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Abstract

I study the problem of allocating objects among agents without using money.
Agents can receive several objects and have dichotomous preferences, mean-
ing that they either consider objects to be acceptable or not. In this set-up,
the egalitarian solution is more appealing than the competitive equilibrium
with equal incomes because it is Lorenz dominant, unique in utilities, and
group strategy-proof. Both solutions are disjoint.
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1. Introduction

An assignment problem is an allocation problem where scarce objects are
to be allocated among several agents without using monetary transfers. As-
signment problems include the allocation of senators to committees, courses
to students, or job interviews to applicants. In this paper, I study assign-
ment problems in which each agent can receive more than one object, but
at most one unit of each, and several identical units are available of each
object. These are called multi-unit assignment problems. They include the
three examples previously discussed. A U.S. senator on average participates
in four committees,? a student can take many courses during a semester, and
a job candidate can schedule many interviews. However, senators cannot
have more than one seat on each committee, students cannot take a course
twice for credit, and applicants cannot be interviewed more than once for the
same position.

For such multi-unit assignment problems, we would like to have a system-
atic (probabilistic) procedure to decide fairly which agents should get which
objects, which, at the same time, does not offer incentives to coalitions of
agents to lie about their true preferences. My contribution is to propose
an egalitarian solution that achieves this purpose for multi-unit assignment
problems in the dichotomous preference domain, in which objects are either
considered acceptable or not, and in which agents are indifferent between all
objects that they find acceptable.

The egalitarian solution is based on the well-known leximin principle.
In the domain of dichotomous preferences, it performs better than the cele-
brated competitive equilibrium with equal incomes, a solution used in similar
assignment models on larger preference domains (Hylland and Zeckhauser,
1979; Budish, 2011; Reny, 2017). By better, I mean that, unlike the com-
petitive equilibrium with equal incomes, the egalitarian solution is Lorenz
dominant, unique in utilities, and impossible to manipulate by groups. In
contrast with the single-unit assignment problem (Bogomolnaia and Moulin,
2004), both solutions are disjoint, meaning that in general we cannot ob-
tain the egalitarian solution as a competitive equilibrium when agents are
endowed with equal incomes.

Lorenz dominance is “a ranking generally accepted as the unambiguous
arbiter of inequality comparison” (Foster and Ok, 1999) and is “widely ac-
cepted as embodying a set of minimal ethical judgements that should be made”
(Dutta and Ray, 1989). Given two vectors of size n, the first Lorenz domi-

2Source: “The many roles of a Member of Congress”, Indiana University Center on
Representative Government.


https://corg.indiana.edu/many-roles-member-congress

nates the second if, when arranged in ascending order, the sum of the first
k < n elements of the first is always greater than or equal to the sum of
the k first elements of the second. A utility profile is Lorenz dominant if it
Lorenz dominates any other feasible utility profile. In our set-up, the fact
that a utility profile is Lorenz dominant implies that it uniquely maximizes
any strictly concave utility function representing agents’ preferences and is,
therefore, a strong fairness property.

Uniqueness of the solution (in the utility profile obtained) is also a de-
sirable property, for it gives a clear recommendation of how the resources
should be split. A multi-valued solution leaves the schedule designer with
the complicated task of selecting a particular division among those suggested
by the solution, thus raising the possibility of justified complaints by some
agents who may argue that other allocations were also recommended by the
solution that were more beneficial to them.

It is equally interesting that the egalitarian solution is group strategy-
proof, implying that coalitions of agents can never profit from misrepresenting
their preferences. On the contrary, the competitive solution is manipulable by
groups in this set-up, as in many others. Yet, it is remarkable that even in our
small dichotomous preference domain, where the possibilities to misreport
are very limited, the pseudo-market solution can still be manipulated by
coalitions of agents.

The fact that the egalitarian solution satisfies these three desirable prop-
erties is a strong argument for recommending its use whenever agents have
dichotomous preferences.

The dichotomous preference domain is admittedly simple and not suit-
able for modelling problems in which objects are either complements or sub-
stitutes. However, this set-up is helpful to represent scheduling problems
(such as the tennis allocation problem studied by Maher, 2016; see Table
1), in which agents are either compatible or incompatible with each object
and want to maximize the number of objects they obtain, or for the afore-
mentioned problems of assigning job interviews to candidates or seats for
performances to the public, among others.

