit the identitiy of the bidder in the notation
of utility functions.
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utility of bids. Afterwards, we will introduce different tools with which we can compare the utility

induced by different bids and therefore exclude bids as possible deviations from the proposed

worst-case strategy.

Minimizing probability functions. Consider the list of possible subjective beliefs from which

bidder A chooses. Given the type of bidder A and bidder B’s strategy, every probability function

induces a best reply for bidder A. The best reply induces an expected utility:

probability function fB → best reply br (θA, fB, βB)→ expected utility U (θA, fB, b
r, βB)

faB ba (θA, f
a
B, βB) U (θA, f

a
B, b

a, βB)

f bB bb
(
θA, f

b
B, βB

)
U
(
θA, f

b
B, b

b, βB
)

...
...

...

Here θA ∈ {0, θ, 1} denotes a valuation of bidder A and faB, f
b
B, . . . denotes a list of probability

functions of bidder B’s valuations among which bidder A chooses her subjective worst-case belief.

Note that different probability functions can induce the same best reply. Therefore, the list can

be rearranged by grouping those probability functions together which induce the same best reply:

probability function fB → best reply br (θA, fB, βB)→ expected utility U (θA, fB, b
r, βB)

faB ba (θA, f
a
B, βB) U (θA, f

a
B, b

a, βB)

fa
′

B ba
(
θA, f

a′
B , βB

)
U
(
θA, f

a′
B , b

a, βB

)
...

...
...

probability function fB → optimal bid br (θA, fB, βB)→ expected utility U (θA, fB, βB, b
r)

f bB bb
(
θA, f

b
B, βB

)
U
(
θA, f

b
B, b

b, βB
)

f b
′
B bb

(
θA, f

b′
B , βB

)
U
(
θA, f

b′
B , b

b′ , βB

)
...

...
...

Among the probability functions which induce the same bid, it is sufficient to consider the

probability functions which induce the minimum expected utility. That is, it is sufficient to

select the probability functions inducing the minimum expected utility from each group and

compare the induced utilities. Hence, we can switch from comparing probability functions to

comparing bids. This is formalized in the following definition and observation which we provide

for bidder A to simplify notation.

Definition 2. For bidder A with valuation θA ∈ {0, θ, 1}, a bid bA and the competitor’s strategy

βB, the set of probability functions Fmin (θA, bA, βB) given by

Fmin (θA, bA, βB) = arg min
fB∈Fµ

{U (θA, fB, bA, βB) | bA ∈ Br (θA, fB, βB)}
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is called the set of minimizing probability functions of bid bA for a bidder with valuation θA

given the other bidder’s strategy βB. Among all probability functions which induce bid bA as a

best reply, a minimizing probability function is a probability function which induces the minimum

utility.

Observation 1. Let βK be a strategy of bidder K for K ∈ {A,B} and
(
f0B, f

θ
B, f

1
B

)
be a profile

of beliefs bidder A has about bidder B’s valuation. For a valuation θA ∈ {0, θ, 1} of bidder A

and a bid bA ∈ supp (βA(θA)) the worst-case belief condition for bid bA, given by

U
(
θA, f

θA
B , bA, βB

)
≤ U (θA, fB, b

r (θA, fB, βB) , βB)

for all fB ∈ Fµ, is equivalent to the following two conditions:

(i) The belief fθAB is an element in Fmin (θA, bA, βB), i.e. a minimizing probability function

of bid bA for a bidder with valuation θA given B’s strategy βB.

(ii) Let b′A be a bid and fB be an element in Fmin (θA, b
′
A, βB), i.e. a minimizing probability

function of bid b′A for a bidder with valuation θA given βB. Then it holds

U
(
θA, f

θA
B , bA, βB

)
≤ U

(
θA, fB, b

′
A, βB

)
.

Clearly, a belief cannot be a worst-case belief of a given type if this belief induces a bid as a

best reply for this type but there exists another belief which induces the same bid but with a

lower expected utility. Therefore, a worst-case belief has to be a minimizing probability function

for all bids in the support of bidder A’s bidding strategy, as stated in the first condition of the

observation. Moreover, for every type and every bid in the support of the given type there cannot

exist another bid which induces a lower expected utility together with a minimizing probability

function for this type and this bid, as stated in the second condition. In other words, if we

group together all probability functions which induce the same bid and consider the minimizing

probability function in every group, we can compare the expected utility induced by bids instead

the expected utility induced by beliefs.

That is, it is sufficient to compare bids if we compare them with respect to the expected

utility they induce together with their minimizing probability function. In order to apply this

technique, we need the following definitions.

Definition 3. For a bidder with valuation 1 minimization problem M1
b of a bid b ∈ [θ, b1] is the

minimization problem corresponding to its minimizing probability functions, i.e. all solutions of

minimization problem M1
b are minimizing probability functions of b for a bidder with valuation

1 given the other bidder’s worst-case strategy β∗. Formally, minimization problem M1
b is given
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by

min
(f0,fθ,f1)

(f0 + fθ + f1G1 (b)) (1− b)

s.t. fθ̂ ≥ 0 for all θ̂ ∈ {0, θ, 1}

f0 + fθ + f1 = 1

fθθ + f1 = µ

(f0 + fθ + f1G1 (b)) (1− b) ≥ (f0 + fθGθ (s)) (1− s) for all s ∈ [0, bθ]

(f0 + fθ + f1G1 (b)) (1− b) ≥ (f0 + fθ + f1G1 (s)) (1− s) for all s ∈ [bθ, b1].

In other words, among all probability functions which induce bid b for type 1 as a best reply,

the solutions of minimization problemM1
b induce the minimum expected utility. Note that since

bids above b1 are never a best reply, it is not necessary to include constraints which ensure that

bidding b induces at least the same expected utility as bids above b1.

Definition 4. Apart from the constraints

fθ̂ ≥ 0 for all θ̂ ∈ {0, θ, 1}

f0 + fθ + f1 = 1

fθθ + f1 = µ,

every constraint in minimization problem M1
b compares the utility of bidding b to the utility of

bidding some other bid b′, which is formalized by

U (1, f, b, β∗) ≥ U
(
1, f, b′, β∗

)
.

We call such a constraint an incentive constraint corresponding to bid b′.

Definition 5. For a type θ̂ ∈ {0, θ, 1} and bids b, b′ we use the notation b ≤θ̂ b′ if for the

θ̂-type bid b′ does not induce a strictly lower expected utility than bid b together with their

minimizing probability functions given the other bidder’s worst-case strategy β∗. Formally, let

fmin
(
θ̂, b, β∗

)
∈ Fmin

(
θ̂, b, β∗

)
and fmin

(
θ̂, b′, β∗

)
∈ Fmin

(
θ̂, b′, β∗

)
. Then it holds that

U
(
θ̂, fmin

(
θ̂, b, β∗

)
, b, β∗

)
≤ U

(
θ̂, fmin

(
θ̂, b′, β∗

)
, b′, β∗

)
⇒ b ≤θ̂ b′,

U
(
θ̂, fmin

(
θ̂, b, β∗

)
, b, β∗

)
< U

(
θ̂, fmin

(
θ̂, b′, β∗

)
, b′, β∗

)
⇒ b <θ̂ b′

and

U
(
θ̂, fmin

(
θ̂, b, β∗

)
, b, β∗

)
= U

(
θ̂, fmin

(
θ̂, b′, β∗

)
, b′, β∗

)
⇒ b =θ̂ b′.

We also use the notation b <θ̂ b′ if b′ does not have a minimizing probability function given

θ̂ because it is never a best reply for a bidder with valuation θ̂, but b does have a minimizing
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probability function. We use the notation b =θ̂ b′ if neither b, nor b′ have a minimizing probability

function.

Given the notation provided in this definition and Observation ??, we can state a condition

which is equivalent to the worst-case belief condition but is more tractable:

Observation 2. The worst-case belief condition for a bidder with valuation θ̂ ∈ {0, θ, 1}, bid

bθ̂ ∈ supp
(
β∗
(
θ̂
))

and the other bidder’s strategy β∗ given by

U
(
θ̂, f θ̂,∗, bθ̂, β

∗
)
≤ U

(
θ̂, f, br

(
θ̂, f, β∗

)
, β∗
)

for all f ∈ Fµ

is equivalent to

(i) f θ̂,∗ ∈ Fmin
(
θ̂, bθ̂, β

∗
)

(ii) bθ̂ ≤
θ̂ b′ for all b′ ∈ [0, b1].

In order to apply this observation, we will make use of the fact that the relation ≤θ̂ constitutes

a transitive order which allows us to build chains of the form

bθ̂ ≤
θ̂ b1 · · · ≤θ̂ bk

and exclude all bids b1, . . . , bk as bids which could induce a lower expected utility.

After reframing the worst-case belief condition, we prove two lemmas which correspond to

two different tools with which we can compare the utility induced by different bids and therefore

exclude bids as possible deviations from the proposed worst-case strategy.11 The first tool is to

show that for every bid in the interval (θ, b1) there exists only one probability function which

induces this bid as a best reply for the 1-type. As a consequence, one can directly compute

the minimum utility which can be induced for a bid in the interval [θ, b1] and show that the

minimum utility is equal for all bids in the interval [θ, b1]. This is formalized in the following

Lemma and Corollary.

Lemma 1. Let b ∈ (θ, b1) be such that b is an element in Br
(
1, f1,b, β∗

)
for f1,b ∈ Fµ. Then

f1,b equals to f1,∗ =
(
f1,∗0 , f1,∗θ , f1,∗1

)
, the worst-case belief of a bidder with valuation 1.

The intuition behind this is that the worst-case belief of a 1-type together with the strategy

of the other 1-type makes her indifferent between any bid in the interval [θ, b1]. Any change

of the worst-case belief makes either a deviation to θ or to b1 more profitable. Hence, a bid

b ∈
(
θ, b1

)
cannot be induced by a belief different from the worst-case belief of the 1-type. The

formal proof is relegated to Appendix ??.

Corollary 1. For every b ∈ [θ, b1] it holds that θ =1 b.

11We will need a third tool in the case θ > µ.
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That is, every bid in the interval [θ, b1] induces the same expected utility together with a

minimizing probability function.

Proof. As defined in (??), the worst-case belief of a bidder with valuation 1, denoted by f1,∗, is

the solution of minimization problem M1
<θ. Since we have shown that the best-reply condition

is fulfilled for type 1, it holds that f1,∗ is an element of the feasible set of minimization problem

M1
θ . Since the constraints of minimization problem M1

<θ are a subset of the constraints of

minimization problem M1
θ , it follows that f1,∗ is a solution of M1

θ . It follows from Lemma ??

and the definition of the worst-case belief of the 1-type that every bid in [θ, b1) together with its

unique minimizing probability function induces the same expected utility given by(
f1,∗0 + f1,∗θ

)
(1− θ) .

Independent of the probability function the expected utility of bidding b1 is equal to 1−b1 which

is equal to
(
f1,∗0 + f1,∗θ

)
(1− θ). Therefore, it holds for all b ∈ [θ, b1] that

θ =1 b.

�

The second tool constitutes a connection between binding incentive constraints in minimiza-

tion problemM1
b and bids which are lower than b with respect to the introduced transitive order

≤1.

Lemma 2. Let b be a bid and f1,b a solution of minimization problem M1
b . If there exists a

binding incentive constraint with corresponding bid b̂, i.e.

U
(

1, f1,b, b, β∗
)

= U
(

1, f1,b, b̂, β∗
)
,

then it holds that b̂ ≤1 b.

Proof. Let L1
b and L1

b̂
be the feasible sets, f1,b =

(
f1,b0 , f1,bθ , f1,b1

)
and f1,b̂ =

(
f1,b̂0 , f1,b̂θ , f1,b̂1

)
solutions and U

(
1, f1,b, b, β∗

)
and U

(
1, f1,b̂, b̂, β∗

)
the values of the objective functions of min-

imization problem M1
b and M1

b̂
respectively. In minimization problem M1

b̂
for every s ∈ [θ, b1]

the incentive constraint corresponding to bid s given by

U
(

1, f, b̂, β∗
)
≥ U (1, f, s, β∗)

is fulfilled for f = f1,b because it holds that

U
(

1, f1,b, b̂, β∗
)

= U
(

1, f1,b, b, β∗
)
≥ U

(
1, f1,b, s, β∗

)
.
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The equality follows from the fact that the incentive constraint corresponding to b̂ is binding in

minimization problem M1
b . The inequality

U
(

1, f1,b, b, β∗
)
≥ U

(
1, f1,b, s, β∗

)
holds because f1,b is a solution of minimization problem M1

b . Since every constraint in M1
b̂
is

fulfilled by f1,b, it holds that f1,b is an element of L1
b̂
. This also shows that the feasible set of

minimization problem M1
b̂
is not empty. Therefore, in M1

b̂
the solution of minimization problem

M1
b̂
has to induce a lower or equal utility than the solution of minimization problem M1

b and it

follows that

U
(

1, f1,b̂, b̂, β∗
)
≤ U

(
1, f1,b, b̂, β∗

)
= U

(
1, f1,b, b, β∗

)
.

We conclude that bid b together with a minimizing probability function does not induce a

lower expected utility than bid b̂ together with a minimizing probability function and it therefore

holds that b̂ ≤1 b. �

After introducing two tools with which we can compare bids with respect to the introduced

transitive order, we can prove the second part of Proposition ??.

Proof. Since by bidding zero a bidder with valuation zero expects a utility of zero and this is

the lowest possible utility, the worst-case belief condition is fulfilled for type zero. The expected

utility of a bidder with valuation θ induced by her worst-case belief and the other bidder’s

strategy is zero and therefore, the worst-case belief condition is fulfilled for type θ. It is left

to show the worst-case belief condition for type 1. As stated in Observation ??, the worst-case

belief condition for type 1 is equivalent to

(i) f1,∗ ∈ Fmin (1, b, β∗)

(ii) b ≤1 b′ for all b′ ∈ [0, b1]

for all b ∈ [θ, b1]. Analogously as in the proof of Corollary ??, one can show that the worst-case

belief of type 1 is a solution of minimization problem M1
b for all b ∈ [bθ, b1]. It follows from

Lemma ?? that condition (i) is fulfilled for all bids in [bθ, b1). By definition of the worst-case

belief of type 1, this belief induces b1 as best reply for a bidder with valuation 1. Since any

probability function which induces b1 as a best reply for the 1-type yields an expected utility

of 1 − b1, any probability function with this property is a minimizing probability function.

Therefore, condition (i) is also fulfilled for bid b1. Given the result in Corollary ??, condition

(ii) reduces to

(7) θ ≤1 b for all b ∈ [0, θ).
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The only candidate for a bid in the interval [0, θ) which could induce a lower expected utility than

bid θ is 0 since all other bids cannot be a best reply independently of the belief. A minimizing

probability function of zero is a solution of minimization problem M1
0 :

min
(f0,fθ,f1)

f0

s.t. fθ̂ ≥ 0 for all θ̂ ∈ {0, θ, 1}

f0 + fθ + f1 = 1

fθθ + f1 = 1 = µ

f0 ≥ (f0 + fθ + f1G1 (s)) (1− s) for all s ∈ [θ, b1].

Note that it is not necessary to include incentive constraints with corresponding bid in the

interval (0, θ) since such a bid is never a best reply. If only the constraints

s.t. fθ̂ ≥ 0 for all θ̂ ∈ {0, θ, 1}

f0 + fθ + f1 = 1

fθθ + f1 = 1 = µ

would be considered, it would hold for the solution of M1
0 that f1 = 0. But then the constraint

f0 ≥ (f0 + fθ) (1− θ)

would be violated. Therefore, one of the incentive constraints in M1
0 has to be binding. Let b̂ be

the bid such that the corresponding incentive constraint is binding. It follows from Lemma ??

that b̂ ≤1 0. Since bids in the interval (0, θ) are never a best reply, it must hold that b̂ ∈ [θ, b1].

Using the transitivity of the relation ≤1, we conclude that

0 ≤1 b̂ =1 θ.

Thus, we have shown (??) which completes the proof. �

After proving the best-reply and the worst-case belief condition, we conclude that the strate-

gies and beliefs specified in ?? indeed constitute a worst-case belief equilibrium. This completes

the example with two bidders and three types such that θ ≤ µ and now we turn to the case

where θ > µ. As before, we first specify the worst-case strategy and beliefs.

3.4. Characterization of the efficient worst-case belief equilibrium for θ > µ. Again,

we denote the worst-case strategy by β∗ and define

(8) β∗ (0) = 0, β∗ (θ) = Gθ, β
∗ (1) = G1.
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That is, type zero bids zero, type θ plays a mixed strategy on the interval [0, bθ] and type 1

plays a mixed strategy on the interval [bθ, b1]. As before, one can immediately see that this

constitutes an efficient equilibrium. We denote the worst-case belief of a bidder with valuation

θ̂ by
(
f θ̂,∗0 , f θ̂,∗θ , f θ̂,∗1

)
for θ̂ ∈ {0, θ, 1}. Type zero can have any belief. The worst-case belief of

type θ is the solution of the following minimization problem, denoted by M θ
<0:

min
(f0,fθ,f1)

f0

s.t. fθ̂ ≥ 0 for all θ̂ ∈ {0, θ, 1}

f0 + fθ + f1 = 1

fθθ + f1 = µ.

Recall that in the case θ ≤ µ, by definition, the worst-case belief of a bidder with a given

type contained all incentive constraints with corresponding bids which are lower than the lower

endpoint of the type’s bidding interval. This also holds for the case θ > µ. Since type θ

plays a mixed strategy on an interval beginning with zero, there are no incentive constraints

in this minimization problem. Any solution of minimization problem M θ
0 has to fulfill the two

probability constraints:

f0 + fθ + f1 = 1

fθθ + f1 = µ.

Rearranging the second probability constraint w.r.t. to fθ and plugging in into the first proba-

bility constraint gives:

f0 +
µ− f1
θ

+ f1 = 1

⇔ f0 =
θ − µ
θ

+
f1 (1− θ)

θ
.

Thus, the minimum value for f0 is given by θ−µ
θ and the solution of minimization problem M θ

<0

is given by

(9) fθ,∗0 =
θ − µ
θ

, fθ,∗θ =
µ

θ
, fθ,∗1 = 0.

The upper endpoint of the bidding interval of a bidder with valuation θ is obtained by the

equation

(10) fθ,∗0 θ =
(
fθ,∗0 + fθ,∗θ

) (
θ − bθ

)
⇔ bθ = fθ,∗θ θ = µ.
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The bid distribution of bidders A and B with valuation θ makes them indifferent between any

bid in their bidding interval. That is, it for every s ∈ [0, bθ] it holds that

(11) fθ,∗0 θ =
(
fθ,∗0 + fθ,∗θ Gθ (s)

)
(θ − s) .

The subjective worst-case belief of a bidder with valuation 1 is the solution of the following

minimization problem, denoted by M1
<bθ

:

min
(f0,fθ,f1)

f0 + fθ

s.t. fθ̂ ≥ 0 for all θ̂ ∈ {0, θ, 1}

f0 + fθ + f1 = 1

fθθ + f1 = µ

(f0 + fθ)
(
1− bθ

)
≥ (f0 + fθGθ (s)) (1− s) for all s ∈ [0, bθ].

As before, the minimization problem contains all incentive constraints with corresponding bids

which are lower than the lower endpoint of type 1’s bidding interval. This implies that there is

just enough probability weight on types zero and θ in order to incentivize the 1-type to play a

mixed strategy on an interval beginning with bθ. The upper endpoint of type 1’s bidding interval

is obtained by the equation(
f1,∗0 + f1,∗θ

) (
1− bθ

)
=
(
f1,∗0 + f1,∗θ + f1,∗1

) (
1− b1

)
.

The bid distribution of bidders A and B with valuation 1 makes them indifferent between any

bid in their bidding interval. That is, for every s ∈ [bθ, b1] it holds that

(12)
(
f1,∗0 + f1,∗θ

) (
1− bθ

)
=
(
f1,∗0 + f1,∗θ + f1,∗1 G1 (s)

)
(1− s) .

Note that in contrast to previous minimization problems we cannot derive the solution of

minimization problem M1
<bθ

directly since we have to consider an uncountable number of in-

centive constraints . For now, we proceed with the given definition of the worst-case belief of a

bidder with valuation 1 and provide the explicit solution of the minimization problem later on.

However, it is easy to see that the feasible set of minimization problem M1
<bθ

is not empty since

the worst-case belief of type θ is an element of this set.

3.5. Proving the best-reply and the worst-case belief condition for θ > µ. After spec-

ifying the worst-case strategy and beliefs, we have to show that these indeed constitute a worst-

case belief equilibrium. That is, we have to show the optimality and the worst-case belief

condition.
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Proposition 2. Given the worst-case strategy as defined in (??) and the worst-case beliefs as

defined in (??) and (??), it holds for all θ̂ ∈ {0, θ, 1} that

(i) The best-reply condition given by

bθ̂ ∈ B
r
(
θ̂, f θ̂,∗, β∗

)
for all bθ̂ ∈ supp

(
β∗
(
θ̂
))

is fulfilled, i.e. every bidder plays a best reply given her valuation, her worst-case belief

and the other bidder’s worst-case strategy.

(ii) The worst-case belief condition is fulfilled, i.e. for all bθ̂ ∈ supp
(
β∗
(
θ̂
))

it holds that

U
(
θ̂, f θ̂,∗, bθ̂, β

∗
)
≤ U

(
θ̂, f, br

(
θ̂, f, β∗

)
, β∗
)

for all f ∈ Fµ.

That is, there does not exist another belief such that a best reply to this belief induces a

lower expected utility than the worst-case belief.

Proof. Part (i): The result is obvious for a bidder with valuation zero. The worst-case belief

of bidder A with valuation θ is that bidder B has valuation 1 with probability zero. Hence,

bidder A expects bθ = µ to be the highest bid placed by bidder B. The bid distribution of type

θ makes bidder A with valuation θ indifferent between any bid in the interval [0, bθ]. Therefore,

she has no incentive to deviate. It follows from the definition of the worst-case belief of bidder

A with valuation 1 that she does not earn a higher expected utility by bidding any bid lower

than bθ. Since bidder B does not play a bid above b1, it cannot be a best reply for bidder A

to bid above b1. The bid distribution G1 is constructed in a way which makes bidder A with

valuation 1 indifferent between any bid in [bθ, b1] which completes the proof. �

The remainder of the section is dedicated to proving the worst-case belief condition. Since type

zero expects the lowest possible utility of zero by bidding zero, the worst-case belief condition is

fulfilled for type zero. We will prove the worst-case belief condition for types θ and 1 separately,

i.e. we divide part (ii) of Proposition ?? into two different parts

(ii.1) The worst-case belief condition is fulfilled for type θ, i.e. for all b ∈ [0, bθ] it holds that

U
(
θ, fθ,∗, b, β∗

)
≤ U (θ, f, br (θ, f, β∗) , β∗) for all f ∈ Fµ.

(ii.2) The worst-case belief condition is fulfilled for type 1, i.e. for all b ∈ [bθ, b1] it holds that

U
(

1, fθ,∗, b, β∗
)
≤ U (1, f, br (1, f, β∗) , β∗) for all f ∈ Fµ.

We begin with part (ii.1). Similarly, as in the case θ ≤ µ, we prove three lemmas which

correspond to three different tools with which we can compare the utility induced by different

bids.12

12In contrast to the case θ ≤ µ, in the case θ > µ we will make use of three tools.
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The first lemma provides a similar result as Lemma ?? and Corollary ??. That is, we show

that for every bid in the interval (0, bθ) there exists only one probability function which induces

this bid as a best reply for the θ-type. As a consequence, one can directly compute the minimum

utility which can be induced for a bid in the interval [0, bθ] and show that the minimum utility

is equal for all bids in the interval [0, bθ].

Lemma 3. Let b ∈ (0, bθ) be such that b is an element in Br
(
θ, fθ,b, β∗

)
for fθ,b ∈ Fµ. Then

fθ,b equals to fθ,∗ =
(
fθ,∗0 , fθ,∗θ , fθ,∗1

)
, the worst-case belief of a bidder with valuation θ.