Moreover, focusing on this particular domain of preferences will be helpful
to show the properties of the egalitarian solution, while, at the same time, it
will make the problem complicated enough to identify why the competitive
equilibrium with equal incomes fails to be unique and group strategy-proof.
The reason behind its non-uniqueness is that for some objects, the number of
identical copies available of them (their supply) equals their total demand.
I call these objects perfect. Although there is no doubt on how perfect
objects should be allocated, the question of how to price them becomes tricky.
Because their demand is always equal to their supply, they can have a zero



Table 1: An example of a multi-unit assignment with dichotomous preferences is the tennis
scheduling problem in Maher (2016). Players want to maximize the number of games they
play on days in which they are available.
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competitive price. However, they could also have a positive price, hence
reducing the available budget of those agents who buy them.

Perfect objects are also the reason why the competitive solution is not
group strategy-proof. A coalition of agents can agree to misrepresent their
preferences in order to make a set of objects perfect. This allows those objects
to have a lower price (even a zero price), thus allowing agents to increase
their budget, and, consequently, their share of other over-demanded objects.
Manipulating agents benefit unambiguously, meaning that every competitive
equilibrium of the allocation problem with misrepresented preferences yields
a weakly better allocation than the unique competitive equilibrium of the
original problem.

More generally, perfect objects also raise the issue of how they should
affect the final allocation. Some allocation procedures can be decomposed
into the allocation of perfect and over-demanded objects, meaning that the
share of over-demanded objects that agents obtain is independent of their
demand for perfect objects. I call this property independence of perfect
objects. This is a desirable property in scenarios where agents can claim that



perfect objects belong unambiguously to them and thus should not diminish
their shares of over-demanded objects. Although the egalitarian solution does
not satisfy this requirement, we can construct a refined egalitarian solution
that does and is also Lorenz dominant for the assignment problem with over-
demanded objects only. However, independence of perfect objects comes at
a price: the refined egalitarian solution is not group strategy-proof. Random
serial dictatorship provides an alternative that satisfies both independence
of perfect objects and group strategy-proofness, but which is not Lorenz
dominant.

Structure of the Paper. Section 2 discusses the related literature. Section 3
formalizes the model. Section 4 introduces our solutions. Section 5 discusses
incentives properties. Section 6 discusses the role of perfect objects. Section
7 concludes.

2. Related Literature
The model I study is closely related to two existing problems, namely

1. Single-unit random assignment with dichotomous preferences by Bogomol-
naia and Moulin (2004), henceforth BM04. Our model generalizes theirs in
that agents can receive more than one object. They study the egalitarian
and the equal income competitive solution. They show that the egalitar-
ian solution is Lorenz dominant and can always be supported by competitive
prices. Because the competitive solution is Lorenz dominant, the competitive
solution can easily be computed as the maximization of the Nash product
of agents’ utilities. They also prove that the egalitarian solution is group
strategy-proof.

Roth et al. (2005) show that the egalitarian solution is also Lorenz dominant
in assignment problems on arbitrary graphs that are not necessarily bipartite.
They use dichotomous preferences to model whether a person is compatible
with a particular organ for transplantation. Assignment on the dichotomous
domain of preferences has been further studied by Bogomolnaia et al. (2005),
Katta and Sethuraman (2006), and Bouveret and Lang (2008).

Kurokawa et al. (2015) also study a single-unit assignment problem in which
agents can derive a utility equal to one or zero. This is, if an agent demands
10 objects, he obtains the same zero utility if he receives 9, 2 or 0 objects,
whereas in this paper agents’ utility is linear on the goods they find accept-
able. They consider a broad preference domain satisfying convexity, equality,
shifting allocations and optimal utilization. They show that the egalitarian
solution is not Lorenz dominant in this larger domain. They allow for non



individually rational allocations. In their set-up, an agent who wants an ap-
ple but who dislikes a pear may in fact get the pear. In contrast, in BM04
and the model in this paper, agents cannot receive objects they do not find
acceptable, i.e. their property “shifting allocations” does not apply.