We omit the formal proof since it works similarly to the proof of Lemma ?? and is also covered

by the general case.

Corollary 2. For every b ∈ [0, bθ] it holds that 0 =θ b.

That is, every bid in the interval [0, bθ] induces the same expected utility together with a

minimizing probability function.

Proof. Analogously as in the proof of Corollary ??, one can conclude that every bid in [0, bθ)

together with its unique minimizing probability function induces the same expected utility given

by fθ,∗0 θ.

It is left to show that 0 =θ bθ. Any probability function (f0, fθ, f1) which induces bid bθ = µ

as a best reply for type θ has to fulfill

(13) (f0 + fθ) (θ − µ) ≥ f0θ.

Since due to the probability constraints the smallest possible value for f0 is given by θ−µ
θ , it

must hold that

(f0 + fθ) (θ − µ) ≥ θ − µ

from which follows that f0 + fθ = 1. Hence, f0 and fθ are uniquely determined by the two

probability constraints. Any probability function which fulfills the probability constraints and

inequality (??) coincides with the worst-case belief of type θ.

Therefore, the worst-case belief of type θ is the only probability function which induces bθ = µ

as a best reply for type θ. Hence, the worst-case belief is the unique minimizing probability

function for bid bθ and it follows from the definition of the worst-case belief that bids 0 and bθ

induce the same expected utility together with a minimizing probability function given by(
fθ,∗0 + fθ,∗0

)
(θ − µ) = fθ,∗0 θ.

Therefore, it holds for all b ∈ [0, bθ] that

0 =1 b.
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�

The second lemma corresponds to Lemma ??. That is, it establishes a connection between

binding incentive constraints in minimization problem M θ
b and bids which are lower than b with

respect to the order ≤θ

Lemma 4. Let b be a bid and fθ,b a solution of minimization problem M θ
b . If there exists a

binding incentive constraint with corresponding bid b̂, i.e.

U
(
θ, fθ,b, b, β∗

)
= U

(
θ, fθ,b, b̂, β∗

)
,

then it holds that b̂ ≤θ b.

The same proof as for Lemma ?? applies. For the third tool, we show that for a given type

there exist bids which can never be a best reply independent of the subjective belief. Hence,

these bids cannot be possible deviations from the proposed worst-case equilibrium for the given

type.

Lemma 5. The feasible set of minimization problem M θ
b for all b ∈ (bθ, b1] is empty.

Assume there exists a bid b in the interval (bθ, b1] such that the feasible set of minimiza-

tion problem M θ
b is not empty. Then in a solution of minimization problem M θ

b , denoted by(
fθ,b0 , fθ,bθ , fθ,b1

)
, there must be strictly positive probability weight on the 1-type because other-

wise there would be no incentive to bid higher than bθ. In contrast, the worst-case equilibrium

belief of the θ-type has no probability weight on the 1-type. Hence, in order to preserve the

mean, the probability weight on the zero-type or the θ-type in the solution of minimization

problem M θ
b must be higher than in the worst-case belief. Given the worst-case belief, the θ-

type is indifferent among all bids in the interval [0, bθ]. If the probability weight of the zero-type

is increased, it is optimal for the θ-type to bid zero. Therefore, the probability weight on the

0-type cannot be increased. Similarly, if the probability weight on the θ-type is increased, it is

optimal for the 1-type to bid bθ or lower. Therefore, the belief
(
fθ,b0 , fθ,bθ , fθ,b1

)
cannot induce a

bid above bθ for the θ-type. The formal proof is relegated to Appendix ??.

After introducing the three tools, we can start with the proof of part (ii.1).

Proof. As stated in Observation ??, the worst-case belief condition for type θ is equivalent to

(i) fθ,∗ ∈ Fmin (θ, b, β∗)

(ii) b ≤θ b′ for all b′ ∈ [0, b1]

for all b ∈ [0, bθ].13 Analogously as in the proof of Corollary ??, one can show that the worst-

case belief of type θ is a solution of minimization problem M θ
b for all b ∈ [0, bθ]. It follows from

13We use the notation provided in Definitions ??-?? also for the case θ > µ but use β∗ as defined in ??.
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Lemma ?? that condition (i) is fulfilled for all bids in [0, bθ). As shown in the proof of Corollary

??, the worst-case belief of the θ-type is the only probability function which induces bθ as a

best reply. Therefore, condition (i) is fulfilled. Given the result in Corollary ??, condition (ii)

reduces to

0 ≤θ b for all b ∈ (bθ, b1].

It follows from Lemma ?? that for all b ∈ (bθ, b1] it holds that 0 <θ b which completes the proof

of part (ii.1). �

It is left to show part (ii.2) of Proposition ??, i.e. the worst-case belief condition for type 1.

Again, we prove three lemmas which correspond to the three tools presented above.

The first lemma provides a similar result as Lemma ?? and Corollary ?? (and as Lemma ??

and Corollary ?? in the case θ ≤ µ).

Lemma 6. Let b ∈ (bθ, b1) be such that b is an element in Br
(
1, f1,b, β∗

)
for f1,b ∈ Fµ. Then

f1,b equals to f1,∗ =
(
f1,∗0 , f1,∗θ , f1,∗1

)
, the worst-case belief of a bidder with valuation 1.

Corollary 3. For every b ∈ [bθ, b1] it holds that bθ =1 b.

We omit the proofs of the Lemma and the Claim since they work with the same arguments

as before and are covered by the proof of the general case. The following lemma provides the

second tool and corresponds to Lemma ?? and Lemma ??.

Lemma 7. Let b be a bid and f1,b a solution of minimization problem M1
b . If there exists a

binding incentive constraint with corresponding bid b̂, i.e.

U
(

1, f1,b, b, β∗
)

= U
(

1, f1,b, b̂, β∗
)
,

then it holds that b̂ ≤1 b.

The same proof as for Lemma ?? applies. The third tool in the proof of the worst-case belief

condition for the 1-type is similar to the third tool (Lemma ??) in the proof of the worst-case

belief condition for type θ. That is, we show that for a given type there exist bids which can

never be a best reply independent of the subjective belief. Hence, these bids cannot be possible

deviations from the proposed worst-case equilibrium for the given type.

Lemma 8. The feasible set of minimization problem M1
b for all b ∈

(
0, bθ

)
is empty.

Assume there exists a bid b ∈
(
0, bθ

)
such that the minimization problem M1

b has a solution

which we denote by
(
f1,b0 , f1,bθ , f1,b1

)
. Consider two bids b′, b′′ with 0 ≤ b′′ < b < b′ ≤ bθ.

bb′′ b′ bθ θ b10 1
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Given the belief
(
f1,b0 , f1,bθ , f1,b1

)
, the utility for the 1-type of bidding b must be at least as high

as the utilities of bidding b′′ or b′. The higher f1,b0 , the lower is the optimal bid for type 1.

Therefore, the incentive constraint corresponding to bid b′′ sets a lower bound on the value of

f1,b0 while the incentive constraint corresponding to bid b′ sets an upper bound. We will show

that the conditions resulting from these two bounds contradict each other. Intuitively, a bidder

bidding in the interval [0, bθ] faces the bid distribution Gθ of the θ-type which is constructed in

order to make the other θ-type indifferent. Thus, only for the θ-type the upper and the lower

bound are compatible. The formal proof is relegated to Appendix ?? .

Given the three tools, we can show part (ii.2).

Proof. As stated in Observation ??, the worst-case belief condition for type 1 is equivalent to

(i) f1,∗ ∈ Fmin (1, b, β∗)

(ii) b ≤1 b′ for all b′ ∈ [0, b1]

for all b ∈ [θ, b1]. Condition (i) can be proven analogously as in the proof of Proposition ?? and

due to Corollary ??, the second condition reduces to

bθ ≤1 b′ for all b′ ∈ [0, bθ).

It follows from Lemma ?? that for all b ∈
(
0, bθ

)
it holds that bθ <1 b. Therefore, in order to

show the worst-case belief condition for type 1, it is left to show that

(14) bθ ≤θ 0.

As a next step, we use Lemma ??, in order to calculate the worst-case belief of a bidder with

valuation 1. This belief is the solution of minimization problem M1
<bθ

:

min
(f0,fθ,f1)

f0 + fθ

s.t. fθ̂ ≥ 0 for all θ̂ ∈ {0, θ, 1}

f0 + fθ + f1 = 1

fθθ + f1 = µ

(f0 + fθ)
(
1− bθ

)
≥ (f0 + fθGθ (s)) (1− s) for all s ∈ [0, bθ].

The solution of the reduced minimization problem which contains only the constraints

fθ̂ ≥ 0 for all θ̂ ∈ {0, θ, 1}

f0 + fθ + f1 = 1

fθθ + f1 = µ
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would distribute the probability weight solely between type zero and one which would violate the

incentive constraint corresponding to bid zero. Hence, at least one of the incentive constraints

has to be binding. Let b̂ be a bid such that the corresponding incentive constraint is binding.

Since we have shown that the best-reply condition is fulfilled for type 1, it holds that f1,∗ is an

element of the feasible set of minimization problem M1
bθ
. Since the constraints of minimization

problem M1
<bθ

are a subset of the constraints of minimization problem M1
bθ
, it follows that f1,∗

is a solution of M1
bθ
. Therefore, it follows from Lemma ?? that b̂ ≤1 bθ. Due to Lemma ??, it

holds that bθ <1 b for all b ∈
(
0, bθ

)
from which follows that b̂ = 0. Therefore, the worst-case

belief of type 1 is the unique solution of a system of three linear equation with three unknowns

given by

f1,∗0 + f1,∗θ + f1,∗1 = 1

f1,∗θ θ + f1,∗1 = µ(
f1,∗0 + f1,∗θ

) (
1− bθ

)
= f1,∗0

The solution is given by

f1,∗0 =
(1− µ)2

1− µθ
, f1,∗θ =

µ (1− µ)

1− µθ
, f1,∗1 =

µ (1− θ)
1− µθ

.

Consider minimization problem M1
0 :

min
(f0,fθ,f1)

f0

s.t. fθ̂ ≥ 0 for all θ̂ ∈ {0, θ, 1}

f0 + fθ + f1 = 1

fθθ + f1 = 1 = µ

f0 ≥ (f0 + fθGθ (s)) (1− s) for all s ∈ [0, bθ].

f0 ≥ (f0 + fθ + f1G1 (s)) (1− s) for all s ∈ [θ, b1].

The solution of the reduced minimization problem which contains only the constraints

s.t. fθ̂ ≥ 0 for all θ̂ ∈ {0, θ, 1}

f0 + fθ + f1 = 1

fθθ + f1 = 1 = µ

would distribute the probability weight solely between types zero and θ which would violate the

incentive constraint corresponding to bid θ. Therefore, one of the incentive constraints with

corresponding bid different from zero has to be binding. Let b̂′ be the bid corresponding to the

binding incentive constraint. It follows from Lemma ?? that b̂′ ≤1 0.
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As argued above, the worst-case belief of type 1 is an element of the feasible set of minimiza-

tion problem M1
bθ
. Since the incentive constraint corresponding to bid zero is binding in this

minimization problem, it follows that the worst-case belief of type 1 is an element of the feasible

set of minimization problem M1
0 . This implies that the feasible set of minimization problem M1

0

is not empty. As stated in Lemma ??, the feasible set of minimization problem M1
b is empty for

all b ∈ (0, bθ). Hence, it holds that 0 <1 b for all b ∈ (0, bθ). Therefore, it holds that b̂′ ∈ [bθ, b1].

It follows from Corollary ?? that bθ =1 b̂′. Thus, we can construct the transitive chain

bθ =1 b̂′ ≤1 0.

We have shown that (??) holds which we established as a sufficient condition for the worst-case

belief condition for type 1. �

Since we have shown that the best-reply and the worst-case belief condition hold for all types,

we conclude that the beliefs and strategies specified in ?? indeed constitute a worst-case belief

equilibrium.

4. Revenue comparison of the first-price and second-price auction

We want to compare the revenue of a first-price and a second-price auction in a setting where

bidders do not know the distribution of their competitors’ valuations. As described in the model,

we assume that the number of bidders, the set of possible valuations Θ and the exogenously

given mean µ of valuations is common knowledge. In a second-price auction bidding the own

valuation is a weakly dominant strategy and thus independent of the belief about the other

bidders’ valuations. Therefore, we assume that in a second-price auction bidders bid their

valuation. For the first-price auction we assume that bidders play the efficient worst-case belief

equilibrium.

Since the computation of revenue of the first-price auction involves the computation of the

worst-case beliefs and strategy which is computationally complex, we provide the formal revenue

comparison for the simplified case of two bidders with three possible types 0,θ and 1. As we will

see, it highly depends on the valuation distribution which auction leads to the higher revenue.

Hence, we cannot state any general theorems. The revenue comparison for a given valuation

distribution and a given number of bidders requires a computational solution.

4.1. Revenue of the second-price auction. In order to compute the revenue of the first-price

or the second-price auction, we need to know the true valuation distribution which we denote

by (f0, fθ, f1). Given that in a second-price auction all bidders bid their valuation, the revenue

of the second-price auction is obtained as follows. The expected revenue from type zero is zero.

The expected revenue from type θ is determined by the probability that the θ-type meets another
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θ-type against whom she wins with probability 1
2 and pays θ which gives an expected revenue

of 1
2fθθ. The expected revenue from a 1-type is determined by the probability that she meets a

θ-type, in this case the 1-type wins with probability 1 and pays θ, and by the probability that

she meets a 1-type, in this case the 1-type wins with probability 1
2 and pays 1. This results in

an expected revenue of fθθ + 1
2f1. The total expected revenue of a second-price auction from

one bidder is given by

(15)
1

2
f2θ θ + f1

(
fθθ +

1

2
f1

)
.

Due to the probability constraints given by

f0 + fθ + f1 = 1

fθθ + f1 = µ,

there is only one degree of freedom in left in the choice of the probability function (f0, fθ, f1).

The probability constraints can be rewritten as

f0 = 1− fθ − f1

f1 = µ− fθθ

which gives

f0 = 1− (1− θ) fθ − µ

f1 = µ− fθθ.

Substituting the expression for f1 in (??) gives a revenue of

1

2
f2θ θ + (µ− fθθ)

(
fθθ +

1

2
(µ− fθθ)

)

=
1

2

(
f2θ θ − f2θ θ2 + µ2

)
.

4.2. Revenue of the first-price auction. For the revenue calculation of the first-price auction

with worst-case beliefs we have to differentiate between the case µ ≥ θ and µ < θ. We start

with the case µ ≥ θ. In this case the θ-type bids θ. The winning probability of the θ-type is

f0 + 1
2fθ which gives an expected revenue of

θ

(
f0 +

1

2
fθ

)
= θ

(
1− (1− θ) fθ − µ+

1

2
fθ

)
= θ

(
1− µ+ fθ

(
θ − 1

2

))
.

As shown in in section ??, the worst-case belief of the 1-type, which we denote by
(
f1,∗0 , f1,∗θ , f1,∗1

)
,

is the unique solution of the following system of linear equations:

f1,∗0 + f1,∗θ + f1,∗1 = 1
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f1,∗θ θ + f1,∗1 = µ(
f1,∗0 + f1,∗θ

)
(1− θ) = f1,∗0

which leads to

f1,∗0 =
1− µ
1 + θ

, f1,∗θ =
θ (1− µ)

1− θ2
, f1,∗1

µ− θ2

1− θ2
.

The bid distribution of the 1-type, denoted by G1, is determined by the equation(
f1,∗0 + f1,∗θ

)
(1− θ) =

(
f1,∗0 + f1,∗θ + f1,∗1 G1 (s)

)
(1− s)

for s ∈ [θ, b1] where b1 is defined by(
f1,∗0 + f1,∗θ

)
(1− θ) = 1− b1,

i.e. G1

(
b1
)

= 1. This is equivalent to

b1 = 1−
(
f1,∗0 + f1,∗θ

)
(1− θ)

⇔ b1 = 1− 1− µ
1− θ2

(1− θ) =
θ + µ

1 + θ
.

After plugging in the values for f1,∗0 , f1,∗θ , f1,∗1 into

G1 (s) =

(
f1,∗0 + f1,∗θ

)
(s− θ)

(1− s) f1,∗1

we get

G1 (s) =
(1− µ) (s− θ)
(1− s) (µ− θ2)

and

dG1 (s)

ds
=

(1− µ) (1− s)
(
µ− θ2

)
+ (1− µ) (s− θ)

(
µ− θ2

)
(1− s)2 (µ− θ2)2

=
(1− µ) (1− θ)

(1− s)2 (µ− θ2)
.

The expected revenue from a 1-type is given by

ˆ b1

θ
(f0 + fθ + f1G1 (s)) sdG1 (s) ds

=

ˆ θ+µ
1+θ

θ

(
1− µ+ θfθ + (µ− fθθ)

(1− µ) (s− θ)
(1− s) (µ− θ2)

)
s

(1− µ) (1− θ)
(1− s)2 (µ− θ2)

ds.

The total expected revenue from one bidder in a first-price auction with θ ≤ µ is given by

fθθ

(
f0 +

1

2
fθ

)
+ f1

ˆ b1

θ
(f0 + fθ + f1G1 (s)) sdG1 (s) ds
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= fθθ

(
1− µ+ fθ

(
θ − 1

2

))

+ (µ− fθθ)
ˆ θ+µ

1+θ

θ

(
1− µ+ θfθ + (µ− fθθ)

(1− µ) (s− θ)
(1− s) (µ− θ2)

)
s

(1− µ) (1− θ)
(1− s)2 (µ− θ2)

ds.

Now we will calculate the revenue of a first-price auction if θ > µ. Let
(
fθ,∗0 , fθ,∗θ , fθ,∗1

)
denote

the worst-case equilibrium belief of type θ. As shown in section ??, the θ-type believes that

there is no 1-type and therefore it follows from the probability constraints that

fθ,∗0 =
θ − µ
θ

, fθ,∗θ =
µ

θ
, f1,∗1 = 0.

The θ-type plays a mixed strategy on the interval [0, bθ] where bθ is defined by

θ − bθ = fθ,∗0 θ

⇔ bθ = θ − θ − µ
θ

θ = µ.

For all s ∈ [0, bθ] the bid distribution Gθ is defined by

fθ,∗0 θ =
(
fθ,∗0 + fθ,∗θ Gθ (s)

)
(θ − s)

⇔ Gθ (s) =
sfθ,∗0

fθ,∗θ (θ − s)
=
s (θ − µ)

µ (θ − s)
.

It follows that
dGθ (s)

ds
=

(θ − µ)µ (θ − s) + s (θ − µ)µ

µ2 (θ − s)2
=

(θ − µ) θ

µ (θ − s)2
.

The expected revenue from a bidder with valuation θ is given by
ˆ µ

0
(f0 + fθGθ (s)) sdGθ (s) ds

=

ˆ µ

0

(
1− µ− (1− θ) fθ + fθ

s (θ − µ)

µ (θ − s)

)
s

(θ − µ) θ

µ (θ − s)2
ds.

The belief of the 1-type, denoted by
(
f1,∗0 , f1,∗θ , f1,∗1

)
, is the unique solution of the following

system of linear equations

f1,∗0 + f1,∗θ + f1,∗1 = 1

f1,∗θ θ + f1,∗1 = µ(
f1,∗0 + f1,∗θ

)
(1− µ) = f1,∗0

which leads to

f1,∗0 =
(1− µ)2

1− µθ
, f1,∗θ =

µ (1− µ)

1− µθ
, f1,∗1 =

µ (1− θ)
1− µθ

.

The 1-type plays a mixed strategy on the interval [bθ, b1] where b1 is determined by

1− b1 =
(
f1,∗0 + f1,∗θ

)
(1− µ)
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⇔ b1 = 1−
(
f1,∗0 + f1,∗θ

)
(1− µ) = 1− (1− µ)2

1− µθ
=

2µ− µ− µθ
1− µθ

.

For all s ∈ [bθ, b1] the bid distribution G1 is determined by(
f1,∗0 + f1,∗θ

)
(1− µ) =

(
f1,∗0 + f1,∗θ + f1,∗1 G1 (s)

)
(1− s)

⇔ G1 (s) =

(
f1,∗0 + f1,∗θ

)
(s− µ)

f1,∗1 (1− s)
=

(1− µ) (s− µ)

µ (1− θ) (1− s)
from which follows that

dG1 (s)

ds
=

(1− µ) (1− b)µ (1− θ) + (1− µ) (b− µ)µ (1− θ)
µ2 (1− θ)2 (1− s)2

=
(1− µ)2

µ (1− θ) (1− s)2
.

The expected utility from a bidder with type 1 is given by

ˆ 2µ−µ−µθ
1−µθ

µ
(f0 + fθ + f1G1 (s)) sdG1 (s) ds

=

ˆ 2µ−µ−µθ
1−µθ

µ

(
1− µ+ θfθ + (µ− fθθ)

(1− µ) (s− µ)

µ (1− θ) (1− s)

)
s

(1− µ)2

µ (1− θ) (1− s)2
ds.

The total expected revenue from a bidder is given by

fθ

ˆ µ

0
(f0 + fθGθ (s)) sdGθ (s) ds+ f1

ˆ 2µ−µ−µθ
1−µθ

µ
(f0 + fθ + f1G1 (s)) sdG1 (s) ds

= fθ

ˆ µ

0

(
1− µ− (1− θ) fθ + fθ

s (θ − µ)

µ (θ − s)

)
s

(θ − µ) θ

µ (θ − s)2
ds

+ (µ− fθθ)
ˆ 2µ−µ−µθ

1−µθ

µ

(
1− µ+ θfθ + (µ− fθθ)

(1− µ) (s− µ)

µ (1− θ) (1− s)

)
s

(1− µ)2

µ (1− θ) (1− s)2
ds.

4.3. Revenue comparison. After calculating the expected revenue of the first-price and the

second-price auction we can compare the revenue for a given θ and µ in dependence of the

valuation of fθ. The minimum possible valuation for fθ is zero. In case θ ≤ µ the maximum

possible valuation of fθ is obtained if f0 = 0 and is equal to 1−µ
1−θ . In case θ > µ, the maximum

possible valuation of fθ is obtained if f1 = 0 and is equal to µ
θ .

The following graph illustrates the revenue comparison for the first-price auction (blue line)

and the second-price auction (red line) for the parameters θ = 0.4 and µ = 0.5.
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Figure 1. Revenue of the first-price auction (blue line) and second-price auction
(red line) plotted against fθ for θ = 0.4 and µ = 0.5

In this case the auctioneer would choose the first-price auction independent of the true valua-

tion distributions. However, there exist valuations for θ and µ where the revenue functions cross,

i.e. it depends on the true valuation distribution which auction leads to the higher revenue.

The following graph illustrates the revenue comparison for the first-price auction (blue line)

and the second-price auction (red line) for the parameters θ = 0.6 and µ = 0.5.

Figure 2. Revenue of the first-price auction (blue line) and second-price auction
(red line) plotted against fθ for θ = 0.6 and µ = 0.5

We conclude that the revenue comparison highly depends on the parameters θ and µ and

depending on the valuation of θ and µ, it can depend on the true valuation distribution.

5. General Case: n bidders with m valuations

In this section we provide all definitions and results required for the general case with n

bidders and m types. As before, the main result is that there exists an efficient worst-case belief

equilibrium.

Theorem 2. In a first-price auction there exists an efficient worst-case belief equilibrium.

5.1. Characterization of the efficient worst-case belief equilibrium. As in the case of two

bidders and three types we begin with the characterization of the strategies and beliefs which we

claim to constitute a worst-case belief equilibrium.14 We denote the worst-case strategy by β∗.

14As before, we call the strategy and beliefs we claim to constitute a worst-case belief equilibrium worst-case
strategy and worst-case beliefs.
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The support of the bid distribution of a bidder with valuation θk is denoted by [bθk−1 , bθk ]. As

every bidder adopts the same worst-case belief-equilibrium, we omit the identity of the bidder in

the notation. Every bidder has the same worst-case belief and moreover, in the worst-case belief

of a bidder every other bidder has the same valuation distribution. Thus, we can denote the

worst-case belief of a bidder with valuation θk ∈ Θ by
(
fθ

k,∗
θ1

, . . . , fθ
k,∗
θm

)
, i.e. for l ∈ {1, . . . ,m}

let fθ
k,∗
θl

be the probability with which one of the other n−1 bidders has the θl-type in the belief

of a bidder with valuation θk.

For a bidder with valuation θk ≤ µ we define the bidder’s strategy to be a pure strategy with

β∗
(
θk
)

= θk. Let θz be the lowest type which is strictly greater than µ. The belief of a bidder

with valuation θk ≤ µ is the probability function which puts strictly positive weight only on fθk
θk

and fθkθz . Therefore, the probability weight is determined by the equations

fθ
k,∗
θk

+ fθ
k,∗
θz = 1

fθ
k,∗
θk

θk + fθ
k,∗
θz θz = µ.

The unique solution of this system of linear equations is given by

fθ
k,∗
θk

=
θz − µ
θz − θk

, fθ
z ,∗
θk

=
µ− θk

θz − θk
.

Given this belief, it is a best reply for a bidder with valuation θk to bid θk since the lowest

bid which such a bidder believes is played by another bidder is given by θk. This induces the

lowest possible expected utility of zero and therefore, the strategies and beliefs specified for types

θk ≤ µ fulfill the best-reply condition and the worst-case belief condition.

Now we define the bidding strategy and beliefs for a bidder with valuation θk with θk > µ. A

bidder with type θk > µ plays a mixed strategy on the interval [bθk−1 , bθk ] where the upper limit

of type θk’s bidding interval is the lower limit of type θk+1’s bidding interval. We will derive

the boundaries of this bidding interval inductively starting with the boundaries of the bidding

interval of the θz-type, which we defined above as the lowest type strictly greater than µ. The

θz-type plays a mixed strategy on the interval [bθz−1 , bθz ] with bθz−1 = θz−1. We define the

worst-case belief of a bidder with valuation θz to be the solution of the following minimization

problem which we denote by M θz

<θz−1 :

min
(fθ1 ,...,fθm )

(fθ1 + · · ·+ fθz−1)n−1
(
θz − θz−1

)
s.t. fθj ≥ 0 for all 1 ≤ j ≤ m

m∑
l=1

fθl = 1
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m∑
l=1

fθlθ
l = µ

(fθ1 + · · ·+ fθz−1)n−1
(
θz − θz−1

)
≥ (fθ1)n−1 θz

(fθ1 + · · ·+ fθj−1)n−1
(
θz − θz−1

)
≥ (fθ1 + fθ2)n−1

(
θz − θ2

)

...

(fθ1 + · · ·+ fθz−1)n−1
(
θz − θz−1

)
≥ (fθ1 + · · ·+ fθz−2)n−1

(
θz − θz−2

)
,

i.e. among all distributions with mean µ such that for a bidder with valuation θz it is weakly

better to bid θz−1 than any lower bid given the other bidders’ strategies, it is the distribution

inducing the minimum utility. We do not have to include the incentive constraints with corre-

sponding bid b for b ∈ (θh−1, θh) for 1 < h < z − 1 since these bids are never played according

to the worst-case strategy and thus are never a best reply. Note that the feasible set of this

minimization problem is non-empty since a distribution which puts strictly positive probability

weight only on the θz−1- and the θz-type preserving the mean µ is an element of the feasible

set. The upper endpoint of the bidding interval of the θz-type is obtained by the equation(
fθ

z ,∗
θ1

+ · · ·+ fθ
z ,∗
θz−1

)n−1 (
θz − θz−1

)
= (θz − bθz).

The bid distribution Gθz is defined such that every bidder with valuation θz is indifferent between

every bid in her bidding interval given her belief and the other bidders’ strategies, i.e. for every

s ∈ [bθz−1 , bθz ] where bθz−1 = θz−1 it holds(
fθ

z ,∗
θ1

+ · · ·+ fθ
z ,∗
θz−1 + fθ

z ,∗
θz Gθz (s)

)n−1
(θz − s) =

(
fθ

z ,∗
θ1

+ · · ·+ fθ
z ,∗
θz−1

)n−1 (
θz − θz−1

)
.

After we have specified the strategies and beliefs for the θz-type, we can proceed inductively.

Assume, that strategies and beliefs have been specified for types 1, . . . , k−1 with z ≤ k−1 < m,

then strategies and beliefs for type k are defined as follows. A bidder with valuation θk plays a

mixed strategy on the interval [bθk−1 , bθk ] where bθk−1 is the upper bound of the bidding interval

of the θk−1-type. We define the worst-case belief of type θk to be the solution of the following

minimization problem which we denote by M θk

<b
θk−1

:

min
(fθ1 ,...,fθm )

(fθ1 + · · ·+ fθk−1)n−1
(
θk − bθk−1

)
s.t. fθj ≥ 0 for all 1 ≤ j ≤ m

m∑
j=1

fθj = 1
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m∑
j=1

fθjθ
j = µ

(fθ1 + · · ·+ fθk−1)n−1
(
θk − bθk−1

)
≥

h−1∑
j=1

fθj

+ fθhGθh (s)

n−1 (
θk − s

)
for all h ∈ {1, . . . , k − 1} and all s ∈ [bθh−1 , bθh ],

i.e. among all distributions with mean µ such that for a bidder with valuation θk it is weakly

better to bid bθk−1 than any lower bid given the other bidders’ strategies, it is the distribution

inducing the minimum utility. The bid distribution Gθk and bθk are determined such that given

this belief every bidder with valuation θk is indifferent between all bids in [bθk−1 , bθk ]. Formally,

for every s ∈ [bθk−1 , bθk ], Gθk(s) is defined byk−1∑
j=1

fθ
k,∗
θj

n−1 (
θ − bθk−1

)
=

k−1∑
j=1

fθ
k,∗
θj

+ fθ
k,∗
θk

Gθk(s)

n−1

(θ − s) .

Obviously, the worst-case strategy is efficient. We will show in the next section that the feasible

set of minimization problem M θk

<b
θk−1

is not empty. Moreover, in Lemma ?? in Appendix ??

we derive the unique solution of this minimization problem. We show that for the worst-case

belief of a bidder with valuation θk it holds that fθ
k,∗
j = 0 for j > k and that the vector(

fθ
k,∗
θ1

, . . . , fθ
k,∗
θk

)
is the unique solution of the system of k linear equations which includes the

two probability constraints and the binding incentive constraints with corresponding bid bθj for

1 ≤ j ≤ k − 2.

5.2. Proving the best-reply and the worst-case belief condition. After specifying the

worst-case strategy and beliefs, we have to show that they indeed constitute a worst-case belief

equilibrium. That is, we have to show the best-reply and the worst-case belief condition.

Proposition 3. Given the worst-case strategy and the worst-case beliefs as defined in ??, it

holds for all θ̂ ∈ Θ that

(i) The best-reply condition given by

bθ̂ ∈ B
r
(
θ̂, f θ̂,∗, β∗

)
for all bθ̂ ∈ supp

(
β∗
(
θ̂
))

is fulfilled, i.e. every bidder plays a best reply given her valuation, her worst-case belief

and the other bidders’ worst-case strategy.
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(ii) The worst-case belief condition is fulfilled, i.e. for all bθ̂ ∈ supp
(
β∗
(
θ̂
))

it holds that

U
(
θ̂, f θ̂,∗, bθ̂, β

∗
)
≤ U

(
θ̂, f, br

(
θ̂, f, β∗

)
, β∗
)

for all f ∈ Fn−1
µ .15

That is, there does not exist another belief such that a best reply to this belief induces a

lower expected utility than the worst-case belief.

Proof. Part (i): It follows directly from the definition of the worst-case beliefs, that for a bidder

with valuation θk it is weakly better to bid bθk−1 than any lower bid. By construction, a bidder

with valuation θk is indifferent between any bid in [bθk−1 , bθk ]. Hence, it is left to show that it is

weakly better to bid bθk−1 than any bid higher than bθk . In order to do so, we will compare the

solutions of the following two minimization problems. LetM θk

<bθk−1

be the minimization problem

which corresponds to the worst-case belief of the bidder as defined above:

min
(fθm ,...,fθm )

(fθ1 + · · ·+ fθk−1)n−1
(
θk − bθk−1

)
s.t. fθj ≥ 0 for all 1 ≤ j ≤ m

m∑
j=1

fθj = 1

m∑
j=1

fθjθ
j = µ

(fθ1 + · · ·+ fθk−1)n−1
(
θk − bθk−1

)
≥

h−1∑
j=1

fθj + fθhGθh (s)

n−1 (
θk − s

)
for all h ∈ {1, . . . , k − 1} and all s ∈ [bθh−1 , bθh ],

i.e. among all distributions with mean µ such that for a bidder with valuation θk it is weakly

better to bid bθk−1 than any lower bid given the other bidders’ strategies, it is the distribution

inducing the minimum utility. Now we consider minimization problemM θk

b
θk−1

which determines

the distribution inducing the minimum utility among all distributions with mean µ such that

for a bidder with valuation θk it is weakly better to bid bθk−1 than any other bid given the other

bidders’ strategies:

min
(fθ1 ,...,fθm )

(fθ1 + · · ·+ fθk−1)n−1
(
θk − bθk−1

)
s.t. fθj ≥ 0 for all 1 ≤ j ≤ m

m∑
j=1

fθj = 1

15Since utility functions are symmetric among bidders, we will omit the identitiy of the bidder in utility function.
Moreover, if there exists an asymmetric belief about the other bidders’ valuations which violates the worst-
case belief condition then due to the symmetry of the worst-case strategy, there exists also a symmetric belief.
Therefore, it is sufficient to focus only on symmetric beliefs as possible deviations.
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m∑
j=1

fθjθ
j = µ

(fθ1 + · · ·+ fθk−1)n−1
(
θk − bθk−1

)
≥

 h∑
j=1

fθj

+ fθhGθh (s)

n−1 (
θk − s

)
for all h ∈ {1, . . . ,m} and all s ∈ [bθh−1 , bθh ].

Let fθk,∗ and fθk be solutions of M θk

<b
θk−1

and M θk

b
θk−1

respectively. The constraints of M θk

<b
θk−1

are a subset of the constraints of M θk

<b
θk−1

. Therefore, it is sufficient to show that fθk,∗ is an

element of the feasible set of M θk

b
θk−1

.

In fθ
k,∗ there is no probability weight on types above θk because this would require more

probability weight on types below µ and hence increase the value of the objective function. If we

plug in fθk,∗ into M θk

b
θk−1

, then all constraints which correspond to a bid above bθk are fulfilled

because there is no probability weight on types above θk. As argued above, all constraints with

corresponding bid in the interval [0, bθk ] are fulfilled. Therefore, fθk,∗ is an element of the feasible

set of M θk

b
θk−1

. �

Computing the worst-case belief of a bidder is equivalent to computing the distribution in-

ducing the minimum utility of a bidder given the other bidders’ strategies. Thus, one has to

solve the trade-off between putting probability weight on lower types in order to induce a high

bid and putting probability weight on higher types in order to reduce the winning probability.

This proof shows that this trade-off is solved such that the worst-case belief of a bidder with

valuation θk puts just enough probability weight on lower types in order to induce the bid bθk−1

and puts as much as possible probability weight on type θk in order to reduce the bidder’s

winning probability.

One can use this proof in order to show that the worst-case belief of the θk−1-type is an

element of the feasible set of minimization problem M θk

<b
θk−1

. Hence, one can show by induction

that for all 1 ≤ k ≤ m the feasible set of minimization problem M θk

<b
θk−1

is not empty.

By definition, the worst-case belief of the θk−1-type is a solution of minimization problem

M θk−1

<b
θk−2

. Moreover, it holds by definition of bθk−1 thatk−2∑
j=1

fθ
k−1,∗
θj

(θk−1 − bθk−2

)
= θk−1 − bθk−1 .

Therefore, for all s with s ∈ [bθh−1 , bθh ] with h ≤ k − 1 it holds that

θk−1 − bθk−1 =

k−2∑
j=1

fθ
k−1,∗
θj

n−1 (
θk−1 − bθk−2

)
≥

h−1∑
j=1

fθ
k−1,∗
θj

+Gθh(s)

n−1 (
θk−1 − s

)
.
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It follows that for all s with s < bθk−1 the incentive constraint corresponding to s is fulfilled if

plugging in fθk−1,∗ into M θk

b
θk−1

because adding the inequalities

θk−1 − bθk−1 ≥

h−1∑
j=1

fθ
k−1,∗
θj

+Gθh(s)

n−1 (
θk−1 − s

)
and

θk − θk−1 ≥

h−1∑
j=1

fθ
k−1,∗
θj

+Gθh(s)

n−1 (
θk − θk−1

)
yields

θk − bθk−1 ≥

h−1∑
j=1

fθ
k−1,∗
θj

+Gθh(s)

n−1 (
θk − s

)
.

Conclusively, fθk−1,∗ is an element of the feasible set of minimization problem M θk

<b
θk−1

.

We have already shown the worst-case belief condition for all types θk ≤ µ. In order to show

the worst-case belief condition for higher types, as in the case of three types and two bidders,

we introduce the concept of minimizing probability functions and show that we can switch from

comparing the induced utility of distributions to comparing the induced utility of bids. This is

formalized in the following definition and observation.

Definition 6. For a bidder with valuation θi, a bid bi and a strategy β−i of the other bidders,

the set of probability functions Fmin
n−1 (θi, bi, β−i) given by

Fmin
n−1 (θi, bi, β−i) = arg min

f−i∈Fn−1
µ

{U (θi, f−i, bi, β−i) | bi ∈ Br (θi, f−i, β−i)}

is called the set of minimizing probability functions of bid bi for a bidder with valuation θi given

the other bidders’ strategies β−i. Among all probability functions which induce bid bi as a best

reply, a minimizing probability function is a probability function which induces the minimum

utility.

Observation 3. Let (β1, . . . , βn) be a profile of strategies and
(
fθ

1

−i, . . . , f
θm
−i

)
be a profile of

beliefs bidder i has about the other bidders’ valuations. For a valuation θi of bidder i and a bid

bi ∈ supp (βi(θi)) the worst-case belief condition for bid bi, given by

U
(
θi, f

θi
−i, bi, β−i

)
≤ U

(
θi, f

θi
−i, b

r (θi, f−i, βi) , β−i

)
for all f−i ∈ Fn−1

µ , is equivalent to the following two conditions:

(i) The belief fθi−i is an element in Fmin
n−1 (θi, bi, β−i), i.e. a minimizing probability function

of bid bi for bidder i with valuation θi given the other bidders’ strategies β−i.
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(ii) Let b′i be a bid and f−i be an element in Fmin
n−1 (θi, b

′
i, β−i), i.e. a minimizing probability

function of bid b′i for bidder i with valuation θi. Then it holds

U
(
θi, f

θi
−i, bi, β−i

)
≤ U

(
θi, f−i, b

′
i, β−i

)
.

That is, it is sufficient to compare bids if we compare them with respect to the expected utility

they induce together with a minimizing probability function. In order to apply this technique,

we need the following definitions.

Definition 7. For a bidder with valuation θ minimization problem M θ
b of a bid b ∈ [bθl−1 , bθl ] is

the minimization problem corresponding to its minimizing probability functions, i.e. all solutions

of minimization problem M θ
b are minimizing probability function of b for a bidder with valuation

θ given the other bidders’ worst-case strategy β∗. Formally, minimization problem M θ
b is given

by

min
(fθ1 ,...,fθm )

 l−1∑
j=1

fθj + fθlGl(b)

n−1

(θ − b)

s.t. fθj ≥ 0 for all 1 ≤ j ≤ m
m∑
j=1

fθj = 1

m∑
j=1

fθjθ
j = µ

(fθ1 + · · ·+ fθl−1)n−1 (θ − b) ≥

 h∑
j=1

fθj + fθhGθh (s)

n−1

(θ − s)

for all h ∈ {1, . . . ,m} and all s ∈ [bθh−1 , bθh ].

Definition 8. Apart from the constraints

fθj ≥ 0 for all 1 ≤ j ≤ m
m∑
j=1

fθj = 1

m∑
j=1

fθjθ
j = µ,

every constraint in minimization problem M θ
b compares the utility of bidding b to the utility of

bidding some other bid b′, which is formalized by

U (θ, f, b, β∗) ≥ U
(
θ, f, b′, β∗

)
.

We call such a constraint an incentive constraint corresponding to bid b′.
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Definition 9. For a type θ and bids b, b′ we use the notation b ≤θ b′ if for the θ-type bid b′

does not induce a strictly lower expected utility than bid b together with their minimizing prob-

ability functions given the other bidders’ worst-case strategy β∗. Formally, let fmin (θ, b, β∗) ∈

Fmin
n−1 (θ, b, β∗) and fmin (θ, b′, β∗) ∈ Fmin

n−1 (θ, b′, β∗) . Then it holds that

U
(
θ, fmin (θ, b, β∗) , b, β∗

)
≤ U

(
θ, fmin

(
θ, b′, β∗

)
, b′, β∗

)
⇒ b ≤θ b′,

U
(
θ, fmin (θ, b, β∗) , b, β∗

)
< U

(
θ, fmin

(
θ, b′, β∗

)
, b′, β∗

)
⇒ b <θ b′

and

U
(
θ, fmin (θ, b, β∗) , b, β∗

)
= U

(
θ, fmin

(
θ, b′, β∗

)
, b′, β∗

)
⇒ b =θ b′.

We also use the notation b <θ b′ if b′ does not have a minimizing probability function given

θ because it is never a best reply for a bidder with valuation θ, but b does have a minimizing

probability function. We use the notation b =θ b′ if neither b, nor b′ have a minimizing probability

function.

Given the notation provided in this Definition, we can state a condition which is equivalent

to the worst-case belief condition but is more tractable:

Observation 4. The worst-case belief condition for bidder i with valuation θ̂ and bid bθ̂ ∈

supp
(
β∗
(
θ̂
))

and bidder B’s strategy β∗ given by

U
(
θ̂, f θ̂,∗, bθ̂, β

∗
)
≤ U

(
θ̂, f, br

(
θ̂, f, β∗

)
, β∗
)

for all f ∈ Fn−1
µ

is equivalent to

(i) f θ̂,∗ ∈ Fmin
n−1

(
θ̂, bθ̂, β

∗
)

(ii) bθ̂ ≤
θ̂ b′ for all b′ ∈ [0, bθm ].

As in the case with two bidders and three valuations, we prove three lemmas which correspond

to three different tools with which we can compare the utility induced by different bids and

therefore exclude bids as possible deviations from the proposed worst-case strategy. The first

tool is to show that for every valuation θk ≥ θz for every bid in the interval (bθk−1 , bθk ] there

exists only one probability function which induces this bid as a best reply for the θk-type.16 As

a consequence, one can directly compute the minimum utility which can be induced for a bid

in the interval [bθk−1 , bθk ] and show that the minimum utility is equal for all bids in the interval

[bθk−1 , bθk ]. This is formalized in the following Lemma and Corollary.

16Recall that we defined θz to be the smallest valuation which is strictly greater than µ.
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Lemma 9. For a valuation θk with θz ≤ θk ≤ θm and b ∈ [bθk−1 , bθk ] let fmin
(
θk, b, β∗

)
be

an element in Fmin
n−1

(
θk, b, β∗

)
. Then fmin

(
θk, b, β∗

)
equals to fθk,∗, the worst-case belief of a

bidder with valuation θ.

The intuition behind this result works similarly as for the result for two bidders and three

types in Lemma ??. The formal proof is relegated to Appendix ??.

Corollary 4. For every valuation θk with θk ≥ θz and for every b ∈ (bθk−1 , bθk ] it holds that

b =θk bθk−1.

That is, every bid in the interval [bθk−1 , bθk ] induces the same expected utility together with

a minimizing probability function.

Proof. We have shown in the first part of Proposition ?? that the best-reply condition is fulfilled

for all types. Hence, it holds that the worst-case belief of a bidder with valuation θk ≥ θz, which

is the solution of minimization problemM θk

<b
θk−1

, is an element of the feasible set of minimization

problem M θk

b
θk
. Since the constraints of M θk

<b
θk−1

are a subset of M θk

b
θk−1

, it holds that fθ,∗ is

a solution of M θk

b
θk−1

. It follows from Lemma ?? and the definition of the worst-case belief of

a bidder with valuation θk that every bid in (bθk−1 , bθk ] together with its unique minimizing

probability function induces the same expected utility given by(
fθ

k,∗
θ1

+ · · ·+ fθ
k,∗
θk−1

)(
θk − bθk−1

)
.

Thus, it holds for every b ∈ (bθk−1 , bθk ] that

b =θk bθk−1 .

�

The second tool constitutes a connection between binding incentive constraints in the mini-

mization problem corresponding to a bid b and bids which are lower than b with respect to our

order. It corresponds to Lemmas ??,?? and ?? in the case of two bidders and three types.

Lemma 10. Let θ be a valuation, b a bid and fθ,b a solution of minimization problem M θ
b . If

there exists a binding incentive constraint with corresponding bid b̂, i.e.

U
(
θ, fθ,b, b, β∗

)
= U

(
θ, fθ,b, b̂, β∗

)
,

then it holds that b̂ ≤θ b.

Proof. Let Lθb and Lθ
b̂
be the set of feasible solutions , fθ,b =

(
fθ,b
θ1
, . . . , fθ,bθm

)
and fθ,b̂ =(

fθ,b̂0 , . . . , fθ,b̂θm
)
solutions and U

(
θ, fθ,b, b, β∗

)
and U

(
θ, fθ,b̂, b̂, β∗

)
the values of the objective
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functions of minimization problem M θ
b and M θ

b̂
respectively. In minimization problem M θ

b̂
for

every bid s the incentive constraint corresponding to s given by

U
(
θ, f, b̂, β∗

)
≥ U (θ, f, s, β∗)

is fulfilled for f = fθ,b because it holds that

U
(
θ, fθ,b, b̂, β∗

)
= U

(
θ, fθ,b, b, β∗

)
≥ U

(
θ, fθ,b, s, β∗

)
.

The equality follows from the fact that the incentive constraint corresponding to b̂ is binding in

minimization problem M θ
b . The inequality

U
(
θ, fθ,b, b, β∗

)
≥ U

(
θ, fθ,b, s, β∗

)
holds because fθb is a solution of minimization problem M θ

b . Since every constraint in M θ
b̂

is fulfilled by fθ,b, it holds that fθ,b is an element of Lθ
b̂
. Therefore in M θ

b̂
, the solution of

minimization problemM θ
b̂
has to induce a lower or equal utility than the solution of minimization

problem M θ
b and it follows that

U
(
θ, fθ,b̂, b̂, β∗

)
≤ U

(
θ, fθ,b, b̂, β∗

)
= U

(
θ, fθ,b, b, β∗

)
.

We conclude that bid b together with a minimizing probability function does not induce a

lower expected utility than bid b̂ together with a minimizing probability function and therefore

it holds that b̂ ≤θ b. �

For the third tool, we show that for a given type there exist bids which can never be a best

reply independent of the subjective belief. Hence, these bids cannot be possible deviations from

the proposed worst-case equilibrium for the given type.

Lemma 11. For every pair of valuations θl and θk such that θz ≤ θl ≤ θk−1 and every b with

bθl−1 < b < bθl the feasible set of minimization problem M θk

b is empty.

Lemma 12. For every pair of valuations θl and θk such that θz ≤ θk+1 ≤ θl and every b with

bθl−1 < b ≤ bθl the feasible set of minimization problem M θk

b
θl

is empty.

The formal proof is relegated to Appendices ?? and ??. The intuition for Lemma ?? is similar

to Lemma ?? and the intuition for Lemma ?? is similar to Lemma ??, i.e. as in the case of two

bidders and three valuations. We provide a detailed intuition for both results at the end of this

section.