2. The course allocation problem (CAP) described by Brams and Kilgour
(2001); Budish (2011); Budish and Cantillon (2012); Kominers et al. (2010);
Krishna and Unver (2008); and Sénmez and Unver (2010), with some impor-
tant differences. First, in CAP, students may have arbitrary preferences over
the set of objects, which are considerably more complex than those I study
in this paper. However, reporting combinatorial preferences is infeasible for
even few alternatives, and, in practice, combinatorial mechanisms never al-
low agents to fully report such preferences, not only because such revelation
would be complicated, but also because agents may not know their prefer-
ences in such detail. Consequently, a new strand of theory has focused on
allocation mechanisms with simpler preferences (e.g. Bouveret and Lemaitre,
2016; Bogomolnaia et al., 2017, 2018)). Although the dichotomous prefer-
ence domain is smaller than those considered in CAP, it is not contained in
any of those because CAP rules out indifferences.

Furthermore, Budish (2011) only considers deterministic assignments. I in-
stead study randomized assignments: in practice, many allocation mecha-
nisms use randomization to achieve a higher degree of fairness.?

Two papers in this literature that focus on a smaller domain of preferences
are Kojima (2009) and Heo (2014). Kojima studies a multi-unit assignment
problem in which the demand of objects equals its supply. Agents’ preferences
over objects are strict, and preferences over bundles are linear. He shows that
no assignment mechanism is efficient, envy-free and weakly strategy-proof.
In a similar environment, Heo characterizes the only type of mechanism that
satisfies versions of efficiency, incentive compatibility, no envy and population
consistency.

3. Model

I consider the allocation of m objects (each with possibly several copies
of itself) to n agents. Up to g copies of object k € M can be assigned to

3Randomization is used to assign both permanent visas and housing subsidies in the
US, or school places in the UK. Sources: “A one in a million chance at a better life”,
The Guardian, 2/5/2017, “Why does random chance decide who gets housing subsidies?”,
NPR, 3/5/2016, and “School admissions: is a lottery a fairer system?”, The Guardian,
14/3/2017.


https://www.theguardian.com/us-news/2017/may/02/green-card-lottery-us-immigration-trump-agenda
http://www.npr.org/2016/05/03/476559490/why-does-random-chance-decide-who-gets-housing-subsidies
https://www.theguardian.com/education/2017/mar/14/school-admissions-lottery-system-brighton

the set of agents N. I refer to the integer vector ¢ = (q1, ..., qn) as objects’
capacities.

Agents’ preferences over objects are given by a n X m binary matrix R.
Each entry r;, = 1 if agent ¢ finds object k& acceptable and 0 otherwise.*
Slightly abusing the notation, R;y; (resp. Ryy) denotes both the i-th row
(resp. k-th column) of R and the set of objects (resp. agents) for which
rig. = 1. T assume |Ryi| > qi for each object k.> A pair (R,q) is called a
multi-unit assignment problem (MAP).

A random assignment matrix (RAM) for an MAP (R, ¢) is a matrix
7 of size n x m satisfying the following conditions Vi € N,k € M

0< 2z <1
Feasibility = Fik = (1)
Doien Zik < Gk
Individual Rationality {zzk >0 only if ry, =1 (2)

An RAM'’s entries indicate what probability each agent has of obtaining
one unit of each object. The feasibility conditions ensure that no agent
obtains more than one unit of each object, and that the total number of
units assigned of each object is less than its capacity. Similarly, individual
rationality guarantees that each agent only obtains shares from acceptable
objects. Throughout the paper, I only consider assignments satisfying these
two properties. As before, the notation Z;; (resp. Znj) denotes both the
i-th row (resp. k-th column) of Z and the set of objects (resp. players) for
which z;, = 1. The matching size v(R, q) = >, ., @ of an MAP represents
the maximum number of object units that can be assigned. The set of RAMs
for (R, q) of maximal size is denoted by

Z(R,q) ={Z e R™™: Z Z zie = V(R,q)} (3)
iEN keM

Kojima (2009) and Budish et al. (2013) extend the well-known Birkhoff-
von Neumann decomposition theorem to prove that

Lemma 1. Any RAM can be decomposed into a convexr combination of binary
RAMs, and can thus be implemented.

I assume that agents are indifferent between objects that they find ac-
ceptable, and that they want to maximize the number of acceptable objects

4R can also be understood to represent either allocation or physical constraints.
5This assumption is relaxed in Section 7.



they obtain. The canonical utility function representing those preferences is

for an arbitrary agent ¢. This function is clearly not unique but it is
convenient to work with. The preference relation represented by this function
is a complete order over all RAMs, and implies that an RAM Z is Pareto
optimal for an MAP (R, q) if and only if >, > ,cps 2ik = V(R, q).

The set of efficient utility profiles U (R, q) can be described as

UR,q)={U €R" |3Z € Z(R,q): Ui = >z, Vi € N} (5)

keM

I do not distinguish between ex-ante and ex-post efficiency because in
the dichotomous preference domain they coincide. This equivalence occurs
because the sum of utilities is constant in all efficient assignments.® In our
set-up, efficiency simply requires that no object is wasted.

A welfarist solution is a mapping ® from (R,q) to a set of efficient
utility profiles in U(R, q), and hence, it only focuses on the expected number
of objects received by an agent and not on the exact probability distribu-
tion over deterministic assignments. Whenever a solution is single-valued I
instead use the notation ¢.

3.1. Perfect Objects and Perfect Extensions

We can partition the set of objects M into two subsets P(R,q) and
O(R, q), which are called perfect and over-demanded, respectively. The
set of perfect objects is defined as

P(R,q) ={k € M : |Rnk| = qx} (6)

The vectors gp(r,q) and gor,q denote the capacities of perfect and over-
demanded goods, respectively. Given a MAP (R, q), a perfect extension
for agent i represents adding an arbitrarily perfect object k' that agent i
finds acceptable. Formally, a perfect extension for agent i in a MAP (R, q)
is a pair ([R Ryw|,q) where Ry is a binary matrix of size n x 1 such that
riw = 1, [R Ryw] denotes the n x (m + 1) juxtaposition of the two matrices

and q = (q17 vy Qm, ’RNk”)

6Ex-ante and ex-post efficiency are equivalent in assignment problems with dichotomous
preferences (BM04, Roth et al., 2005).



4. Three Efficient Solutions

4.1. The FEgalitarian Solution

An intuitive solution equalizes agents’ utilities as much as possible re-
specting efficiency and individual rationality: this is the well-known leximin
solution. I refer to it as the Egalitarian Solution (ES), proposed theoret-
ically by BM04, and applied to kidney exchange by Roth et al. (2005) and
Yilmaz (2011).

To define it formally, let ! be the well-known lexicographic order.” For
each U € R", let v(U) € R™ be the vector containing the same elements as U
but sorted in ascending order, i.e. v1(U) < ... < 7,(U). The leximin order
=M s defined by U =M U if and only if y(U) =! v(U’). The ES is defined
by

0™ (R, q) = argmax U(R, q) (7)
>LIW

The ES satisfies a strong fairness notion called Lorenz dominance,
defined as follows. Define the order = on R" so that for any two vectors
Uand U, U =4 U if Y20 Uy > S0 U/ ¥Vt < n, with strict inequality
for some t. We say that U Lorenz dominates U’, written U =P U’ if
Y(U) = 4(U"). A vector U € U(R,q) is Lorenz dominant for an MAP
(R, q) if it Lorenz dominates any other vector in U(R, q).

Lorenz dominance is a partial order in U(R,q) and therefore a Lorenz
dominant utility profile need not exist. Nevertheless, the ES solution is
Lorenz dominant.

Theorem 1. The ES solution is well-defined and Lorenz dominant in the set
of efficient utility profiles.

I prove Theorem 1 using Theorem 3 in Dutta and Ray (1989), which
states that the core of specific cooperative games has a Lorenz dominant
element. The construction of the corresponding cooperative game can be
found in the Appendix.

4.2. The Constrained Competitive Equilibrium with Equal Incomes

A second solution, which is substantially more complicated, requires to
balance the supply and demand for goods when agents are endowed with
equal budgets. These equal budgets are often normalized to one currency
unit, a normalization that I also use. This solution is known as the Compet-
itive Equilibrium with Equal Incomes (CEEI) (Varian, 1974; Hylland

"So that for any two vectors U,U’ € R™, U ! U’ only if U; > U] for some integer
t <n, and U, = U, for any positive integer p < t.

9



and Zeckhauser, 1979). In MAPs, each agent can consume at most one unit
of each object, hence having particular constraints on their consumption set.
I use the term Constrained Competitive Equilibrium (CCE, still with
equal incomes) from now on to make this distinction obvious. The CCE solu-
tion is different from the CEEI as defined in Hylland and Zeckhauser (1979)
in that in our case agents never partially consume objects that have different
prices (see Table 1 in their paper).® This distinction justifies the different
terminology of CCE.