After introducing these three tools, we can provide the proof of part (ii) of Proposition ??.

That is, we prove that the worst-case belief condition is fulfilled for all types. In this proof

we construct a chain where all bids are arranged with respect to our order and the efficient
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equilibrium bid is the lowest. Due to the transitivity of our relation, this excludes all other

distributions than the efficient worst-case beliefs as a potential deviation.

Proof. Analogously as in the proof of Corollary ??, one can show that for all θk ≥ θz it holds

that fθ,∗ is a solution of M θk

b for all b ∈ [bθk−1 , bθk ]. It follows from Lemma ?? that

fθ
k,∗ ∈ Fmin

(
θk, b, β∗

)
for all b ∈ [bθk−1 , bθk ] Thus, we can conclude from Observation ?? and Corollary ?? that in order

to show the worst-case belief condition, it is left to show that for all θk ≥ θz it holds that

(16) bθk−1 ≤θ
k
b for all b ∈ [0, bθm ]\[bθk−1 , bθk ].

Lemma ?? shows that if b ∈ [bθl−1 , bθl ] was to induce a lower expected utility than bθk−1 and

l < k, then b needs to be either bθl−1 or bθl . Since every lower bound of a bidding interval is the

upper bound of some interval, it is w.l.o.g. to assume that b is equal to bθl for an appropriate

l. Lemma ?? shows that a lower expected utility can be achieved by inducing a bid only in the

bidding interval of a lower type. Lemma ?? and ?? combined state that if b ∈ [bθl−1 , bθl ] was

to induce a lower expected utility than bθk−1 , then b = bθl for 0 ≤ l ≤ k − 2. In order to show

that all bids bθl with 0 ≤ l ≤ k − 2 do not induce a lower expected utility than bθk−1 , we need

to show the following two Lemmas.

Lemma 13. For every pair of valuations θl and θk such that θz ≤ θl ≤ θk−1 the unique solution

of minimization problem M θk

b
θl

denoted by
(
f
θk,b

θl

θ1
, . . . , f

θk,b
θl

θm

)
is obtained as follows. Choose

the minimum p ∈ {1, . . . ,m} such that the probability vector (fθ1 , . . . , fθm) is an element of the

feasible set of minimization problem M θk

b
θl
, i.e. it satisfies

m∑
j=1

fθj = 1

m∑
j=1

fθjθ
j = µ

(fθ1 + · · ·+ fθl)
n−1

(
θk − bθl

)
≥

 h∑
j=1

fθj

n−1 (
θk − bθh

)
for all h ∈ {1, . . . ,m}.

fθj ≥ 0 for all j ∈ {1, . . . ,m}

where (fθ1 , . . . , fθp+2) is the unique solution of the system of linear equations with p+2 equations

(or p+1 equations if p ≥ l) given by
p+2∑
j=1

fθj = 1
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p+2∑
j=1

fθjθ
j = µ

(fθ1 + · · ·+ fθp)
n−1

(
θk − bθl

)
=

 h∑
j=1

fθj

n−1 (
θk − bθh

)
for all h ∈ {1, . . . , p}

and fθj = 0 for all j > p + 2 (or all j > p + 1 if p ≥ l). 17 Let p∗ be the minimum p. Then(
f
θk,b

θl

θ1
, . . . , f

θk,b
θl

θp+2

)
is the unique solution of the to system of equations

p∗+2∑
j=1

fθj = 1

p∗+2∑
j=1

fθjθ
j = µ

(fθ1 + · · ·+ fθl)
n−1

(
θk − bθl

)
=

 h∑
j=1

fθj

n−1 (
θk − bθh

)
for all h ∈ {1, . . . , p∗}

and it holds that f
θk,b

θl

θj
= 0 for all m ≥ j > p∗ + 2 if p∗ < l. If p∗ ≥ l, then there are p + 1

equations and it holds that f
θk,b

θl

θj
= 0 for all p∗ + 1 < j ≤ m.

The construction in this Lemma works as follows. We start with the equalities

2∑
j=1

fθj = 1

2∑
j=1

fθjθ
j = µ.

This is a linear system of two equations which gives a unique fθ1 and fθ2 . If with the proba-

bility vector (fθ1 , fθ2 , 0 . . . , 0) we obtain an element of the feasible set of minimization problem

M θk

b
θl
, then we stop. Otherwise we add the equation which is identical to the binding incentive

constraint with corresponding bid 0, i.e.

(fθ1 + fθ2 + fθ3)n−1
(
θk − bθl

)
= fn−1

θ1
θk

and obtain a unique solution for (fθ1 , fθ2 , fθ3) and check whether the vector

(fθ1 , fθ2 , fθ3 , 0 . . . , 0) is an element of the feasible set and so forth until we find an element

of the feasible set of minimization problem M θk

b
θl
. Let bθp∗ be the bid corresponding to this

final binding incentive constraint. The solution of minimization problem M θk

b
θl

is given by(
f
θk,b

θl

θ1
, . . . , f

θk,b
θl

θp∗+2 , 0, . . . , 0

)
where

(
f
θk,b

θl

θ1
, . . . , f

θk,b
θl

θp∗+2

)
is the unique solution of the system of

17If p ≥ l, then the number of equations equals to p+1 since the equation which is the binding incentive constraint
corresponding to bid bθl is redundant.



ENDOGENOUS WORST-CASE BELIEFS IN FIRST-PRICE AUCTIONS 47

equations given by the probability constraints and all added incentive constraints if p∗ < l − 1.

In case p∗ ≥ l − 1, the solution has p∗ + 1 variables which are greater than zero.

Lemma 14. For every pair of valuations θl and θk such that θz ≤ θl ≤ θk−2 the minimum p

for minimization problem M θk

b
θl

is greater or equal then l + 1.

Finally, Lemma ?? states that the construction in Lemma ?? leads to a minimum p which is

greater than l. This implies that the binding incentive constraint with corresponding bid l + 1,

i.e.

(fθ1 + · · ·+ fθl)
n−1

(
θk − bθl

)
= (fθ1 + · · ·+ fθl+1)n−1

(
θk − bθl+1

)
is added to the system of equations. Therefore, in minimization problem M θk

b
θl

the constraint

corresponding to bθl+1 is binding and it follows from Lemma ?? that bθl ≥θ
k
bθl+1 . With the

same reasoning in minimization problem M θk

b
θl+1

the constraint corresponding to bθl+2 is binding

and it follows from Lemma ?? that bθl+1 ≥θk bθl+2 so on. Therefore, we can construct the

following transitive chain

bθl ≥θ
k
bθl+1 ≥θ

k · · · ≥θk bθk−1 .

We conclude that there does not exist a bid which induces a lower expected utility than bθk−1

which shows the statement in (??). This completes the proof of part (ii) of Proposition ?? which

states that the worst-case belief condition is fulfilled for all types. �

We relegate the formal proofs of Lemma ?? and ?? to Appendices ?? and ?? and provide an

intuition for Lemma ??-??.

Intuition for Lemma ??-??. The intuition for Lemma ?? works similarly as for Lemma ??:

Assume there exists a solution of minimization problem M θk

b such that bθl−1 < b < bθl and θz ≤

θl ≤ θk−1, denoted by
(
fθ

k,b
θ1

, . . . , fθ
k,b
θm

)
. Consider two bids b′, b′′ ∈ [bθl−1 , bθl ] with b′′ < b < b′.

The utility for the θk-type of bidding b must be at least as high as the utilities of bidding b′′ or

b′. The higher fθ
k,b
θl−1 , the lower is the optimal bid for type θk (if we allow only for bids in the

interval [bθl−1 , bθl ]). Therefore, the incentive constraint corresponding to bid b′ sets an upper

bound on the valuation of fθ
k,b
θl−1 while the incentive constraint corresponding to bid b′′ sets a

lower bound. We will show that the conditions resulting from these two bounds contradict each

other. Intuitively, a bidder bidding in the interval [bθl−1 , bθl ] faces the bid distribution Gθl of

the θl-type which is constructed in order to make her indifferent between any bid in the interval

[bθl−1 , bθl ]. Thus, only for the θl-type the upper and the lower bound imposed by the incentive

constraints corresponding to bids b′′ and b′ are compatible.

In order to explain to intuition for Lemma ?? and Lemma ??, we illustrate how to construct

a solution of minimization problem M θk

b
θl

. Given some belief (fθ1 , . . . , fθm), the expected utility
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of bidder i with valuation θk and bid bθl is given by

(fθ1 + · · ·+ fθl)
n−1

(
θk − bθl

)
.

Choosing a probability function which minimizes the expected utility is equivalent to choosing a

distribution which minimizes the sum fθ1 + · · ·+ fθl . If we would look for a probability function

which minimizes the sum fθ1 + · · · + fθl considering only the first probability constraint, we

would set fθ1 + · · · + fθl to zero and put all the probability weight on types above θl. If we

add the constraint that the probability function must have mean µ, this is not longer possible

because the mean would be too high. Therefore, one would select types on which to put a

strictly positive probability weight in a way such that the mean of the probabilities of types

equal or lower than θl is minimized. Then one would put as much as possible probability weight

on types above θl without violating the constraint that the mean has to be µ. In other words,

independently of the valuation of µ one would put strictly positive probability weight only on

types 0 and θl+1 because this choice minimizes the mean of the probabilities of types equal or

lower than θl. Then we would choose fθ1 and fθl+1 such that the mean is µ. If we add the

incentive constraints, one would shift only so much probability weight on types above 0 as it is

necessary to fulfill the incentive constraints. In particular, one would put probability weight on

some type θj only if the probability weight on lower types cannot be increased without violating

a constraint.

The statement in Lemma ?? reflects exactly this reasoning. Consider the system of equations

given by the probability constraints and the equations which are identical to the binding incentive

constraints with corresponding bids bθ1 , . . . , bθp−1 , i.e.

p+1∑
j=1

fθj = 1

p+1∑
j=1

fθjθ
j = µ

(fθ1 + · · ·+ fθl)
n−1

(
θk − bθl

)
=

 h∑
j=1

fθj

n−1 (
θk − bθh

)
for all h ∈ {1, . . . , p− 1}.

Assume that for the solution fθ1 , . . . , fθp+1 of this system of equations (or fθ1 , . . . , fθp if p−1 ≥ l)

it does not hold that (fθ1 , . . . , fθp+1 , 0, . . . 0) is an element of the feasible set of minimization

problem M θk

b
θl
. If we now add the equation with corresponding bid bθp , i.e.

(fθ1 + · · ·+ fθl)
n−1

(
θk − bθl

)
= (fθ1 + · · ·+ fp)

n−1
(
θk − bθp

)
,

then in the solution of the extended system of equations it holds that fp+2 > 0 (or fθp+1 > 0

if p ≥ l). We have to check whether the vector (fθ1 , . . . , fθp+2 , 0, . . . 0) is an element of the
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feasible set of minimization problem M θk

b
θl
. Since the new vector has positive probability weight

on fθp+2 , it must hold that there is less probability weight on types below fp+2 than in the old

vector (fθ1 , . . . , fθp+2 , 0, . . . 0) (and analogously for the case p ≥ l). Therefore, the construction

in Lemma ?? ensures that probability weight on a higher type is shifted only if a constraint

in minimization problem M θk

b
θl

is not fulfilled and shifting weight on lower types is not possible

because all constraints corresponding to lower types already hold with equality.

This reasoning also explains the intuition of Lemma ??. It states that for every k ∈ {1, . . . ,m}

and l > k the feasible set of minimization problem M θk

b for b ∈ (bθl−1bθl ] is empty. The belief

of type θk is constructed such that there is just enough probability weight on types below θk in

order to induce a mixed strategy in the bidding interval of the θk-type. As argued above, the

choice of types on which there is strictly positive probability weight minimizes the mean of the

probabilities of types below θk. If one would try to induce a bid bθl above bθk , the probability

weight on the θl-type has to be increased. In order to preserve the mean, this would imply

a decrease of the probability weight on lower types. This is not possible without violating a

constraint since the belief of type θk had already the lowest possible mean of the probabilities

of types below θk.

In order to understand Lemma ??, consider minimization problem M θl

b
θl−1

for 1 ≤ l ≤ m. As

shown in the proof of part (i) of Proposition ??, the solution of this minimization problem is the

worst-case belief of type θl denoted by
(
fθ

l,∗
θ1

, . . . , fθ
l,∗
θm

)
. Since in this proof we have also shown

that in the worst-case belief of the θl-type there is no probability weight on types above θl, one

can also write
(
fθ

l,∗
θ1

, . . . , fθ
l,∗
θl

, 0, . . . 0
)
. In Appendix ?? we prove Lemma ?? which states that

the solution of minimization problem M θl

b
θl−1

is the solution of the system of l equations given

by the two probability constraints and the l − 2 incentive constraints given by the bids bθj for

1 ≤ j ≤ l − 2. Hence, for this minimization problem the minimum p equals to l − 2. Now

consider minimization problem M θk

b
θl−1

for 1 ≤ l ≤ k − 2. Let
(
f̃θ

k

θ1 , . . . , f̃
θk

θm

)
be the solution

of the system of l equations given by the two probability constraints and the binding incentive

constraints with corresponding bid bθj for 1 ≤ j ≤ l − 2. How does the vector
(
f̃θ

k

0 , . . . , f̃θ
k

θl

)
differ from

(
fθ

l,∗
θ1

, . . . , fθ
l,∗
θl

)
? In minimization problem M θl

b
θl−1

a constraint with corresponding

bid bθj given by

(fθ1 + . . .+ fθl−1)
(
θl − bθl−1

)
≥ (fθ1 + . . .+ fθj )

(
θl − bθj

)
is equivalent to

(fj+1 + . . .+ fθl−1)
(
θl − bθl−1

)
− (fθ1 + . . .+ fθj )

(
bθl − bθj

)
≥ 0.
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In minimization problem M θk

b
θl−1

the same incentive constraint is equivalent to

(fj+1 + . . .+ fθl−1)
(
θk − bθl

)
− (fθ1 + . . .+ fθj )

(
bθl − bθj

)
≥ 0.

This shows that in minimization problem M θk

b
θl−1

it is possible to put more probability weight

on lower types. Thus, the value of the objective function is lower under
(
f̃θ

k

θ1 , . . . , f̃
θk

θl

)
than

under
(
fθ

l,∗
θ1

, . . . , fθ
l,∗
θl

)
. But then the constraint corresponding to bid bθl is not fulfilled under(

f̃θ
k

θ1 , . . . , f̃
θk

θl

)
. Hence, one has to add an additional constraint. Since the constraint correspond-

ing to bid bθl−1 is redundant, one has to add the constraint corresponding to bid bθl . Thus, the

minimum p in minimization problem M θk

b
θl−1

is greater than l − 1.

After proving the best-reply and the worst-case belief condition, we conclude that the strate-

gies and belief specified in ?? indeed constitute a worst-case belief equilibrium.

6. Conclusion

We provide a novel approach to endogenize beliefs in games of incomplete information and

apply this approach to bidding in first-price auctions. Our model is based on the assumption

that bidders in a first-price auction who, apart from the mean of the distribution, have little

information about the valuations of their competitors prepare for the worst case. Preparing

for the worst-case means that the bidders assume that given the bidding strategies of their

competitors they will face ex-ante the worst distribution of valuations. Given that all bidders

prepare in the same way a worst-case belief equilibrium arises whenever all bidders best-reply

to the bidding strategies of their competitors and their corresponding worst-case beliefs. In

particular, this implies there is no other belief such that the best reply to this belief will yield

a higher pay-off than in equilibrium. The resulting beliefs are type-dependent and due to the

assumption of a constant mean of the distribution the beliefs cannot be strictly ordered by first-

order stochastic dominance. In particular this implies that bidders with higher valuations not

necessarily face higher competition. Nevertheless, we show that a worst-case equilibrium exists

that allocates the object to the bidder with the highest valuation with probability one.

Our concept of the worst-case belief equilibrium can be easily extended to any game of incom-

plete information and provides a very intuitive way to endogenize beliefs. This is in particular

helpful when modeling situations in which players only interact infrequently and thus may not

be able to form reasonable objective beliefs.
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7. Notation

• Ui (θi, f−i, bi, β−i) denotes the expected utility of a bidder i with valuation θi, belief

about the other bidders’ valuations f−i, bid bi given the other bidders’ strategies β−i.

• For bidder i with valuation θi and for each belief f−i about the other bidders’ valuations

and bidding strategies β−i, the set of best replies of bidder i is given by

Br
i (θi, f−i, β−i) = arg max

bi

Ui (θi, f−i, bi, β−i) .

• For θk ∈ Θ, β∗
(
θk
)
denotes the worst-case strategy of a bidder with valuation θk and(

fθ
k,∗
θ1

, . . . , fθ
k,∗
θm

)
denotes the worst-case belief of a bidder with valuation θk. The bid distribution of a

bidder with valuation θk which is prescribed by the worst-case strategy is denoted by

Gθk , i.e. β∗
(
θk
)

= Gθk . The support of this bid distribution is given by [bθk−1 , bθk ].

• The worst-case belief of a bidder with valuation θk is the solution of minimization prob-

lem M<b
θk−1

which is defined by

min
(fθ1 ,...,fθm )

k−1∑
j=1

fθj

n−1

(θk − bθk−1)

s.t. fθj ≥ 0 for all 1 ≤ j ≤ m
m∑
j=1

fθj = 1

m∑
j=1

fθjθ
j = µ

(fθ1 + · · ·+ fθl−1)n−1 (θk − bθk−1) ≥

h−1∑
j=1

fθj + fθhGθh (s)

n−1 (
θk − s

)
for all h ∈ {1, . . . , k − 1} and all s ∈ [bθh−1 , bθh ].

That is, minimization problem M<b
θk−1

ensures that bidding bθk−1 induces at least the

expected utility than bidding any lower bid given the other bidders’ worst-case strategy

β∗.

• For a bidder with valuation θi, a bid bi and a strategy β−i of the other bidders, the set

of probability functions Fmin
n−1 (θi, bi, β−i) given by

Fmin
n−1 (θi, bi, β−i) = arg min

f−i∈Fn−1
µ

{U (θi, f−i, bA, β−i) | bA ∈ Br (θi, f−i, β−i)}
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is called the set of minimizing probability functions of bid bi for a bidder with valuation

θi given the other bidders’ strategies β−i.

• For a bidder with valuation θ minimization problem M θ
b of a bid b ∈ [bθl−1 , bθl ] is the

minimization problem corresponding to its minimizing probability function, i.e. all so-

lutions of minimization problem M θ
b are minimizing probability function of b for bidder

with valuation θ given the other bidders’ worst-case strategy β∗. Formally, minimization

problem M θ
b is given by

min
(fθ1 ,...,fθm )

 l−1∑
j=1

fθj + fθlGl(b)

n−1

(θ − b)

s.t. fθj ≥ 0 for all 1 ≤ j ≤ m
m∑
j=1

fθj = 1

m∑
j=1

fθjθ
j = µ

(fθ1 + · · ·+ fθl−1)n−1 (θ − b) ≥

 h∑
j=1

fθj + fθhGθh (s)

n−1

(θ − s)

for all h ∈ {1, . . . ,m} and all s ∈ [bθh−1 , bθh ],

• We denote the solution of minimization problem M θ
b by fθ,b =

(
fθ,b
θ1
, . . . , fθ,bθm

)
.

• Apart from the constraints

fθj ≥ 0 for all 1 ≤ j ≤ m
m∑
j=1

fθj = 1

m∑
j=1

fθjθ
j = µ,

every constraint in minimization problem M θ
b compares the utility of bidding b to the

utility of bidding some other bid b′, which is formalized by

U (θ, f, b, β∗) ≥ U
(
θ, f, b′, β∗

)
.

We call such a constraint an incentive constraint corresponding to bid b′.

• For a type θ and bids b, b′ we use the notation b ≤θ b′ if for the θ-type bid b′ does

not induce a strictly lower expected utility than bid b together with their minimiz-

ing probability functions given the other bidders’ worst-case strategy β∗. Formally, let

fmin (θ, b, β∗) ∈ Fmin (θ, b, β∗) and fmin (θ, b′, β∗) ∈ Fmin (θ, b′, β∗) . Then it holds
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that

U
(
θ, fmin (θ, b, β∗) , b, β∗

)
≤ U

(
θ, fmin

(
θ, b′, β∗

)
, b′, β∗

)
⇒ b ≤θ b′,

U
(
θ, fmin (θ, b, β∗) , b, β∗

)
< U

(
θ, fmin

(
θ, b′, β∗

)
, b′, β∗

)
⇒ b <θ b′

and

U
(
θ, fmin (θ, b, β∗) , b, β∗

)
= U

(
θ, fmin

(
θ, b′, β∗

)
, b′, β∗

)
⇒ b =θ b′.

We also use the notation b <θ b′ if b′ does not have a minimizing probability function

given θ because it is never a best reply for a bidder with valuation θ, but b does have a

minimizing probability function. We use the notation b =θ b′ if neither b, nor b′ have a

minimizing probability function.

Appendices

Appendix A. Proof of Lemma ??

Assume there exists a belief f1,b =
(
f1,b0 , f1,bθ , f1,b1

)
∈ Fµ and a bid b ∈

(
θ, b1

)
such that b is

a best reply to f1,b for a bidder with valuation 1 but f1,b differs from the worst-case belief of

the 1-type given by f1,∗. Let δ0, δθ, δ1 be real numbers such that(
f1,b0 , f1,bθ , f1,b1

)
=
(
f1,∗0 + δ0, f

1,∗
θ + δθ, f

1,∗
1 + δ1

)
.

Since f1,b has to fulfill the two probability constraints, it must hold that

(17) δ0 + δθ + δ1 = 0

(18) δθθ + δ1 = 0.

Due to (??), (??) and f1,b 6= f1,∗, it must hold that either δ0 < 0 or δ0 > 0. First, we consider

the case δ0 < 0. Subtracting (??) from (??) gives

δ0 + δθ (1− θ) = 0

(19) ⇔ δθ = − δ0
1− θ

from which follows that δθ > 0. Due to (??), it follows that δ1 < 0. By definition of the bid

distribution of the 1-type in (??), it holds that(
f1,∗0 + f1,∗θ + f1,∗1 G1 (b)

)
(1− b) =

(
f1,∗0 + f1,∗θ

)
(1− θ) .
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Since b is a best reply given f1,b, it holds that(
f1,b0 + f1,bθ + f1,b1 G1 (b)

)
(1− b) ≥

(
f1,b0 + f1,bθ

)
(1− θ)

⇔
(
f1,∗0 + δ0 + f1,∗θ + δθ + (f1,∗1 + δ1)G1 (b)

)
(1− b) ≥

(
f1,∗0 + δ0 + f1,∗θ + δθ

)
(1− θ)

from which follows that(
δ0 −

δ0
1− θ

+ δ1

)
(1− b) ≥

(
δ0 −

δ0
1− θ

)
(1− θ)

⇔ −θδ0 (b− θ)− δ1(1− θ) (1− b) ≤ 0.

Since b > θ and δ0 and δ1 are smaller than zero, this leads to a contradiction.

Now we consider the case δ0 > 0. It follows from (??) that δθ < 0. Due to (??), it follows

that δ1 > 0. By definition of the bid distribution of the 1-type in (??), it holds that(
f1,∗0 + f1,∗θ + f1,∗1 G1 (b)

)
(1− b) =

(
f1,∗0 + f1,∗θ + f1,∗1

) (
1− b1

)
.

Since b is a best reply given f1,b, it holds that(
f1,b0 + f1,bθ + f1,b1 G1 (b)

)
(1− b) ≥

(
f1,b0 + f1,bθ + f1,b1

) (
1− b1

)

⇔
(
f1,∗0 + δ0 + f1,∗θ + δθ +

(
f1,∗1 + δ1

)
G1 (b)

)
(1− b)

≥
(
f1,∗0 + δ0 + f1,∗θ + δθ + f1,∗1 + δ1

) (
1− b1

)
from which follows that(

δ0 −
δ0

1− θ
+ δ1G1 (b)

)
(1− b) ≥

(
δ0 −

δ0
1− θ

+ δ1

)(
1− b1

)
⇔ −θδ0

(
b1 − b

)
− δ1(1− θ)

(
1− b1 −G1 (b) (1− b)

)
≥ 0.