Definition 1. A CCE for an MAP (R, q) is a pair of an RAM Z* and a non-
negative price vector p* such that, Vi € N, agents maximize their utilities

Zh, € arg max  u;(Z; 8
iM gZiME&‘(p*) ( M) ()

where S3;(p) is the budget set defined as B;(p) = {Zins | Dopens 2k <
|Rine| : p - Zing < 1}, and the market clears, so that

Z* € Z(R,q) 9)

The optimality conditions of CCE imply

k¢ P(R,q) = p;>0 (10)
Zi Zae € (0,1) = pp=pp (11)
[k, k'€ Riv] Aoy <pp] N[0 <zl = 25 =1 (12)
szk <|Rin| = ZPZ Fz =1 (13)
k k

These are the equivalent of the Fisher equations in our model (Brainard
and Scarf, 2005). Condition (10) allows a zero price only for perfect ob-
jects, while expression (11) forces the same marginal benefit for every object
that agents obtain partially but not fully. Condition (12) requires agents to
exhaust desirable cheaper goods before they consume more expensive ones,
whereas expression (13) establishes that if an agent has not consumed all the
goods that she finds desirable, then she must have spent all her budget.

Given an MAP, I denote the set of pairs (Z*,p*) as C(R,q). The CCE

8If an apple pie has a higher price than a pear pie, and the agent values them equally,
the agent either fully consumes the pear pie and eats some or all of the apple pie, or the
agent only consumes some of the pear pie and none of the apple pie. What can never
occur in a CCE is that an agent consumes some, but not all, of the pear pie and some,
but not all, of the apple pie.

10



solution is defined by
(R, q) = {u(Z') | 30" : (Z',) € C(R,q)} (14)

In our set-up, the CCE solution is always non-empty (and often multi-
valued). We provide a direct proof using a standard fixed point argument.’

Theorem 2. In any MAP (R, q), the CCE ezists and thus the CCE solution
18 non-empty.

4.3. The Egalitarian per Object Solution

Finally, a highly intuitive solution breaks up the allocation problem into
m sub-problems of assigning ¢, units of object k into Ry, distributing an
equal share of object k among all agents who find it acceptable. I call this
solution Egalitarian Per Object (EPO). Given an MAP (R, q), the EPO
solution assigns to each agent

SPPO(R,q) = > g - e (15)

keM | B

In the dichotomous preference domain, EPO is equivalent to the well-
known random serial dictatorship (RSD, aka random priority).!° To observe
this equivalence, note that in RSD, each agent gets one unit of good k£ when-
ever she is among the first ¢, agents among Ry in a random order. Thus,
in expectation she gets

Ak Ak Ak
—-1—|—(1——)-O:— 16
| Rl | Rl | R (16)
and thus the total utility of agent 7 in RSD equals >, _,, 7k - Rq—]’iﬂ. Note
that EPO ignores the interaction between the m assignment prob&ems corre-

sponding to each object, a property to which we will come back to.!!

9The existence of CCE can also be proven using Theorem 1 in Mas-Colell (1992), who
shows the existence of a competitive equilibrium when preferences are convex, possibly
satiated and continuous but not necessarily monotonic; for an application of this Theorem
see p. 1853 in Bogomolnaia et al. (2017).

OEPO would not be efficient in a more general domain of preferences. The equivalence
with random priority would also disappear.

10ne could also consider other solutions discussed in the literature, in particular the
probabilistic serial rule, defined by Bogomolnaia and Moulin (2001). The probabilistic
serial rule is appealing in scenarios where different notions of efficiency do not coincide.
This is not the case for MAPs.

11



4.4. Two Examples Showing that All Solutions Are Disjoint

Example 1 (EPO is disjoint from multi-valued CCE and ES). Table 2 shows
the different outcomes that our three solutions produce for a problem with
n =6, m =3, and (R, q) given in subtable 2a. The CCE utilities are written
in brackets in subtable 2b because there are CCE that support utility profiles
between (2.4,1.4,1) and (2.25,2,1) with 0 < p, < 5.

Table 2: CCE is multi-valued and disjoint from EPO.

N\M |« | 8|7 | Total

a,bye,d |1 |11 |3 N ES | CCE EPO

e 11]0]2 a,bc,d | 2.25 | [2.25 - 2.4] | 2.47

f 1]olo]1 e > | [14-2 | 147

Total 6 5|4 f 1 1 0.67
’ q 4 ‘ 4 ‘ 4 ‘ ‘ (b) Utility profiles for each solution.