Since 1− b1 > 1− b > G1 (b) (1− b), b1 > b and δ0 and δ1 are greater than zero, this leads to a

contradiction. We conclude that if a bid b ∈
(
θ, b1

)
is a best reply to a belief for a bidder with

valuation 1, then this belief coincides with the worst-case belief of the 1-type.

Appendix B. Proof of Lemma ??

Proof. Assume that the feasible set of minimization problem M θ
b with b ∈ (bθ, b1] is not empty.

Since b > θ is never a best reply, we can assume that b ≤ θ. Let
(
fθ,b0 , fθ,bθ , fθ,b1

)
denote a

solution of this minimization problem. Let δ0, δθ, δ1 be real numbers such that(
fθ,b0 , fθ,bθ , fθ,b1

)
=
(
fθ,∗0 + δ0, f

θ,∗
θ + δθ, f

θ,∗
1 + δ1

)
.
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It holds that fθ,b1 > 0 because otherwise bidding above bθ is not a best reply. Since fθ,∗1 = 0, it

follows that δ1 > 0. Due to the probability constraints, it must hold

(20) δ0 + δθ + δ1 = 0

(21) δθθ + δ1 = 0.

Hence, it must hold that δθ < 0 because otherwise (??) cannot be fulfilled. Subtracting (??)

from (??) gives

δ0 + δθ − δθθ = 0.

Since δθ − δθθ < 0, it follows that δ0 > 0. Because the expected utility from bidding b must be

as least as high as the expected utility from bidding any other bid, it holds that(
fθ,b0 + fθ,bθ + fθ,b1 G1 (b)

)
(θ − b) ≥

(
fθ,b0

)
θ.

⇔
(
fθ,∗0 + δ0 + fθ,∗θ + δθ +

(
fθ,∗1 + δ1

)
G1 (b)

)
(θ − b) ≥

(
fθ,∗0 + δ0

)
θ.

Since fθ,∗1 = 0 it holds that(
fθ,∗0 + fθ,∗θ + fθ,∗1 G1 (b)

)
(θ − b) =

(
fθ,∗0 + fθ,∗θ

)
(θ − b) <

(
fθ,∗0 + fθ,∗θ

) (
θ − bθ

)
= fθ,∗0 θ

where the last equality follows from the definition of bθ in (??). It follows that

(δ0 + δθ + δ1G1 (b)) (θ − b) > δ0θ > 0.

Because b ≤ θ, it must hold that

δ0 + δθ + δ1G1 (b) > 0.

Since δ1 > 0 and G1 (b) ≤ 1, it holds that

0 < δ0 + δθ + δ1G1 (b) ≤ δ0 + δθ + δ1G1 (b) + δ1 (1−G1 (b)) = δ0 + δθ + δ1 = 0.

We conclude that the assumption that the feasible set of minimization problem M θ
b with b ∈

(bθ, b1] is not empty, leads to a contradiction. �

Appendix C. Proof of Lemma ??

Proof. The formal proof works by contradiction. Assume that there exists a b ∈
(
0, bθ

)
such that

there exists an element of the feasible set of minimization problemM1
b denoted by

(
f1,b0 , f1,bθ , f1,b1

)
.

Then for every s′, s′′ ∈ [0, bθ] it holds

(22)
(
f1,b0 + f1,bθ Gθ (b)

)
(1− b) ≥

(
f1,b0 + f1,bθ Gθ

(
s′
)) (

1− s′
)
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(23)
(
f b1,b0 + f1,bθ Gθ (b)

)
(1− b) ≥

(
f1,b0 + f1,bθ Gθ

(
s′′
)) (

1− s′′
)
.

Let s′′ < b < s′ be such that

(24) s′ − b = b− s′′ = α

for some appropriate α > 0. Rearranging of (??) gives

(25) ⇔ f1,b0 ≥
f1,bθ Gθ (s′) (1− s′)− f1,bθ Gθ (b) (1− b)

s′ − b
.

Rearranging of (??) gives

(26) ⇔ f1,b0 ≤
f1,bθ Gθ (b) (1− b)− f1,bθ Gθ (s′′) (1− s′′)

b− s′′
.

If we show that

(27)
f1,bθ Gθ (b) (1− b)− f1,bθ Gθ (s′′) (1− s′′)

b− s′′
<
f1,bθ Gθ (s′) (1− s′)− f1,bθ Gθ (b) (1− b)

s′ − b
,

we find a contradiction between inequalities (??) and (??). Due to (??), inequality (??) is

equivalent to

f1,bθ Gθ (b) (1− b)− f1,bθ Gθ
(
s′′
) (

1− s′′
)
< f1,bθ Gθ

(
s′
) (

1− s′
)
− f1,bθ Gθ (b) (1− b) .

If b is a best reply to f1,b, it must hold that f1,bθ > 0 because otherwise bidding zero or above

bθ would be strictly better. Therefore, the inequality is equivalent to

−2Gθ (b) (1− b) +Gθ
(
s′′
) (

1− s′′
)

+Gθ
(
s′
) (

1− s′
)
> 0.

Due to (??), this is equivalent to

−2Gθ (b)
(
1− s′ + α

)
+Gθ

(
s′′
) (

1− s′ + 2α
)

+Gθ
(
s′
) (

1− s′
)
> 0

(28) ⇔
(
1− s′

)
[−2Gθ (b) +Gθ

(
s′′
)

+Gθ
(
s′
)
] + α[−2Gθ (b) + 2Gθ

(
s′′
)
] > 0.

As defined in (??), for all s ∈ [0, bθ] the distribution Gθ is given by the equation

fθ,∗0 θ =
(
fθ,∗0 + fθ,∗θ Gθ (s)

)
(θ − s)

⇔ Gθ (s) =
fθ,∗0 s

fθ,∗θ (θ − s)
.

If b ≤ µ
2 , we choose s′′ = 0 and it holds that s′ = 2b ≤ µ = bθ.
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Then inequality (??) is equivalent to

(29)
(
1− s′

)( −2fθ,∗0 b

fθ,∗θ (θ − b)
+

fθ,∗0 s′

fθ,∗θ (θ − s′)

)
− 2αfθ,∗0 b

fθ,∗θ (θ − b)
> 0.

It holds that

θ − b− (θ − 2b) > 0

⇔ −2b (θ − 2b) + 2b (θ − b) > 0.

Due to (??), this is equivalent to

−2b
(
θ − s′

)
+ s′ (θ − b) > 0

⇔ −2fθ,∗0 b

fθ,∗θ (θ − b)
+

fθ,∗0 s′

fθ,∗θ (θ − s′)
> 0.

It follows that in order to show (??), it is sufficient to show that

(
θ − s′

)( −2fθ,∗0 b

fθ,∗θ (θ − b)
+

fθ,∗0 s′

fθ,∗θ (θ − s′)

)
− 2αfθ,∗0 b

fθ,∗θ (θ − b)
≥ 0.

Multiplying the inequality with (θ − b) and plugging in α = (s′ − b) reduces the problem to

(30) −2b
(
θ − s′

)
+ s′ (θ − b)− 2b

(
s′ − b

)
≥ 0.

It holds that

s′ ≥ 2b

⇔ −2b (θ − b) + s′ (θ − b) ≥ 0

⇔ −2bθ + s′θ − s′b+ 2b2 ≥ 0

−2bθ + 2bs′ + s′θ − s′b− 2bs′ + 2b2 ≥ 0

−2b
(
θ − s′

)
+ s′ (θ − b)− 2b

(
s′ − b

)
≥ 0.

Thus, we have shown inequality (??) from which follows that inequality (??) holds. This shows

that inequalities (??) and (??) lead to a contradiction in case b ≤ µ
2 .

By definition of bθ = µ, it holds for all s ∈ [0, µ] that(
fθ,∗0 + fθ,∗θ

)
(θ − µ) =

(
fθ,∗0 + fθ,∗θ Gθ (s)

)
(θ − s)

⇔ Gθ (s) =
−fθ,∗0 (µ− s) + fθ,∗θ (θ − µ)

fθ,∗θ (θ − s)
.
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If b > µ
2 , then we set s′ = µ and it holds that s′′ = 2b−µ > 0. Then inequality (??) is equivalent

to

(1− µ)

(
2fθ,∗0 (µ− b)− 2fθ,∗θ (θ − µ)

fθ,∗θ (θ − b)
+
−fθ,∗0 (µ− (2b− µ)) + fθ,∗θ (θ − µ)

fθ,∗θ (θ − (2b− µ))
+ 1

)

+ α

(
2fθ,∗0 (µ− b)− 2fθ,∗θ (θ − µ)

fθ,∗θ (θ − b)
+
−2fθ,∗0 (µ− (2b− µ)) + 2fθ,∗θ (θ − µ)

fθ,∗θ (θ − (2b− µ))

)
> 0

⇔ (1− µ)

(
2fθ,∗0 (µ− b)− 2fθ,∗θ (θ − µ)

fθ,∗θ (θ − b)
+
−2fθ,∗0 (µ− b) + fθ,∗θ (θ − µ)

fθ,∗θ (θ − 2b+ µ)
+ 1

)

+ α

(
2fθ,∗0 (µ− b)− 2fθ,∗θ (θ − µ)

fθ,∗θ (θ − b)
+
−4fθ,∗0 (µ− b) + 2fθ,∗θ (θ − µ)

fθ,∗θ (θ − 2b+ µ)

)
> 0

⇔ 2fθ,∗0 (µ− b) (θ − 2b+ µ) (1− µ+ α)− 2fθ,∗0 (µ− b) (θ − b) (1− µ+ 2α)

− 2fθ,∗θ (θ − µ) (θ − 2b+ µ) (1− µ+ α) + fθ,∗θ (θ − µ) (θ − b) (1− µ+ 2α)

+ fθ,∗θ (1− µ) (θ − 2b+ µ) (θ − b) > 0

⇔ 2fθ,∗0 (µ− b)[θ − θµ+ θα− 2b+ 2bµ− 2bα+ µ− µ+ µα− (θ − θµ+ 2θα− b+ bµ+ 2bα)]

− 2fθ,∗θ (θ − µ) (θ − 2b+ µ) (1− µ+ α) + fθ,∗θ (θ − µ) (θ − b) (1− µ+ 2α)

+ fθ,∗θ (1− µ) (θ − 2b+ µ) (θ − b) > 0.

⇔ 2fθ,∗0 (µ− b)[−αθ − b+ µb+ µ− µ+ µα]

− 2fθ,∗θ (θ − µ) (θ − 2b+ µ) (1− µ+ α) + fθ,∗θ (θ − µ) (θ − b) (1− µ+ 2α)

+ fθ,∗θ (1− µ) (θ − 2b+ µ) (θ − b) > 0.

By definition of α in (??), this is equivalent to

⇔ 2fθ,∗0 (µ− b)[−(µ− b)θ − b+ µb+ µ− µ+ µ(µ− b)]

− 2fθ,∗θ (θ − µ) (θ − 2b+ µ) (1− µ+ α) + fθ,∗θ (θ − µ) (θ − b) (1− µ+ 2α)

+ fθ,∗θ (1− µ) (θ − 2b+ µ) (θ − b) > 0.
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⇔ 2fθ,∗0 (µ− b)[µ− b− θ(µ− b)]

− 2fθ,∗θ (θ − µ) (θ − 2b+ µ) (1− µ+ α) + fθ,∗θ (θ − µ) (θ − b) (1− µ+ 2α)

+ fθ,∗θ (1− µ) (θ − 2b+ µ) (θ − b) ≥ 0.

Since 2fθ,∗0 (µ− b)[µ− b− θ(µ− b)] > 0, it is sufficient to show that

(31) − 2fθ,∗θ (θ − µ) (θ − 2b+ µ) (1− µ+ α)

+ fθ,∗θ (θ − µ) (θ − b) (1− µ+ 2α) + fθ,∗θ (1− µ) (θ − 2b+ µ) (θ − b) > 0.

It holds that

µ > b

⇔ (µ− b) (1− θ) (−θ + µ+ θ − 2b+ µ) > 0

⇔ − (θ − µ) (µ− b) (1− θ) + (θ − 2b+ µ) (µ− b) (1− θ) > 0

⇔ (θ − µ) [−θb+ b− µ+ µθ] + (θ − 2b+ µ) [θb+ µ− b− µθ] > 0

⇔ (θ − µ) [−θ + θb+ 2b− 2b2 − µ+ µb+ θ − 2bθ + θµ− b+ 2b2 − bµ]

+ (θ − 2b+ µ) [−θ + θb+ µ− µb+ θ − b− µθ + µb] > 0

⇔ (θ − µ) [− (θ − 2b+ µ) (1− b) + (θ − b) (1− 2b+ µ)]

+ (θ − 2b+ µ) [− (θ − µ) (1− b) + (1− µ) (θ − b)] > 0

Since fθ,∗θ > 0, this is equivalent to

− 2fθ,∗θ (θ − µ) (θ − 2b+ µ) (1− b) + fθ,∗θ (θ − µ) (θ − b) (1− 2b+ µ)

+ fθ,∗θ (1− µ) (θ − 2b+ µ) (θ − b) > 0.

Since −b = −µ+ α and −2b+ µ = −µ+ 2α, this is equivalent to

− 2fθ,∗θ (θ − µ) (θ − 2b+ µ) (1− µ+ α) + fθ,∗θ (θ − µ) (θ − b) (1− µ+ 2α)

+ fθ,∗θ (1− µ) (θ − 2b+ µ) (θ − b) > 0.

Thus, we have shown inequality (??) from which follows that inequality (??) holds. This

shows that inequalities (??) and (??) lead to a contradiction in case b > µ
2 . We conclude that

in any possible case the assumption that the feasible set of minimization problem M1
b with

b ∈ (0, bθ) is not empty, leads to a contradiction. �
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Appendix D. Proof of Lemma ??

Proof. We have to show that for every pair of valuations θl and θk such that θz ≤ θl ≤ θk−1

and every b with bθl−1 < b < bθl the feasible set of minimization problem M θk

b is empty. Assume

that there exist l and b with bθl−1 < b < bθl such that there exists an element of the feasible set

of minimization problem M θk

b denoted by
(
fθ

k,b
θ1

, . . . , fθ
k,b
θm

)
. Then for every s′, s′′ ∈ [bθl−1 , bθl ]

it holds

(32)
(
fθ

k,b
θ1

+ . . .+ fθ
k,b
θl−1 + fθ

k,b
θl

Gθl (b)
)n−1 (

θk − b
)

≥
(
fθ

k,b
θ1

+ . . .+ fθ
k,b
θl−1 + fθ

k,b
θl

Gθl
(
s′
))n−1 (

θk − s′
)

(33)
(
fθ

k,b
θ1

+ . . .+ fθ
k,b
θl−1 + fθ

k,b
θl

Gθl (b)
)n−1 (

θk − b
)

≥
(
fθ

k,b
θ1

+ . . .+ fθ
k,b
θl−1 + fθ

k,b
θl

Gθl
(
s′′
))n−1 (

θk − s′′
)
.

Let s′′ < b < s′ be such that

(34) n−1
√
θk − s′′ − n−1

√
θk − b =

n−1
√
θk − b− n−1

√
θk − s′ = α

⇔ n−1
√
θk − s′ + α =

n−1
√
θk − b , n−1

√
θk − s′ + 2α =

n−1
√
θk − s′′

for some appropriate α > 0. Rearranging of (??) gives

(
fθ

k,b
θ1

+ . . .+ fθ
k,b
θl−1 + fθ

k,b
θl

Gθl (b)
)

n−1
√
θk − b

≥
(
fθ

k,b
θ1

+ . . .+ fθ
k,b
θl−1 + fθ

k,b
θl

Gθl
(
s′
)) n−1

√
θk − s′

⇔
(
fθ

k,b
θ1

+ . . .+ fθ
k,b
θl−1

)(
n−1
√
θk − b− n−1

√
θk − s′

)
≥ fθ

k,b
θl

Gθl
(
s′
) n−1

√
θk − s′ − fθ

k,b
θl

Gθl (b)
n−1
√
θk − b

(35) ⇔ fθ
k,b
θ1

+ . . .+ fθ
k,b
θl−1 ≥

fθ
k,b
θl

Gθl (s′)
n−1
√
θk − s′ − fθ

k,b
θl

Gθl (b)
n−1
√
θk − b

n−1
√
θk − b− n−1

√
θk − s′

.

Rearranging of (??) gives

(
fθ

k,b
θ1

+ . . .+ fθ
k,b
θl−1 + fθ

k,b
θl

Gθl (b)
)

n−1
√
θk − b

≥
(
fθ

k,b
θ1

+ . . .+ fθ
k,b
θl−1 + fθ

k,b
θl

Gθl
(
s′′
)) n−1

√
θk − s′′
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⇔
(
fθ

k,b
θ1

+ . . .+ fθ
k,b
θl−1

)(
n−1
√
θk − s′′ − n−1

√
θk − b

)
≤ fθ

k,b
θl

Gθl (b)
n−1
√
θk − b− fθ

k,b
θl

Gθl
(
s′′
) n−1

√
θk − s′′

(36) ⇔ fθ
k,b
θ1

+ . . .+ fθ
k,b
θl−1 ≤

fθ
k,b
θl

Gθl (b)
n−1
√
θk − b− fθ

k,b
θl

Gθl (s′′)
n−1
√
θk − s′′

n−1
√
θk − s′′ − n−1

√
θk − b

.

If we show that

(37)
fθ

k,b
θl

Gθl (b)
n−1
√
θk − b− fθ

k,b
θl

Gθl (s′′)
n−1
√
θk − s′′

n−1
√
θk − s′′ − n−1

√
θk − b

<
fθ

k,b
θl

Gθl (s′)
n−1
√
θk − s′ − fθ

k,b
θl

Gθl (b)
n−1
√
θk − b

n−1
√
θk − b− n−1

√
θk − s′

,

we find a contradiction between inequalities (??) and (??). Inequality (??) is equivalent to

fθ
k,b
θl

Gθl (b)
n−1
√
θk − b− fθ

k,b
θl

Gθl (s′′)
n−1
√
θk − s′′

α

<
fθ

k,b
θl

Gθl (s′)
n−1
√
θk − s′ − fθ

k,b
θl

Gθl (b)
n−1
√
θk − b

α

⇔ −2fθ
k,b
θl

Gθl (b)
n−1
√
θk − b+ fθ

k,b
θl

Gθl
(
s′′
) n−1

√
θk − s′′ + fθ

k,b
θl

Gθl
(
s′
) n−1

√
θk − s′ > 0.

If bid b is a best reply, it must hold that fθ
k,b
θl

> 0 and therefore the inequality is equivalent to

−2Gθl (b)
n−1
√
θk − b+Gθl

(
s′′
) n−1

√
θk − s′′ +Gθl

(
s′
) n−1

√
θk − s′ > 0.

⇔ −2Gθl (b)
(
n−1
√
θk − s′ + α

)
+Gθl

(
s′′
) ( n−1

√
θk − s′ + 2α

)
+Gθl

(
s′
) n−1

√
θk − s′ > 0

⇔ n−1
√
θk − s′

(
−2Gθl (b) +Gθl

(
s′′
)

+Gθl
(
s′
))

+ α
(
−2Gθl (b) + 2Gθl

(
s′′
))
> 0

(38) ⇔ n−1
√
θk − s′

(
−2Gθl (b) +Gθl

(
s′′
)

+Gθl
(
s′
))
> α

(
2Gθl (b)− 2Gθl

(
s′′
))
.

For all s ∈ [bθl−1 , bθl ] the distribution Gθl is defined by the equation(
fθ

l,∗
θ1

+ . . .+ fθ
l,∗
θl−1

)n−1 (
θl − bθl−1

)
=
(
fθ

l,∗
θ1

+ . . .+ fθ
l,∗
θl−1 + fθ

l,∗
θl

Gθl (s)
)n−1 (

θl − s
)

⇔ Gθl (s) =

(
fθ

l,∗
θ1

+ . . .+ fθ
l,∗
θl−1

)(
n−1

√
θl − bθl−1 − n−1

√
θl − s

)
fθ

l,∗
θl

n−1
√
θl − s

where
(
fθ

l,∗
θ1

+ . . .+ fθ
l,∗
m

)
denotes the worst-case belief of the θl-type.

Let b∗ be defined by

n−1

√
θk − bθl−1 − n−1

√
θk − b∗ =

n−1
√
θk − b∗ − n−1

√
θk − bθl .
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If b ≤ b∗, we choose s′′ = bθl−1 and it holds that

n−1
√
θk − b− n−1

√
θk − s′ = n−1

√
θk − bθl−1 − n−1

√
θk − b

≤ n−1

√
θk − bθl−1 − n−1

√
θk − b∗ =

n−1
√
θk − b∗ − n−1

√
θk − bθl

⇒ n−1
√
θk − s′ ≥ n−1

√
θk − b− n−1

√
θk − b∗ +

n−1

√
θk − bθl ≥

n−1

√
θk − bθl

⇒ s′ ≤ bθl .

Moreover, we define

αs
′
1 :=

n−1

√
θl − bθl−1 − n−1

√
θl − b and αs

′
2 :=

n−1
√
θl − b− n−1

√
θl − s′.

Then inequality (??) is equivalent to

n−1
√
θk − s′

(
fθ

l,∗
θ1

+ . . .+ fθ
l,∗
θl−1

)n−1
fθ

l,∗
θl

(
−2αs

′
1

n−1
√
θl − b

+
αs
′
1 + αs

′
2

n−1
√
θl − s′

)

>

(
fθ

l,∗
θ1

+ . . .+ fθ
l,∗
θl−1

)n−1
fθ

l,∗
θl

α
2αs

′
1

n−1
√
θl − b

.

Since 1 > fθ
l,∗
θl

> 0 and
∑l

j=1 f
θl,∗
θj

= 1, it holds that
∑l−1

j=1 f
θl,∗
θj

> 0 and therefore the inequality

is equivalent to
n−1
√
θk − s′

(
−2αs

′
1

n−1
√
θl − b

+
αs
′
1 + αs

′
2

n−1
√
θl − s′

)
> α

2αs
′
1

n−1
√
θl − b

.

Since n−1
√ is concave, it holds that αs′1 ≤ αs

′
2 from which follows that

−2αs
′
1

n−1
√
θl − b

+
αs
′
1 + αs

′
2

n−1
√
θl − s′

> 0.

Hence, if θk > θl, it is sufficient to show that

−2αs
′
1

n−1
√
θl − s′ +

(
αs
′
1 + αs

′
2

)
n−1
√
θl − b ≥ 2ααs

′
1 .

Since αs′1 ≤ αs
′
2 , it is sufficient to show that

−2αs
′
1

n−1
√
θl − s′ + 2αs

′
1

n−1
√
θl − b ≥ 2ααs

′
1

⇔ − n−1
√
θl − s′ + n−1

√
θl − b ≥ α

which is true since n−1
√ is concave. Thus, we have shown inequality (??) and conclude that in

the case b ≤ b∗ the assumption that the feasible set of minimization problem M θk

b is not empty,

leads to a contradiction.
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If b > b∗, then we choose s′ = bθl and it holds that

n−1
√
θk − s′′ − n−1

√
θk − b =

n−1
√
θk − b− n−1

√
θk − bθl

≤ n−1
√
θk − b∗ − n−1

√
θk − bθl =

n−1

√
θk − bθl−1 − n−1

√
θk − b∗

⇒ n−1
√
θk − s′′ ≤ n−1

√
θk − bθl−1 − n−1

√
θk − b∗ +

n−1
√
θk − b ≤ n−1

√
θk − bθl−1

⇒ s′′ ≥ bθl−1 .

Moreover, we define

(39) αs
′′
1 :=

n−1
√
θl − b− n−1

√
θl − bθl αs

′′
2 :=

n−1
√
θl − s′′ − n−1

√
θl − b.

By definition of bθl , it holds that(
fθ

l,∗
θ1

+ . . .+ fθ
l,∗
θl

)n−1 (
θl − bθl

)
=
(
fθ

l,∗
θ1

+ . . .+ fθ
l,∗
θl−1 + fθ

l,∗
θl

Gθl (s)
)n−1 (

θl − s
)

⇔ Gθl (s) =

−
(
fθ

l,∗
θ1

+ . . .+ fθ
l,∗
θl−1

)(
n−1
√
θl − s− n−1

√
θl − bθl

)
+ fθ

l,∗
θl

n−1

√
θl − bθl

fθ
l,∗
θl

n−1
√
θl − s

.

Then inequality (??) is equivalent to

n−1

√
θk − bθl

2
(
fθ

l,∗
θ1

+ · · ·+ fθ
l,∗
θl−1

)
αs
′′
1 − 2fθ

l,∗
θl

n−1

√
θl − bθl

fθ
l,∗
θl

n−1
√
θl − b

+ 1


+
−
(
fθ

l,∗
θ1

+ · · ·+ fθ
l,∗
θl−1

)(
αs
′′
1 + αs

′′
2

)
+ fθ

l,∗
θl

n−1

√
θl − bθl

fθ
l,∗
θl

n−1
√
θl − s′′


> α

−2
(
fθ

l,∗
θ1

+ · · ·+ fθ
l,∗
θl−1

)
αs
′′
1 + 2fθ

l,∗
θl

n−1

√
θl − bθl

fθ
l,∗
θl

n−1
√
θl − b


+

2
(
fθ

l,∗
θ1

+ · · ·+ fθ
l,∗
θl−1

)(
αs
′′
1 + αs

′′
2

)
− 2fθ

l,∗
θl

n−1

√
θl − bθl

fθ
l,∗
θl

n−1
√
θl − s′′
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⇔ 2
(
fθ

l,∗
θ1

+ · · ·+ fθ
l,∗
θl−1

)
αs
′′
1

(
n−1

√
θk − bθl + α

)
n−1
√
θl − s′′

− 2fθ
l,∗
θl

n−1

√
θl − bθl

(
n−1

√
θk − bθl + α

)
n−1
√
θl − s′′ + fθ

l,∗
θl

n−1
√
θl − s′′ n−1

√
θl − b n−1

√
θk − bθl

−
(
fθ

l,∗
θ1

+ · · ·+ fθ
l,∗
θl−1

)(
αs
′′
1 + αs

′′
2

)(
n−1

√
θk − bθl + 2α

)
n−1
√
θl − b

+ fθ
l,∗
θl

n−1

√
θl − bθl

(
n−1

√
θk − bθl + 2α

)
n−1
√
θl − b > 0.

Since n−1
√ is concave, it holds that αs′′1 ≥ αs

′′
2 and therefore, it is sufficient to show that

(
fθ

l,∗
θ1

+ · · ·+ fθ
l,∗
θl−1

)(
αs
′′
1 + αs

′′
2

)(
n−1

√
θk − bθl + α

)
αs
′′
2

−
(
fθ

l,∗
θ1

+ · · ·+ fθ
l,∗
θl−1

)(
αs
′′
1 + αs

′′
2

)
α

n−1
√
θl − b

− 2fθ
l,∗
θl

n−1

√
θl − bθl

(
n−1

√
θk − bθl + α

)
n−1
√
θl − s′′

+ fθ
l,∗
θl

n−1
√
θl − s′′ n−1

√
θl − b n−1

√
θk − bθl

+ fθ
l,∗
θl

n−1

√
θl − bθl

(
n−1

√
θk − bθl + 2α

)
n−1
√
θl − b > 0.

If θk > θl, it holds that α n−1
√
θl − b < α

n−1
√
θk − b = α

(
n−1

√
θk − bθl + α

)
and therefore it is

sufficient to show that

(
fθ

l,∗
θ1

+ · · ·+ fθ
l,∗
θl−1

)(
αs
′′
1 + αs

′′
2

)(
n−1

√
θk − bθl + α

)
αs
′′
2

−
(
fθ

l,∗
θ1

+ · · ·+ fθ
l,∗
θl−1

)(
αs
′′
1 + αs

′′
2

)(
n−1

√
θk − bθl + α

)
α

− 2fθ
l,∗
θl

n−1

√
θl − bθl

(
n−1

√
θk − bθl + α

)
n−1
√
θl − s′′

+ fθ
l,∗
θl

n−1
√
θl − s′′ n−1

√
θl − b n−1

√
θk − bθl

+ fθ
l,∗
θl

n−1

√
θl − bθl

(
n−1

√
θk − bθl + 2α

)
n−1
√
θl − b ≥ 0.

Since n−1
√ is concave, it holds that αs′′2 ≥ α and it is sufficient to show that

− 2fθ
l,∗
θl

n−1

√
θl − bθl

(
n−1

√
θk − bθl + α

)
n−1
√
θl − s′′

+ fθ
l,∗
θl

n−1
√
θl − s′′ n−1

√
θl − b n−1

√
θk − bθl

+ fθ
l,∗
θl

n−1

√
θl − bθl

(
n−1

√
θk − bθl + 2α

)
n−1
√
θl − b ≥ 0.
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By definition of α in (??), it holds that n−1

√
θk − bθl + α =

n−1
√
θk − b and hence, we have to

show that

⇔ −2
n−1

√
θl − bθl

n−1
√
θk − b n−1

√
θl − s′′ + n−1

√
θl − s′′ n−1

√
θl − b n−1

√
θk − bθl

+
n−1

√
θl − bθl

n−1
√
θk − s′′ n−1

√
θl − b ≥ 0

⇔ n−1
√
θl − s′′

(
n−1
√
θl − b n−1

√
θk − bθl −

n−1

√
θl − bθl

n−1
√
θk − b

)
− n−1

√
θl − bθl

(
n−1
√
θk − b n−1

√
θl − s′′ − n−1

√
θk − s′′ n−1

√
θl − b

)
≥ 0.

Since
n−1
√
θl − b n−1

√
θk − bθl −

n−1

√
θl − bθl

n−1
√
θk − b > 0,

n−1
√
θk − b n−1

√
θl − s′′ − n−1

√
θk − s′′ n−1

√
θl − b > 0

and
n−1
√
θl − s′′ ≥ n−1

√
θl − bθl ,

it is sufficient to show that

⇔
(

n−1
√
θl − b n−1

√
θk − bθl −

n−1

√
θl − bθl

n−1
√
θk − b

)
−
(
n−1
√
θk − b n−1

√
θl − s′′ − n−1

√
θk − s′′ n−1

√
θl − b

)
≥ 0.

It holds that(
n−1
√
θl − b n−1

√
θk − bθl −

n−1

√
θl − bθl

n−1
√
θk − b

)
−
(
n−1
√
θk − b n−1

√
θl − s′′ − n−1

√
θk − s′′ n−1

√
θl − b

)
=

n−1
√
θl − b

(
n−1

√
θk − bθl +

n−1
√
θk − s′′

)
− n−1

√
θk − b

(
n−1

√
θl − bθl +

n−1
√
θl − s′′

)
.

By definition of α in (??), this is equal to

n−1
√
θl − b

(
n−1
√
θk − b− α+

n−1
√
θk − b+ α

)
− n−1

√
θk − b

(
n−1

√
θl − bθl +

n−1
√
θl − s′′

)
.

By definition of α1 and α2 in (??), this is equal to

=
n−1
√
θl − b

(
2
n−1
√
θk − b

)
− n−1

√
θk − b

(
n−1
√
θl − b− α1 +

n−1
√
θl − b+ α2

)
≥ n−1

√
θl − b

(
2
n−1
√
θk − b

)
− n−1

√
θk − b

(
2
n−1
√
θl − b

)
= 0.
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Thus, we have shown inequality (??) and conclude that also in the case b > b∗ the assumption

that the feasible set of minimization problem M θk

b for θk > θl and bθl−1 < b < bθl is not empty,

leads to a contradiction.

�

For the proofs to follow we will need the following Lemma.

Appendix E. Lemma ??

Lemma 15. For every valuation θk ≥ θz the worst-case belief fθk,∗ is the solution of the following

system of equations:
m∑
j=1

fθj = 1

m∑
j=1

fθjθ
j = µ

(fθ1 + · · ·+ fθk−1)n−1
(
θk − bθk−1

)
=

 h∑
j=1

fθj

n−1 (
θk − bθh

)
for all h ∈ {1, . . . , k − 2}.

Proof. As defined in ??, the worst-case belief of type θk is the solution of the minimization

problem with objective function

(fθ1 + · · ·+ fθk−1)n−1
(
θk − bθk−1

)
which consists of the two probability constraints and all incentive constraints with corresponding

bid lower than bθk−1 . We denote this minimization problem by M θk

<b
θk−1

. The constraints of this

minimization problem can be summarized as

m∑
j=1

fθj = 1

m∑
j=1

fθjθ
j = µ

(fθ1 + · · ·+ fθk−1)n−1
(
θk − bθk−1

)
≥

h−1∑
j=1

fθj

+ fθhGθh (s)

(θk − s)
for all h ∈ {1, . . . , k − 1} and all s ∈ [bθh−1 , bθh ].

According to part (i) of Proposition ??, the solution of minimization problem M θk

<b
θk−1

is also a

solution of minimization problem M θk

b
θk−1

. Hence, an incentive constraint corresponding to a bid

b with bθj−1 < b < bθj with 1 < j < k − 1 cannot be binding because otherwise it would follow

from Lemma ?? that the solution of minimization problem M θk

<b
θk−1

would be an element of the

feasible set of minimization problem M θk

b . But this would be a contradiction to Lemma ??.
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Hence, the set of possible binding incentive constraints is a subset of the incentive con-

straints with corresponding bids bθj with j ∈ {1, . . . , k − 2}. It is left to show that every

incentive constraint with corresponding bid bθj with j ∈ {1, . . . , k − 2} is binding. As shown

in the proof of part (i) of Proposition ??, in the worst-case belief of type θk there is no prob-

ability weight on types above θk and therefore we can write the worst-case belief of type θk

as
(
fθ

k,∗
θ1

, . . . , fθ
k,∗
θk

, 0, . . . , 0
)
. Assume that under

(
fθ

k,∗
θ1

, . . . , fθ
k,∗
θk

, 0, . . . , 0
)

an incentive con-

straint with corresponding bid bθj for some j ∈ {1, . . . , k − 2} is not binding in minimization

problem M θk

<b
θk−1

. Then we will construct a feasible solution of minimization problem M θk

<b
θk−1

which leads to a lower value of the objective function than
(
fθ

k,∗
θ1

, . . . , fθ
k,∗
θk

, 0, . . . , 0
)
given by

(
fθ

k,∗
θ1

+ · · ·+ fθ
k,∗
θk−1

)n−1 (
θk − bθk−1

)
.

Given the intuition provided above for Lemma ??, this should not come as a surprise. We

stated that in the solution of a minimization problem M θk

b
θk−1

the probability weight on lower

types should be as high as possible without violating a constraint because this allows to put

probability weight on high types without violating the second probability constraint. More

precisely, if a constraint with corresponding bid bθj is not binding, this implies that one can

reduce the probability weight on fθj−1 and increase probability weight on fθj without violating

an incentive constraint. This reduces the mean and therefore one can increase the probability

weight on fθk . This results in a lower value of the objective function. The rest of the proof

formalizes this idea.

Case 1: j = 1. Let

l = min
l̂>1

{
l̂ | fθ

k,∗
θl̂

> 0
}
,

i.e. let θl be the smallest valuation such that fθ
k,∗
θl

is strictly greater than zero. We claim that

the vector

fθ
k

ε =
(
fθ

k,∗
θ1

+ εθ1 , f
θk,∗
θ2

, . . . , fθ
k,∗
θl
− εθl , f

θk,∗
θl+1 , . . . , f

θk,∗
θk
− εθk , f

θk,∗
θk+1 , . . . , f

θk,∗
θm

)
fulfills all constraints of M θk

<b
θk−1

but leads to a lower value of the objective function. Here

εθ1 , εθl , εθk are strictly positive real numbers such that it holds

(40) εθ1 − εθl + εθk = 0

(41) −εθlθl + εθkθ
k = 0.

First, we will show that such εθ1 , εθl , εθk exist, then we will show that the proposed vector is an

element of the feasible set of minimization problem M θk

<b
θk−1

. Since it follows from (??) that
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εθ1−εθl < 0, it follows directly that the constructed vector leads to a lower value of the objective

function than fθk,∗.

Equations (??) and (??) are solved by any choice of εθ1 , εθl , εθk that fulfill

εθ1 − εθl + εθk = 0, εθk =
εθlθ

l

θk

⇔ εθ1 − εθl +
εθlθ

l

θk
= 0, εθk =

εθlθ
l

θk

⇔ εθ1 =
εθl
(
θk − θl

)
θk

, εθk =
εθlθ

l

θk
.

This shows that εθ1 , εθl , εθk can be chosen as strictly positive real numbers. Moreover, it holds

that the smaller the valuation of εθ1 , the smaller the valuation of εθl . Therefore, εθ1 , εθl , εθk can

be chosen such that the incentive constraint corresponding to bid zero given by(
fθ

k,∗
θ1

+ εθ1 + · · ·+ fθ
k,∗
θl
− εθl + · · ·+ fθ

k,∗
θk−1

)n−1 (
θk − bθk−1

)
≥
(
fθ

k,∗
θ1

+ εθ1
)n−1

θk

is fulfilled. The probability constraints are fulfilled by construction. Since all incentive con-

straints with corresponding bid b with bθh−1 < b < bθh and h < k − 1 are not binding under(
fθ

k,∗
θ1

, . . . , fθ
k,∗
θk

, 0, . . . , 0
)
, they will be fulfilled under fθkε if εθ1 and εθl are sufficiently small.

Since fθ
k,∗
θj

= 0 for all 1 < j < l, all incentive constraints with corresponding bid bθh with

1 < h < l are fulfilled if εθl is sufficiently small. Every other incentive constraint given by

(
fθ

k,∗
θ1

+ εθ1 + fθ
k,∗
θ2
− εθ2 + · · ·+ fθ

k,∗
θk−1

)n−1 (
θk − bθk−1

)
≥
(
fθ

k,∗
θ1

+ εθ1 + fθ
k

θ2 − εθ2 + . . .+ fθ
k,∗
θh

)n−1 (
θk − bθh

)
for l ≤ h ≤ k − 2 is fulfilled since it holds that(

fθ
k,∗
θ1

+ fθ
k,∗
θ2
−+ · · ·+ fθ

k,∗
θk−1

)n−1 (
θk − bθk−1

)
≥
(
fθ

k,∗
θ1

+ fθ
k

θ2 + . . .+ fθ
k,∗
θh

)n−1 (
θk − bθh

)
and εθ1−εθ2 < 0. Hence, we have found a vector of probabilities which fulfills all probability and

all incentive constraints while inducing a lower value of the objective function. Since fθ
k,∗
θl

> 0,

the constraint that all probabilities have to be non-negative is also fulfilled if εθl is sufficiently

small. We conclude that the assumption that the incentive constraint with corresponding bid 0

is not binding in the worst-case belief of type θk, leads to a contradiction.

Case 2: j > 1. If the non-binding incentive constraint is an incentive constraint with corre-

sponding bid bθj with j > 1, we proceed similarly, by constructing a vector which is an element

of the feasible set of minimization problem M θk

<b
θk−1

but leads to a lower value of the objective

function. Let

l′ = min
l̂>j

{
l̂ | fθ

k,∗
θl̂

> 0
}
,
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then it must hold that l′ ≤ k − 1 because otherwise bidding bθk−1 would never be a best reply.
We claim that the desired vector is given by

fθ
k

ε =
(
fθ

k,∗
θ1

− εθ1 , f
θk,∗
θ2

, . . . , fθ
k,∗
θj

+ εθj , f
θk,∗
θj+1 , . . . , f

θk,∗
θl
′ − εθl′ , f

θk,∗
θl
′
+1
, . . . , fθ

k,∗
θk

+ εθk , f
θk,∗
θk+1 , . . . , f

θk,∗
θm

)
where εθ1 , εθj , εθl′ , εθk are strictly positive real numbers such that it holds

(42) −εθ1 + εθj − εθl′ + εθk = 0

(43) εθjθ
j − εθl′θ

l′ + εθkθ
k = 0.

Since it follows from (??) that −εθ1 +εθj −εθl < 0, it follows directly that the constructed vector
leads to a lower value of the objective function than fθk,∗. In addition, we choose εθl′ sufficiently
small such that the non-binding incentive constraint(

fθ
k,∗
θ1

+ · · ·+ fθ
k,∗
θk−1

)n−1 (
θk − bθk−1

)
>
(
fθ

k,∗
θ1

+ · · ·+ fθ
k,∗
θj

)n−1 (
θk − bθj

)
is still fulfilled, i.e. it holds that

(44)
(
fθ

k,∗
θ1

+ · · ·+ fθ
k,∗
θk−1 − εθ1 + εθj − εθl′

)n−1 (
θk − bθk−1

)
≥
(
fθ

k,∗
θ1

+ · · ·+ fθ
k,∗
θj
− εθ1 + εθj

)n−1 (
θk − bθj

)
.

Again, we will first show that such εθ1 , εθj , εθj , εθk exist, then we will show that the proposed
vector is an element of the feasible set of minimization problem M θk

<b
θk−1

.

Equations (??) and (??) are solved by any choice of εθ1 , εθj , εθj , εθk which fulfills

−εθ1 + εθj − εθl′ + εθk = 0, εθk =
−εθjθj + εθl′θ

l′

θk

⇔ −εθ1 + εθj − εθl′ +
−εθjθj + εθl′θ

l′

θk
= 0, εθk =

−εθjθj + εθl′θ
l′

θk

⇔ −εθ1θk + εθjθ
k − εθl′θ

k − εθjθj + εθl′θ
l′ = 0, εθk =

−εθjθj + εθl′θ
l′

θk

⇔ εθj
(
θk − θj

)
= εθl′

(
θk − θj

)
+ εθ1θ

k, εθk =
−εθjθj + εθl′θ

l′

θk

⇔ εθj = εθl′ +
εθ1θ

k

θk − θj
, εθk =

−εθjθj + εθl′θ
l′

θk

⇔ εθj = εθl′ +
εθ1θ

k

θk − θj
, εθk =

−
(
εθl′ +

εθ1θ
k

θk−θj

)
θj + εθl′θ

l′

θk

⇔ εθj = εθl′ +
εθ1θ

k

θk − θj
, εθk =

−εθl′
(
θk − θj

)
+ εθ1θ

kθj + εθl′θ
l′

θk (θk − θj)

⇔ εθj = εθl′ +
εθ1θ

k

θk − θj
, εθk =

εθl′
(
θl
′ −
(
θk − θj

)
θj
)

+ εθ1θ
kθj

θk (θk − θj)
...

This shows that εθ1 , εθj , εθl′ , εθk can be chosen as strictly positive real numbers. Moreover,
it holds that the smaller the valuation of εθ1 and εθl′ , the smaller the valuation of εθj and εθk .
Therefore, εθ1 , εθj and εθl′ can be both chosen sufficiently small such that the incentive constraint
(??) is fulfilled.
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The probability constraints are fulfilled by construction. Since all incentive constraints with
corresponding bid b with bθh−1 < b < bθh for h < k − 1 are not binding under fθk,∗, they
will be fulfilled under fθkε if εθ1 , εθj , εθl′ , εθk are sufficiently small. Any incentive constraint with
corresponding bid bθh for 1 ≤ h ≤ j − 1 given by(

fθ
k,∗
θ1

+ fθ
k,∗
θ2

+ · · ·+ fθ
k,∗
θk−1 − εθ1 + εθj − εθl′

)n−1 (
θk − bθk−1

)
≥
(
fθ

k,∗
θ1

+ fθ
k,∗
θ2

+ . . .+ fθ
k,∗
θh
− εθ1

)n−1 (
θk − bθh

)
is fulfilled since it holds that(

fθ
k,∗
θ1

+ fθ
k,∗
θ2

+ · · ·+ fθ
k,∗
θk−1

)n−1 (
θk − bθk−1

)
≥
(
fθ

k,∗
θ1

+ fθ
k,∗
θ2

+ . . .+ fθ
k,∗
θh

)n−1 (
θk − bθh

)
and 0 > −εθ1 + εθj − εθl′ > −εθ1 . The incentive constraint with corresponding bid bθj is fulfilled
by construction. Since fθ

k,∗
θh

= 0 for j < h < l′, it holds that all incentive constraints with
corresponding bid bθh with j < h < l′ are fulfilled if εθl′ is sufficiently small.

An incentive constraint with corresponding bid bθh for l′ ≤ h ≤ k − 2 given by(
fθ

k

θ1 + fθ
k,∗
θ2

+ · · ·+ fθ
k,∗
θk−1 − εθ1 + εθj − εθl′

)n−1 (
θk − bθk−1

)
≥
(
fθ

k,∗
θ1

+ fθ
k,∗
θ2

+ . . .+ fθ
k,∗
θh
− εθ1 + εθj − εθl′

)n−1 (
θk − bθh

)
is fulfilled since it holds that(

fθ
k,∗
θ1

+ fθ
k,∗
θ2

+ · · ·+ fθ
k,∗
θk−1

)n−1 (
θk − bθk−1

)
≥
(
fθ

k,∗
θ1

+ fθ
k,∗
θ2

+ . . .+ fθ
k,∗
θh

)n−1 (
θk − bθh

)
and −εθ1 + εθj − εθl′ < 0. Hence, we have found a vector of probabilities, fθkε , which fulfills all
probability and all incentive constraints while inducing a lower value of the objective function.
We can assume that fθkθ1 > 0 because otherwise, the incentive constraint corresponding to bid
0 = bθ1 is not binding and the first case applies. Since fθk

θl′
> 0, the constraint that probabilities

are non-negative is also fulfilled if εθl′ is sufficiently small. We conclude that the assumption
that an incentive constraint with corresponding bid bθj for 1 ≤ j ≤ k − 2 is not binding, leads
to a contradiction.

�

Appendix F. Proof of Lemma ??

Proof. We have to show that for every pair of valuations θl and θk such that θz ≤ θk+1 ≤ θl and

every b with bθl−1 < b ≤ bθl the feasible set of minimization problem M θk

b
θl

is empty.

Assume that the feasible set of minimization problem M θk

b for some b ∈ (bθl−1 , bθl ] with l > k

is not empty. Let
(
fθ

k,b
θ1

, . . . , fθ
k,b
θm

)
denote a solution. We can write(

fθ
k,b
θ1

, . . . , fθ
k,b
θm

)
=
(
fθ

k,∗
θ1

+ δθ1 , . . . , f
θk,∗
θm + δθm

)
for some appropriate be real numbers δθ1 , . . . , δθm . We will prove the claim in four steps:

(1) For every j with k + 1 ≤ j ≤ m it holds δθj ≥ 0.
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(2) There exist strictly positive real numbers α and β such that

k∑
j=1

δθj = −α and
m∑

j=k+1

δθj = β

(3) Let
(
δ̂θ1 , . . . , δ̂θm

)
=

arg min


k∑
j=1

δ̃θjθ
j

∣∣∣∣∣∣
(
fθ

k,∗
θ1

+ δ̃θ1 , . . . , f
θk,∗
θm + δ̃θm

)
is element of feasible set of M θk

b ,

k∑
j=1

δ̃θj = −α


∣∣∣∣∣∣ ,

then it holds that δ̂θj ≤ 0 for all 1 ≤ j ≤ k − 1.

(4) We use steps (1)-(3) in order to show that the assumption that
(
fθ

k,b
θ1

, . . . , fθ
k,b
θm

)
is a

solution of minimization problem M θk

b , leads to a contradiction.

Proof of step (1)

As shown in the proof of part (i) of Proposition ??, it holds that fθ
k,∗
θj

= 0 for all j > k. Since

probabilities cannot be negative, it follows that δθj ≥ 0 for all k + 1 ≤ j ≤ m.

Proof of step (2)

Since k < l and fθ
k,∗
θj

= 0 for all j > k, it holds that(
fθ

k,∗
θ1

+ · · ·+ fθ
k,∗
θk

)n−1 (
θk − bθk

)
>
(
fθ

k,∗
θ1

+ · · ·+ fθ
l,∗
θl

Gθl (b)
)n−1 (

θk − b
)
.

As
(
fθ

k,∗
θ1

+ δθ1 , . . . , f
θk,∗
θk

+ δθk
)
is an element of the feasible set of minimization problem M θk

b ,

it must hold that

(
fθ

k

θ1 + δθ1 , . . . , f
θk,∗
θk

+ δθk + · · ·+
(
fθ

k,∗
θl

+ δθl
)
Gθl (b)

)n−1 (
θk − b

)
≥
(
fθ

k,∗
θ1

+ δθ1 , . . . , f
θk,∗
θk

+ δθk
)n−1 (

θk − bθk
)
.

It follows that either
∑k

j=1 δθj < 0 or
∑l

j=k+1 δθj > 0. Due to the first probability constraint,

it holds
∑m

j=1 δθj = 0. Assume that
∑k

j=1 δθj ≥ 0. Then it must hold
∑l

j=k+1 δθj > 0. Since

due to step (1) it holds that δθj ≥ 0 for all k + 1 ≤ j ≤ m, it follows that
∑m

j=1 δθj > 0 which

leads to a contradiction. Hence, it must hold that
∑k

j=1 δθj < 0. Therefore, there exist strictly

positive be real numbers α and β such that
∑k

j=1 δθj = −α and
∑m

j=k+1 δθj = β.

Proof of step (3)
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We start the proof of step (3) by showing the following claim: Let

(
δ̂θ1 , . . . , δ̂θm

)
=

arg min


k∑
j=1

δ̃θjθ
j

∣∣∣∣∣∣
(
fθ

k,∗
θ1

+ δ̃θ1 , . . . , f
θk,∗
θm + δ̃θm

)
is element of feasible set of M θk

b ,
k∑
j=1

δ̃θj = −α


∣∣∣∣∣∣ .

Then it holds that under
(
fθ

k

θ1 + δ̂θ1 , . . . , f
θk

θm + δ̂θm
)
in minimization problemM θk

b all constraints

with corresponding bid bθt with t ≤ k − 1 are binding i.e.

(45)
(
fθ

k,∗
θ1

+ δ̂θ1 , . . . , f
θk,∗
θk

+ δ̂θk + · · ·+
(
fθ

l,∗
θl

+ δ̂θl
)
Gθl (b)

)n−1 (
θk − b

)
=
(
fθ

k,∗
θ1

+ δ̂θ1 + · · ·+ fθ
k,∗
θt + δ̂θt

)n−1 (
θk − bθt

)
for all t ≤ k − 1.

In order to show this claim, consider all real numbers δ̃θ1 , . . . , δ̃θm such that
∑k

j=1 δ̃θj = −α

and
(
fθ

k,∗
θ1

+ δ̃θ1 , . . . , f
θk,∗
θm + δ̃θm

)
is an element of feasible set of minimization problem M θk

b . If

we would consider only the constraint
∑k

j=1 δ̃θj = −α, then one could achieve arbitrarily small

values of the term
∑k

j=1 δ̃θjθ
j by choosing high values of δθ1 , . . . , δk−1 which results in a low

value of δθk . Adding the constraint that
(
fθ

k,∗
θ1

+ δ̃θ1 , . . . , f
θk,∗
θm + δ̃θm

)
is an element of feasible

set of minimization problem M θk

b , the value of the term
∑k

j=1 δ̃θjθ
j is minimized if the values

of all δ̃θj with 1 ≤ j ≤ k − 1 are as high as possible and the value of δθk is as low as possible

without violating any incentive constraint.

An incentive constraint with corresponding bid bθt−1 < b′ < bθt with t < k cannot be binding

because then due to Lemma ??,
(
fθ

k,b
θ1

, . . . , fθ
k,b
θm

)
would be an element of the feasible set of

minimization problem M θk

b′ which would be a contradiction to Lemma ??. It follows that if all

constraints with corresponding bid bθt with t < k are binding, δ̃θ1 , . . . , δ̃θk−1 cannot be increased

without violating an incentive constraint in minimization problem M θk

b . A decrease of δ̃θt with

t ≤ k − 1 would imply a higher δ̃θk which would lead to a higher value of the term
∑k

j=1 δθjθ
j .

We conclude that the values of all δθj with 1 ≤ j ≤ k−1 are as high as possible if all constraints

with corresponding bid bθt with t ≤ k − 1 are binding i.e.

(
fθ

k,∗
θ1

+ δ̂θ1 , . . . , f
θk,∗
θk

+ δ̂θk + · · ·+
(
fθ

l,∗
θl

+ δ̂θl,

)
Gθl (b)

)n−1 (
θk − b

)
=
(
fθ

k,∗
θ1

+ δ̂θ1 + · · ·+ fθ
k,∗
θt + δ̂θt

)n−1 (
θk − bθt

)
for t ≤ k − 1.

We will use this claim in order to show inductively that all δ̂θ1 , . . . , δ̂θk−1 are non-positive.

We start the induction by showing that δ̂θ1 ≤ 0. Due to the first probability constraint, it holds
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that
k∑
j=1

δ̂θj +
l∑

j=k+1

δ̂θj +
m∑

j=l+1

δ̂θj = 0

and since l > k, we can conclude with the same reasoning as in step (1) that

m∑
j=l+1

δ̂θj ≥ 0.

It follows that
k∑
j=1

δ̂θj +

l∑
j=k+1

δ̂θj ≤ 0.

Since δ̂θl ≥ 0, it holds that

δ̂θ1 + . . .+ δ̂θlGθl (b) ≤ 0.

Moreover, it follows from fθ
k,∗
θj

= 0 for j > k, that

(
fθ

k,∗
θ1

+ · · ·+ fθ
k,∗
θl

Gθl (b)
)n−1 (

θk − b
)

<
(
fθ

k,∗
θ1

+ · · ·+ fθ
k,∗
θk

)n−1 (
θk − bθk

)
=
(
fθ

k,∗
θ1

)n−1
θk

where the equality follows from Lemma ??. It also holds that(
fθ

k,∗
θ1

+ δ̂θ1 + · · ·+
(
fθ

k,∗
θl

+ δ̂θl
)
Gθl (b)

)n−1 (
θk − b

)
≥
(
fθ

k

θ1 + δ̂θ1
)n−1

θk

from which it follows that

δ̂θ1 ≤

(
δ̂θ1 + · · ·+ δ̂θlGθl (b)

)
n−1
√
θk − b

n−1
√
θk

≤ 0.

We now turn our attention to the inductive step. Assume it is already shown that δ̂t ≤ 0 for all

1 ≤ t < k − 2. It follows from Lemma ?? that(
fθ

k,∗
θ1

+ · · ·+ fθ
k,∗
θt

)n−1 (
θk − bθt

)
=
(
fθ

k,∗
θ1

+ · · ·+ fθ
k,∗
θt+1

)n−1 (
θk − bθt+1

)
and due to the construction of δ̂θ1 , . . . δ̂θm it holds that

(
fθ

k,∗
θ1

+ δ̂θ1 + · · ·+ fθ
k,∗
θt + δ̂θt

)n−1 (
θk − bθt

)
=
(
fθ

k,∗
θ1

+ δ̂θ1 + · · ·+ fθ
k,∗
θt+1 + δ̂θt+1

)n−1 (
θk − bθt+1

)
from which follows that

δ̂θt+1 =

(
δ̂θ1 + · · ·+ δ̂θt

)(
n−1
√
θk − bθt −

n−1

√
θk − bθt+1

)
n−1

√
θk − bθt+1

≤ 0.
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We conclude that for all 1 ≤ j ≤ k − 1 it holds δ̂θj ≤ 0.

Proof of step (4)

Recall that we defined δθ1 , . . . , δθm by(
fθ

k,b
θ1

, . . . , fθ
k,b
θm

)
=
(
fθ

k,∗
θ1

+ δθ1 , . . . , f
θk,∗
θm + δθm

)
.

According to step (3) it holds
∑k

j=1 δ̂θjθ
j ≥

∑k
j=1 δ̂θjθ

k = −αθk. Hence, the maximal possible

valuation for the term −
∑k

j=1 δθjθ
j equals to αθk. Since due to step (1), δθj ≥ 0 for all

k + 1 ≤ j ≤ m, it follows that
∑m

j=k+1 δθjθ
j ≥

∑m
j=k+1 δθjθ

k+1 = βθk+1. Hence, the maximal

possible valuation for the term −
∑m

j=k+1 δθjθ
j equals to −βθk+1. It follows from the probability

constraints that

−α+ β = 0

k∑
j=1

δθjθ
j +

m∑
j=k+1

δθjθ
j = 0.

Subtracting the second equation from the first gives

−α−
k∑
j=1

δθjθ
j + β −

m∑
j=k+1

δθjθ
j = 0.

It holds

−α−
k∑
j=1

δθjθ
j + β −

m∑
j=k+1

δθjθ
j ≤ −α+ αθk + β − βθk+1.

Since α = β it holds

−α+ αθk + β − βθk+1 < 0.

Hence, the assumption that the feasible set of minimization problem M θk

b is not empty, leads to

a contradiction. �

Appendix G. Proof of Lemma ??

Let θl and θk be a pair of valuations such that θz ≤ θl ≤ θk−2 and let p∗ be the minimum p

in the construction in Lemma ??. Such a minimum p exists since the worst-case belief of the

θk-type is an element of the feasible set of minimization problem M θk

b
θl

and due to Lemma ??, in

M θk

b
θl

only the incentive constraints with corresponding bid bθj for 1 ≤ j ≤ k − 1 are binding if

plugging in the worst-case belief. That is, the construction in Lemma ?? stops at the latest after

adding the binding incentive constraint with corresponding bid bθk−1 . Let
(
f̃
θk,b

θl

θ1
, . . . , f̃

θk,b
θl

θm

)
denote the solution of minimization problem M θk

b
θl

as constructed in Lemma ??, i.e. if p∗ ≥ l

for all j > p∗ + 1 (and for all j > p∗ + 2 if p∗ < l) it holds that f̃θ
k,b

θl

0 = 0 and the vector
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f̃
θk,b

θl

θ1
, . . . , f̃

θk,b
θl

θp∗+1

)
is the unique solution of the system of equations given by

p∗+1∑
j=1

fθj = 1

p∗+1∑
j=1

fθjθ
j = µ

(fθ1 + · · ·+ fθl)
n−1

(
θk − bθl

)
=

 h∑
j=1

fθj

n−1 (
θk − bθh

)
for all h ∈ {1, . . . , p∗}.

We will prove this Lemma using the following steps:

(1) Let fθ
k,b

θl =

(
f
θk,b

θl

θ1
, . . . , f

θk,b
θl

θm

)
be a solution of minimization problem M θk

b
θl
. Then it

holds that fθ
k,b

θl

θj
= 0 for all j > p∗ + 1 if p∗ ≥ l and for all j > p∗ + 2 if p∗ < l.

(2) It holds for fθ
k,b

θl that all constraints in M θk

b
θl

with corresponding bid bθj with j ≤ p∗

have to be binding.

(3) It holds that (
f̃
θk,b

θl

θ1
, . . . , f̃

θk,b
θl

θm

)
=

(
f
θk,b

θl

θ1
, . . . , f

θk,b
θl

θm

)
.

Proof of step (1)

If p∗ > k, then the equation which is the binding incentive constraint corresponding to bid

bθl is obviously redundant and therefore, the system of equations in Lemma ?? consist of two

probability constraints and p∗ − 1 binding incentive constraints. This gives a system of p∗ + 1

equations for p∗+ 1 variables. We will provide the proof for the case p∗ ≥ l since the case p∗ < l

works analogously and we will show in Lemma ?? that it indeed holds that p∗ ≥ l.

Assume that there exists at least one h with p∗ + 1 < h ≤ m such that f bθl
θh

> 0. Let

δθ1 , . . . , δθm be such that(
f̃
θk,b

θl

θ1
+ δθ1 , . . . , f̃

θk,b
θl

θm + δθm

)
=

(
f
θk,b

θl

θ1
, . . . , f

θk,b
θl

θm

)
.

It holds that f̃θ
k,b

θl

j = 0 for all j with j > p∗ + 1. Therefore, it holds that δθj ≥ 0 for all

p∗ + 1 < j ≤ m and there exists at least one j with p∗ + 1 < j ≤ m such that δθj > 0.

Before we proceed with the proof, we introduce the concept of δ-sequences. We define a δ-

sequence as a vector
(
δ
θlmin

, . . . , δθlmax , δθkmin , . . . , δθkmax
)
with δkmin = δlmax+1 such that for all

j with lmin ≤ j ≤ lmax it holds δθj < 0 and for all kmin ≤ j ≤ kmax it holds δθj ≥ 0. If at least
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one δθj is not equal to zero, it holds

(46)
lmax∑
j=lmin

δθjθ
j +

kmax∑
j=kmin

δθjθ
j >

lmax∑
j=lmin

δθjθ
lmax +

kmax∑
j=kmin

δθjθ
lmax =

kmax∑
j=lmin

δθjθ
lmax .

Every given vector (δθ1 , . . . , δθm) can be decomposed into δ-sequences. Let m′ be the number

of δ-sequences and
(
δ
θj,lmin

, . . . , δθj,lmax , δθj,kmin , . . . , δθj,kmax
)
be the j − th δ-sequence. Let

δ′
θj

:=
∑j,kmax

s=j,lmin
δθs and θj′ := θj,l

max . Then it holds

m∑
j=1

δθjθ
j >

m′∑
j=1

δ′θjθ
j,lmax =

m′∑
j=1

δ′θjθ
j′ .

The vector
(
δ′θ1 , . . . , δ

′
θm
)
can again be decomposed into δ-sequences. Let m′′ be the number of

δ-sequences in the vector (δ′θm , . . . , δ
′
θm) and

(
δ′
θj,lmin

, . . . , δ′
θj,lmax

, δ′
θj,kmin

, . . . , δ′
θj,kmax

)
be the

j − th δ-sequence. Let δ′′
θj

:=
∑j,kmax

s=j,lmin
δ′θs and θj′′ := θj,l

max . As in (??), we conclude that

m∑
j=1

δθjθ
j >

m′∑
j=1

δ′θjθ
j,lmax ≥

m′′∑
j=1

δ′′θjθ
j′,lmax .

If there does not exist a t with 1 ≤ t ≤ m such that
∑t

j=1 δθj > 0, the process of decomposing

into δ-sequences ends with a δ-sequence of length 2, i.e. with some vector
(
δfinal1 , δfinal2

)
with

δfinal1 < 0 and δfinal2 > 0. Since
∑m

j=1 δθj = 0, it holds that δ1 = −δ2 and there exists some

θfinal such that
m∑
j=1

δθjθ
j >

(
δfinal1 + δfinal2

)
θfinal = 0.

We illustrate the concept of δ-sequences with the following example.

Example 1. Let

(δθ1 , . . . , δθm) =

(
− 1

12
,−1

6
,

1

12
,−1

8
,
1

4
,
1

8

)
.

The vector has two relevant properties. It holds that
∑m

j=1 δθj = 0 and there does not exist a t

with 1 ≤ t ≤ m such that
∑t

j=1 δθj = 0. This vector can be decomposed into two δ-sequences

given by
(
− 1

12 ,−
1
6 ,

1
12

)
and

(
−1

8 ,
1
4 ,

1
8

)
. It holds that

− 1

12
θ1 − 1

6
θ2 +

1

12
θ3 > − 1

12
θ2 − 1

6
θ2 +

1

12
θ2 =

3∑
1

δθjθ
2

and

−1

8
θ4 +

1

4
θ5 +

1

8
θ6 > −1

8
θ4 +

1

4
θ4 +

1

8
θ4 =

6∑
4

δθjθ
4.

We define δ′1 =
∑3

1 δθj = −1
4 and δ′2 =

∑6
4 δθj = 1

4 . It holds

m∑
j=1

δθjθ
j >

3∑
j=1

δθjθ
2 +

6∑
j=4

δθjθ
4 = δ′1θ

2 + δ′2θ
4.
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The new vector (δ′1, δ
′
2) =

(
−1

4 ,
1
4

)
is a δ-sequence and it holds

δ′1θ
3 + δ′2θ

4 = −1

4
θ2 +

1

4
θ4 > −1

4
θ4 +

1

4
θ4 = 0.

Hence, it holds that
m∑
j=1

δθjθ
j > δ′1θ

2 + δ′2θ
4 > 0.

Now we proceed with the proof of step (1) of Lemma ??. Recall that
(
f
θk,b

θl

θ1
, . . . , f

θk,b
θl

θm

)
denotes a solution of minimization problem M θl

b
θk

and
(
f̃
θk,b

θl

θ1
, . . . , f̃

θk,b
θl

θm

)
denotes the solution

of minimization problem M θk

b
θl

as constructed in Lemma ??. Let the vector (δθ1 , . . . , δθm) be

defined by (
f̃
θk,b

θl

0 + δθ1 , . . . , f̃
θk,b

θl

1 + δθm

)
=

(
f
θk,b

θl

0 , . . . , f
θk,b

θl

1

)
.

We can decompose the vector (δθ1 , . . . , δθm) into δ-sequences. Due to the two probability con-

straints it must hold that
m∑
j=1

δθj = 0

and
m∑
j=1

δθjθ
j = 0.

Assume that the process of decomposing into δ-sequences ends with some vector
(
δfinal1 , δfinal2

)
with δfinal1 > 0 and δfinal2 < 0. Then there exists some 1 ≤ t ≤ m such that

∑t
j=1 δθj > 0.

First, we consider the case that t > p∗. It holds that f̃θ
k,b

θl

j = 0 for all j > p∗ + 1. Thus, it

holds that δθj ≥ 0 for all j > p∗+1 from which follows that
∑m

j=t+1 δθj ≥ 0. Since
∑t

j=1 δθj > 0,

it holds that
∑m

j=1 δθj > 0 which leads to a contradiction to the first probability constraint.

Second, we consider the case that t ≤ p∗. Since the vector
(
f̃
θk,b

θl

θ1
, . . . , f̃

θk,b
θl

θm

)
cannot induce

a lower value of the objective function than the solution of the minimization problem, it must

hold that

(47)
l∑

j=1

δθj ≤ 0.

Since the solution of the minimization problem M θk

bl
,
(
f
θk,b

θl

θ1
, . . . , f

θk,b
θl

θm

)
, is an element of the

feasible set of minimization problem M θk

bl
and we defined the real numbers δθj for 1 ≤ j ≤ m by(

f̃
θk,b

θl

θ1
+ δθ1 , . . . , f̃

θk,b
θl

θm + δθm

)
=

(
f
θk,b

θl

θ1
, . . . , f

θk,b
θl

θm

)
.
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it holds that(
f̃
θk,b

θl

θ1
+ δθ1 + · · ·+ f̃

θk,b
θl

θl
+ δθl

)n−1 (
θk − bθl

)
≥
(
f̃
θk,b

θl

θ1
+ δθ1 + · · ·+ f̃

θk,b
θl

θt + δθt

)n−1 (
θk − bθt

)
.

By construction of the vector
(
f̃
θk,b

θl

θ1
, . . . , f̃

θk,b
θl

θm

)
, it holds that

(
f̃
θk,b

θl

θ1
+ · · ·+ f̃

θk,b
θl

θl

)n−1 (
θk − bθl

)
=

(
f̃
θk,b

θl

θ1
+ · · ·+ f̃

θk,b
θl

θt

)n−1 (
θk − bθt

)
from which follows that

(δθ1 + . . .+ δθl)
n−1

√
θk − bθl ≥ (δθ1 + . . .+ δθt)

n−1

√
θk − bθt

⇔ (δθ1 + . . .+ δθl) ≥
(δθ1 + . . .+ δθt)

n−1
√
θk − bθt

n−1

√
θk − bθl

> 0

which leads to a contradiction to (??). Therefore, the existence of δfinal1 > 0 and δfinal1 < 0

leads to a contradiction. Hence, there exists some θfinal such that

m∑
j=1

δθjθ
j ≥

m∑
j=1

δθjθ
final.

Since there exists a δθh for p∗ + 1 < h ≤ m with δθh > 0, this inequality is strict and it holds

m∑
j=1

δθjθ
j >

m∑
j=1

δθjθ
final = 0.

Since this is a contradiction to the second probability constraint, it follows that the assumption

that there exists some h with p∗ + 1 < h ≤ m such that fθ
k,b

θl

θh
> 0 leads to contradiction.

Proof of step (2)

It follows from Lemma ?? that(
fθ

k,∗
θ1

+ . . .+ fθ
k,∗
θk−1

)n−1 (
θk − bθk−1

)
=
(
fθ

k,∗
θ1

+ . . .+ fθ
k,∗
θl

)n−1 (
θk − bθl

)
.

The worst-case belief of type θk is an element of the feasible set of minimization problem

Mb
θk−1

. Thus, for every j ∈ {1, . . . ,m} and every b ∈ [bθj−1 , bθj ] it holds that

(
fθ

k,∗
θ1

+ . . .+ fθ
k,∗
θl

)n−1 (
θk − bθl

)
=
(
fθ

k,∗
θ1

+ . . .+ fθ
k,∗
θk−1

)n−1 (
θk − bθk−1

)
≥
(
fθ

k,∗
θ1

+ . . .+ fθ
k,∗
θj

Gθj (b)
)n−1 (

θk − b
)
.
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Hence, the worst-case belief equilibrium of type θk is an element of the feasible set of minimiza-

tion problem M θk

b
θl
. Assume that the construction in Lemma ?? has reached the step where the

constraint with corresponding bid bθk−1 was added, i.e. all constraints with corresponding bid

bθj for 1 ≤ j ≤ k − 1 were added and are binding. Consider the solution vector in this step i.e.

the solution of the system of linear equations consisting of the two probability constraints and

the binding incentive constraints with corresponding bid bθj for 1 ≤ j ≤ k − 1. According to

Lemma ??, this solution vector coincides with the worst-case belief equilibrium of type θk. As

argued above, this is an element of the feasible set of minimization problem M θk

b
θl

and therefore

the construction in Lemma ?? would stop. We conclude that it holds p∗ ≤ k − 1.

It follows from step (1) that fθ
k,b

θl

θj
= 0 for all j > k. Assume that there exists an incentive

constraint with corresponding bid bθh with 1 ≤ h ≤ p∗ which is not binding. Let (δθ1 , . . . , δθm)

be defined such that(
f
θk,b

θl

θ1
, . . . , f

θk,b
θl

θm

)
=
(
fθ

k,∗
θ1

+ δθ1 , . . . , f
θk,∗
θm + δθm

)
.

Then there exists j with 1 ≤ j ≤ m such that δj 6= 0.

We consider the following two cases:

• Case 1: It holds that(
f
θk,b

θl

θ1
+ · · ·+ f

θk,b
θl

θl

)n−1 (
θk − bθl

)
=

(
f
θk,b

θl

θ1
+ · · ·+ f

θk,b
θl

θk

)n−1 (
θk − bθk

)
.

• Case 2: It holds that(
f
θk,b

θl

θ1
+ · · ·+ f

θk,b
θl

θl

)n−1 (
θk − bθl

)
>

(
f
θk,b

θl

θ1
+ · · ·+ f

θk,b
θl

θk

)n−1 (
θk − bθk

)
.

Since by definition of
(
f
θk,b

θl

θ1
, . . . , f

θk,b
θl

θm

)
, this vector is an element of the feasible set of

minimization problem M θk

b
θl
, these two cases constitute all possible cases.

Case 1:

As before, we decompose the vector (δθ1 , . . . , δθm) into δ-sequences. If we can show that there

does not exist a t with 1 ≤ t ≤ m such that

(48)
t∑

j=1

δθj > 0,

the process of decomposing ends with some δ-sequence
(
δfinal1 , δfinal2

)
with δfinal1 < 0 and

δfinal2 > 0. Assume there exists a t with 1 ≤ t ≤ m such that
∑t

j=1 δθj > 0. Since p∗ ≤ k − 1,

it follows from step (1) that fθ
k,b

θl

θj
= 0 for all j > k. Because fθ

k,∗
θj

= 0 for all j > k, it follows

that δθj = 0 for all j > k. Due to the first probability constraint, it holds that
∑m

j=1 δθj = 0
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and therefore it must hold that
∑k

j=1 δθj = 0. Hence, t must be smaller than k. It follows from

Lemma ?? that(
fθ

k,∗
θ1

+ · · ·+ fθ
k,∗
θk

)n−1 (
θk − bθk

)
=
(
fθ

k,∗
θ1

+ · · ·+ fθ
k,∗
θt

)n−1 (
θk − bθt

)
.

Since
(
fθ

k,∗
θ1

+ δθ1 , . . . , f
θk,∗
θm + δθm

)
is an element of the feasible set of minimization problem

M θk

b
θl

and the incentive constraint with corresponding bid bθk is binding, it holds that

(
fθ

k,∗
θ1

+ δθ1 , . . . , f
θk,∗
θk

+ δθk
)n−1 (

θk − bθk
)

=
(
fθ

k,∗
θ1

+ δθ1 , . . . , f
θk,∗
θl

+ δθl
)n−1 (

θk − bθl
)

≥
(
fθ

k,∗
θ1

+ δθ1 , . . . , f
θk,∗
θt + δθt

)n−1 (
θk − bθt

)
.

It follows that
∑t

j=1 δθj ≤ 0 which is a contradiction to (??). Thus, the process of decomposing

into δ-sequences ends with some δ-sequence
(
δfinalθm , δfinal2

)
with δfinalθm < 0 and δfinal2 > 0.

Hence, it holds that
m∑
j=1

δθjθ
j >

m∑
j=1

δθjθ
final = 0.

But then the solution of minimization problem M θk

b
θl
, given by(

f
θk,b

θl

θ1
, . . . , f

θk,b
θl

θm

)
=

(
f̃
θk,b

θl

0 + δθ1 , . . . , f̃
θk,b

θl

1 + δθm

)
.

violates the second probability constraint.

Case 2:

As in the first case, if follows from the first probability constraint that
∑k

j=1 δθj = 0. Since(
fθ

k,∗
θ1

, . . . , fθ
k,∗
θm

)
is an element of the feasible set of minimization problem M θk

b
θl
, it must hold

that the value of the objective function if plugging in
(
fθ

k,∗
θ1

, . . . , fθ
k,∗
θm

)
is not greater than if

plugging in
(
f̃
θk,b

θl

θ1
, . . . , f̃

θk,b
θl

θm

)
. Therefore, it must hold

∑l
j=1 δθj ≤ 0. By assumption, it

holds that

(
fθ

k,∗
θ1

+ δθ1 + · · ·+ fθ
k,∗
θl

+ δθl
)n−1 (

θk − bθl
)

>
(
fθ

k,∗
θ1

+ δθ1 + · · ·+ fθ
k,∗
θk

+ δθk
)n−1 (

θk − bθk
)

and due to Lemma ??, it holds that(
fθ

k,∗
θ1

+ · · ·+ fθ
k,∗
θl

)n−1 (
θk − bθl

)
=
(
fθ

k,∗
θ1

+ δθ1 + · · ·+ fθ
k,∗
θk

+ δθk
)n−1 (

θk − bθk
)

from which follows that
∑l

j=1 δθj >
∑k

j=1 δθj = 0 which leads to a contradiction.

We conclude that in both cases the assumption that there exists a h with 1 ≤ h ≤ p∗ such

that the constraint with corresponding bid bθh is not binding in the solution of minimization
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problem M θk

b
θl
, leads to a contradiction.

Proof of step (3):

According to the first step, it holds that fθ
k,b

θl

j > 0 only for 1 ≤ j ≤ p∗ + 1 are greater than

zero. According to step (2), this vector has to fulfill p∗ + 1 equations given by

p∗+1∑
j=1

fθj = 1

p∗+1∑
j=1

fθjθ
j = µ

(fθ1 + · · ·+ fθl)
n−1

(
θk − bθl

)
=

 h∑
j=1

fθj

n−1 (
θk − bθh

)
for all h ∈ {1, . . . , p∗}.

If we consider only roots which are real positive numbers, this is equivalent to

p∗+1∑
j=1

fθj = 1

p∗+1∑
j=1

fθjθ
j = µ

(fθ1 + · · ·+ fθl)
n−1

√
θk − bθl =

 h∑
j=1

fθj

 n−1

√
θk − bθh for all h ∈ {1, . . . , p∗}.

We will show that this system of linear equations has a unique solution. In order to do so, we

will show that the matrix corresponding to the system of equations has rank p∗+ 1 by applying

the Gauss elimination method and obtaining a row echelon form. The incentive constraints can

be also summarized as

(fθ1 + · · ·+ fθh)

(
n−1

√
θk − bθh −

n−1

√
θk − bθh+1

)
− fθh+1

n−1

√
θk − bθh+1 = 0

for all h ∈ {1, . . . , p∗ − 1}. In order to obtain an upper triangular matrix, we will successively

eliminate the variables fθp∗+1 , fθp∗ , . . . , fθ2 . We eliminate the variable fθp∗+1 by multiplying the

equation
p∗+1∑
j=1

fθj = 1

by −θp∗+1 and adding it to
p∗+1∑
j=1

fθjθ
j = µ.
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Multiplying the resulting equation by (-1) gives

p∗∑
j=1

fθj
(
θp
∗+1 − θj

)
= θp

∗+1 − µ

which eliminates the variable fθp∗+1 . Moreover, the coefficient
(
θp
∗+1 − θj

)
is strictly positive.

Now we subsequently use the transformed incentive constraints given by

(fθ1 + · · ·+ fθh)

(
n−1

√
θk − bθh −

n−1

√
θk − bθh+1

)
− fθh+1

n−1

√
θk − bθh+1 = 0

for all h ∈ {1, . . . , p∗ − 1} in order to eliminate the variables fθp∗ , fθp∗−1 , . . . fθ2 . We show by

induction that in every elimination step all coefficients are strictly positive. In particular, this

implies that none of the coefficients is equal to zero and hence, we obtain an upper triangular

matrix after applying the Gauss elimination method. We start the induction by showing that

in the equation which is obtained after eliminating fθp∗ all coefficients are strictly positive. The

variable fθp∗ is eliminated by multiplying the incentive constraint given by

(fθ1 + · · ·+ fθp∗−1)

(
n−1

√
θk − bθp∗−1 − n−1

√
θk − bθp∗

)
− fθp∗

n−1

√
θk − bθp∗ = 0.

by the factor
θp
∗+1 − θp∗

n−1

√
θk − bθp∗

and adding it to the equation

p∗∑
j=1

fθj
(
θp
∗+1 − θj

)
= θp

∗+1 − µ.

This gives the equation

p∗−1∑
j=1

fθj

θp∗+1 − θj +

(
θp
∗+1 − θp∗

)(
n−1

√
θk − bθp∗−1 − n−1

√
θk − bθp∗

)
n−1

√
θk − bθp∗

 = θp
∗+1 − µ

where all coefficients are strictly positive. Now we turn our attention to the induction step

and assume that the variables fθp∗ , fθp∗−1 , . . . , fθh+1 have been eliminated and in the resulting

equation
h∑
j=1

cjfθj = c

all coefficients c and cj for 1 ≤ j ≤ h are strictly positive. Now we have to eliminate the variable

fθh using the incentive constraint

(fθ1 + · · ·+ fθh−1)

(
n−1

√
θk − bθh−1 − n−1

√
θk − bθh

)
− fθh

n−1

√
θk − bθh = 0.
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We multiply this equation by the factor

ch
n−1

√
θk − bθh

and add it to the equation
h∑
j=1

cjfθj = c.

This gives the equation

h−1∑
j=1

fθj

cj +

ch

(
n−1

√
θk − bθh−1 − n−1

√
θk − bθh

)
n−1

√
θk − bθh

 = c

in which all coefficients are strictly positive. We conclude that the system of equations given by

p∗+1∑
j=1

fθj = 1

p∗+1∑
j=1

fθjθ
j = µ

(fθ1 + · · ·+ fθl)
n−1

(
θk − bθl

)
=

 h∑
j=1

fθj

n−1 (
θk − bθh

)
for all h ∈ {1, . . . , p∗}

can be rearranged to a system of linear equations such that the resulting matrix has rank p∗+ 1

and therefore this system of equations has a unique solution.

Since the vector
(
f̃
θk,b

θl

θ1
, . . . , f̃

θk,b
θl

θp∗+1

)
fulfills the same p∗+1 equations and the solution of the

linear system of equations with p∗ + 1 equations and p∗ + 1 unknowns is unique, it holds that(
f̃
θk,b

θl

θ1
, . . . , f̃

θk,b
θl

θm

)
=

(
f
θk,b

θl

θ1
, . . . , f

θk,b
θl

θm

)
.

Appendix H. Proof of Lemma ??

We have to show that for every pair of valuations θl and θk such that θz ≤ θl ≤ θk−2 the

minimum p for minimization problem M θk

b
θl

is greater or equal then l + 1. We will prove the

claim by contradiction. Let
(
f
θk,b

θl

θ1
, . . . , f

θk,b
θl

θm

)
denote the solution of minimization problem

M θk

b
θl

as constructed in Lemma ??. Assume that the minimum p is strictly smaller than l + 1.

Under this assumption, we will show the following steps:

(1) The minimum p is equal to l − 1.

(2) Let δθ1 , . . . , δθm be real numbers such that(
f
θk,b

θl

θ1
, . . . , f

θk,b
θl

θm

)
=
(
fθ

k,∗
θ1

+ δθ1 , . . . , f
θk,∗
θm + δθm

)
.
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Then for all 1 ≤ j ≤ l it holds δθj > 0, for all l+ 2 ≤ j ≤ k it holds that δθj < 0 and for

all k + 1 ≤ j ≤ m it holds that δθj=0.

(3) We use step (2) in order to show that the fact that
(
f
θk,b

θl

θ1
, . . . , f

θk,b
θl

θm

)
is the solution

of minimization problem M θk

b
θl

leads to a contradiction to the assumption p∗ < l + 1

Proof of step (1):

If the minimum p, denoted by p∗, is strictly smaller than l + 1, then the last equation added

in the construction of Lemma ?? has a corresponding bid which is lower or equal than bθl−1

because the incentive constraint corresponding to bθl given by(
f
b
θl

θ1
+ · · ·+ f

b
θl

θl

)n−1 (
θk − bθl

)
≥
(
f
b
θl

θ1
+ · · ·+ f

b
θl

θl

)n−1 (
θk − bθl

)
is fulfilled trivially. Therefore, it holds p∗ < l. It cannot hold that p∗ < l − 1 because then

according to Lemma ?? there would be no probability weight on types above θl. This would

imply that fθ1 + · · ·+ fθl equals to 1 and therefore, the valuation of the objective function(
f
b
θl

θ1
+ · · ·+ f

b
θl

θl

)n−1 (
θk − bθl

)
is maximized. This cannot be optimal because the worst-case belief of the θk-type is an element

of the feasible set of minimization problem M θk

b
θl

and has a lower value of the objective function.

We conclude that p∗ = l − 1.

Proof of step (2):

Let δθ1 , . . . , δθm be real numbers such that it holds(
f
θk,b

θl

θ1
, . . . , f

θk,b
θl

θm

)
=
(
fθ

k,∗
θ1

+ δθ1 , . . . , f
θk,∗
θm + δθm

)
.

Since the minimum p equals to l−1, it follows from Lemma ?? that in the solution of minimization

problem M θk

b
θl

there is no probability weight on types above θl+1. In the worst-case belief of the

θk-type there is probability weight on types θj for 1 ≤ j ≤ k and there is no probability weight

on types θj for k + 1 ≤ j ≤ m. Therefore, for all j with l + 2 ≤ j ≤ k it holds that δθj < 0 and

for k + 1 ≤ j ≤ m it holds that δθj = 0. Note that the set {j | l + 2 ≤ j ≤ k} is not empty

because l ≤ k − 2. Since
∑m

j=1 δθj has to be zero, it follows that
∑l+1

j=1 δθj > 0.

According to Lemma ??, if plugging in the solution
(
f
θk,b

θl

θ1
, . . . , f

θk,b
θl

θm

)
into minimization

problem M θk

b
θl
, all constraints with corresponding bid below bθl have to binding. We use this in

order to show by induction that δθ1 , . . . , δθl have to be strictly positive.
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According to Lemma ?? it holds that

(
fθ

k,∗
θ1

+ · · ·+ fθ
k,∗
θk

)n−1 (
θk − bθk

)
=
(
fθ

k,∗
θ1

+ · · ·+ fθ
k,∗
θl

)n−1 (
θk − bθl

)
=
(
fθ

k,∗
θ1

+ · · ·+ fθ
k,∗
θl+1

)n−1 (
θk − bθl+1

)

(49) ⇔
(
fθ

k,∗
θ1

+ · · ·+ fθ
k,∗
θl

)
n−1

√(
θk − bθl

)
=
(
fθ

k,∗
θ1

+ · · ·+ fθ
k,∗
θl+1

)
n−1

√(
θk − bθl+1

)
.

It also holds that

(
fθ

k,∗
θ1

+ δθ1 + · · ·+ fθ
k,∗
θl

+ δθl
)n−1 (

θk − bθl
)

≥
(
fθ

k,∗
θ1

+ δθ1 + · · ·+ fθ
k,∗
θl+1 + δθl+1

)n−1 (
θk − bθl+1

)

(50) ⇔
(
fθ

k,∗
θ1

+ δθ1 + · · ·+ fθ
l,∗
θl

+ δθl
)

n−1

√(
θk − bθl

)
≥
(
fθ

k,∗
θ1

+ δθ1 + · · ·+ fθ
k,∗
θl+1 + δθl+1

)
n−1

√(
θk − bθl+1

)
.

Subtracting (??) from (??) gives

δθ1 + · · ·+ δθl ≥
(δθ1 + · · ·+ δθl+1) n−1

√(
θk − bθl+1

)
n−1

√(
θk − bθl

) > 0.

We start the inductive proof by showing that δθ1 is strictly positive. According to Lemma ??,

it holds that (
fθ

k,∗
θ1

+ δθ1 + · · ·+ fθ
k,∗
θl

+ δθl
)n−1 (

θk − bθl
)

=
(
fθ

k,∗
θ1

+ δθ1
)n−1

θk

(51) ⇔
(
fθ

k,∗
θ1

+ δθ1 + · · ·+ fθ
k,∗
θl

+ δθl
)

n−1

√(
θk − bθl

)
=
(
fθ

k,∗
θ1

+ δθ1
)

n−1
√
θk.

According to Lemma ?? it also holds that(
fθ

k,∗
θ1

δθ1 + · · ·+ fθ
k,∗
θk

+ δθk
)n−1 (

θk − bθk
)

=
(
fθ

k,∗
θ1

+ δθ1 + · · ·+ fθ
k,∗
θl

+ δθl
)n−1 (

θk − bθl
)

(52) ⇔
(
fθ

k,∗
θ1

+ δθ1 + · · ·+ fθ
k,∗
θk

+ δθk
)

n−1

√(
θk − bθl

)
=
(
fθ

k,∗
θ1

+ δθ1 + · · ·+ fθ
k,∗
θl

+ δθl
)

n−1

√(
θk − bθl

)
.

Subtracting (??) from (??) gives

n−1

√(
θk − bθl

)
(δθ1 + · · ·+ δθl) =

n−1
√
θkδθ1
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⇔ δθ1 =

n−1

√(
θk − bθl

)
(δθ1 + · · ·+ δθl)

n−1
√
θk

> 0.

Assume that we have shown that δθj > 0 for all 1 ≤ j < h for some 1 < h < l. Then we can

show that δθh+1 > 0. According to Lemma ?? it holds that

(
fθ

k,∗
θ1

+ δθ1 + · · ·+ fθ
k,∗
θh+1 + δθh+1

)n−1 (
θk − bθh+1

)
=
(
fθ

k,∗
θ1

+ δθ1 + · · ·+ fθ
k,∗
θh

+ δθh
)n−1 (

θk − bθh
)

and according to Lemma ?? it holds that(
fθ

k,∗
θ1

+ · · ·+ fθ
k,∗
θh+1

)n−1 (
θk − bθh+1

)
=
(
fθ

k,∗
θ1

+ · · ·+ fθ
k,∗
θh

)n−1 (
θk − bθh

)
from which follows that

(δθ1 + · · ·+ δθh)
n−1

√
θk − bθh = (δθ1 + · · ·+ δθh + δθh+1)

n−1

√
θk − bθh+1

⇔ δθh+1 =

(δθ1 + · · ·+ δθh)

(
n−1

√
θk − bθh −

n−1

√
θk − bθh+1

)
n−1

√
θk − bθh+1

> 0.

We conclude that for all j with 1 ≤ j ≤ l it holds δθj > 0.

Proof of step (3):

Let α and β be strictly positive be real numbers such that
∑l+1

j=1 δθj = α and
∑k

j=l+2 δθj = −β.

Due to the two probability constraints it must hold that

(53) α− β = 0

(54)
l+1∑
j=1

δθjθ
j +

k∑
j=l+2

δθjθ
j = 0.

Since for l + 2 ≤ j ≤ k it holds that δθj < 0, it holds that
∑k

j=l+2 δθjθ
j <

∑k
j=l+2 δθjθ

l+2 =

−βθl+2. It follows from step (2) that
∑l+1

j=1 δθjθ
j <

∑l+1
j=1 δθjθ

l+1 = αθl+1. According to (??),

it holds that α = β and it follows that

l+1∑
j=1

δθjθ
j +

k∑
j=l+2

δθjθ
j < αθl+1 − βθl+2 = βθl+1 − βθl+2 < 0

which is a contradiction to (??). Hence, we have found a contradiction to the assumption that

the minimum p is strictly smaller than l + 1.
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Appendix I. Proof of Lemma ??

Proof. For b ∈ [bθk−1 , bθk ] let
(
fθ

k,b
θ1

, . . . , fθ
k,b
θm

)
denote a solution of minimization problem M θk

b .

Let (δθ1 , . . . , δθm) be real numbers such that(
fθ

k,∗
θ1

, . . . , fθ
k,∗
θm

)
=
(
fθ

k,b
θ1

+ δ1, . . . , f
θk,b
θm + δm

)
.

Assume that fθk,b 6= fθ
k,∗. Then there exists 1 ≤ j ≤ m such that δj 6= 0. Therefore, one can

decompose the vector (δθ1 , . . . , δθm) into δ-sequences and if there does not exist a 1 ≤ t ≤ m

with
∑t

j=1 δθj > 0, the process of decomposing into δ-sequences end with a δ-sequence of length

2, i.e. with some vector
(
δfinal1 , δfinal2

)
with δfinal1 < 0 and δfinal2 > 0.

Assume there exists a 1 ≤ t ≤ m with
∑t

j=1 δθj > 0. We consider two cases: t ≤ k and t > k.

Case 1: t ≤ k.

Following the steps in the proof of Lemma ??, one can show that it either holds

(55)
(
fθ

k,b
θ1

+ · · ·+ fθ
k,b
θk−1 + fθ

k,b
θk

Gθk(b)
)n−1 (

θk − b
)

=
(
fθ

k,b
θ1

+ · · ·+ fθ
k,b
θk

)n−1 (
θk − bθk

)
or

(56)
(
fθ

k,b
θ1

+ · · ·+ fθ
k,b
θk−1 + fθ

k,b
θk

Gθk(b)
)n−1 (

θk − b
)

=
(
fθ

k,b
θ1

+ · · ·+ fθ
k−1,b
θk−1

)n−1 (
θk − bθk−1

)
.

Thus, we consider two subcases.

Case 1.1: (??) holds. It follows from the definition of bθk and from Lemma ?? that

(57)
(
fθ

k,∗
θ1

+ · · ·+ fθ
k,∗
θk

)n−1
(θk − bθk) =

(
fθ

k,∗
θ1

+ · · ·+ fθ
k,∗
θt

)n−1
(θk − bθt).

Since fθk,b is an element of the feasible set of minimization problem M θk

b , it holds that(
fθ

k,b
θ1

+ · · ·+ fθ
k,b
θk−1 + fθ

k,b
θk

Gθk(b)
)n−1

(θk − b) ≥
(
fθ

k,b
θ1

+ · · ·+ fθ
k,b
θt

)n−1
(θk − bθt)

It follows from (??) that(
fθ

k,b
θ1

+ · · ·+ fθ
k,b
θk

)n−1 (
θk − bθk

)
≥
(
fθ

k,b
θ1

+ · · ·+ fθ
k,b
θt

)n−1
(θk − bθt).

Subtracting equation (??) gives k∑
j=1

δθj

 n−1

√
θk − bθk ≥

 t∑
j=1

δθj

 n−1

√
θk − bθt .
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Thus, it holds that
∑k

j=1 δθj > 0. Due to the first probability constraint, it follows that∑m
j=k+1 δθj < 0. Since fθ

k,∗
θj

= 0 for all j > k, this leads to a contradiction to the constraint

fθ
k,b
θj
≥ 0 for all 1 ≤ j ≤ m.

Case 1.2: (??) holds. It follows from Lemma ?? that

(58)
(
fθ

k,∗
θ1

+ · · ·+ fθ
k,∗
θk−1

)n−1
(θk − bθk−1) =

(
fθ

k,∗
θ1

+ · · ·+ fθ
k,∗
θt

)n−1
(θk − bθt).

Since fθk,b is an element of the feasible set of minimization problem M θk

b , it holds that(
fθ

k,b
θ1

+ · · ·+ fθ
k,b
θk−1 + fθ

k,b
θk

Gθk(b)
)n−1

(θk − b) ≥
(
fθ

k,b
θ1

+ · · ·+ fθ
k,b
θt

)n−1
(θk − bθt).

It follows from (??) that(
fθ

k,b
θ1

+ · · ·+ fθ
k,b
θk−1

)n−1 (
θk − bθk−1

)
≥
(
fθ

k,b
θ1

+ · · ·+ fθ
k,b
θt

)n−1
(θk − bθt).

Subtracting equation (??) givesk−1∑
j=1

δθj

 n−1

√
θk − bθk−1 ≥

 t∑
j=1

δθj

 n−1

√
θk − bθt .

Thus, it holds that
∑k−1

j=1 δθj > 0. Since fθ
k,∗
θj

= 0 for all j > k, it holds due to the constraint

fθ
k,b
θj
≥ 0 for all 1 ≤ j ≤ m

that δθj ≥ 0 for all k + 1 ≤ j ≤ m. Since
∑m

j=1 δθj = 0, it follows that δk < 0 which is a

contradiction to (??).

Case 2: t > k.

Due to the first probability constraint, it follows from
∑t

j=1 δθj > 0 that
∑m

j=t+1 δθj < 0. Since

fθ
k,∗
θj

= 0 for all j > k, this leads to a contradiction to the constraint fθ
k,b
θj
≥ 0 for all 1 ≤ j ≤ m.

We conclude that in both cases the process of decomposing into δ-sequences ends with some

vector
(
δfinal1 , δfinal2

)
with δfinal1 < 0 and δfinal2 > 0 and there exists a θfinal such that

m∑
j=1

δθjθ
j >

m∑
j=1

δθjθ
final = 0.

Since this is a contradiction to the fact that the vector fθk,b fulfills the constraint

m∑
j=1

fθ
k,b
θj

θj = µ,
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the assumption that fθk,b 6= fθ
k,∗, leads to a contradiction.

�
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