(a) Corresponding R matrix.

In EPO, every agent who desires good a gets % of it, everybody who
desires good [ gets % of it and everybody who desires good ~ gets a full unit
(because good 7 is perfect). Thus, agent f who only desires good « obtains
a utility of % = 0.67. However, CCE gives one unit of object a to agent f.
To see this, note that

L. p;, = pj, because otherwise agents a:e should only consume the cheaper
good, or should exhaust it, by conditions (11,12). If they only consume
the cheaper good, the assignment is not efficient because the expensive
good is not fully assigned. If they exhaust the cheaper good, we have
that more than 4 units were assigned of such good, violating feasibility.

2. By contradiction, assume 2}, < 1. Then, by condition (13), p}2}, = 1.
Because agent f cannot afford one unit of good «, neither can agents
a:e, nor they can afford one unit of good . But then the assignment
is inefficient, because there are 8 units available of goods o and (3, but
agents a:f can only afford 6 of them. This implies that 2}, was not a
CCE.

In the previous example, we saw that there are no CCE prices that sup-
port the EPO outcome and thus is an argument against this solution, as
competitive equilibria are considered “essentially the description of perfect
Justice” (Arnsperger, 1994), and the base of Dworkin’s “equality of resources”

12



(Dworkin, 1981). But interestingly, the ES solution can also produce out-
comes that cannot be supported as a CCE, as I show in the following Exam-
ple. Note that in the single-unit case (Theorem 1 in BM04), the ES is always
supported by competitive prices.

Example 2 (ES differs from CCE). I show this using a MAP with n = 9,
m = 6, and (R, q) given in subtable 3.

Table 3: ES and CCE are disjoint (a RAM supporting ES appears in parenthesis).

N\M o I5; v, 0 €,0 Total
abec |1(1) [1(1) |0 0 2 (2)
d 0 1(5) 1) |o 3 (2.5)
e 0 1(5)]0 1(1) |3(25)
frg,h,i | 1(.25) 10 1 (.75) | 1 (.75) | 5 (3.25)
Total 7 5 5 )

4 (4[4 4[4 | |

If the ES solution (2, 2.5, 2.5, 3.25) could be supported as a CCE, then
Pi = DS = p; = P = p, because agents f:i obtain those objects with positive
probability but do not exhaust them (condition (11)). Furthermore, agents
d,e and f, g, h,7 must spend their whole budget because they do not consume
all the goods they desire (condition (13)), and thus

0.5p5 +2p, = 1 (17)
3.25p% = 1 (18)

which yield p? = 14—3 and pj = %. However, at such prices, the ES utility for
agents a:c is unaffordable: it costs % currency units.

The fact that ES and CCE do not coincide is interesting: in the non con-
strained context, the competitive solution can be computed by maximizing
the Nash product, solving what is known as the Eisenberg-Gale program (see
chapter 7 in Moulin, 2003 for a textbook treatment). The Eisenberg-Gale
program is otherwise a rather robust result since it extends to a large family
of utility functions beyond the linear case (Jain and Vazirani, 2010), as well
as to the mixed division of objects and bads (Bogomolnaia et al., 2017).

The multiplicity of the competitive solution and its non-equivalence with
the egalitarian outcome justify the new terminology of CCE. We summarize
our findings as follows.

Theorem 3. The intersection of ES, CCE and EPO can be empty.

13



4.5. Envy

It is easy to see that our three solutions are envy-free. A solution ¢ is
envy-free if, for any MAP (R, ¢) with agents ¢ and j such that Ry C Rju,
$i(R,q) < ¢j(R,q). For the multi-valued CCE, envy-freeness holds for any
selection from it.'?

Lemma 2. ES, CCE and EPO are envy-free.

5. Manipulation by Groups

I consider agents’ manipulation in the direct revelation mechanism asso-
ciated with each solution. For this purpose, we need to know exactly how
objects are assigned. A detailed solution ¢ maps every MAP (R, q) into
an RAM Z € Z(R, q), specifying which share of each object is allocated to
each agent, whereas a welfarist solution ¢ maps every MAP into a utility
profile U € U(R, q) and only tells us the expected number of objects received
by each agent. Every detailed solution v projects onto the welfarist solution
o(R,q) = u(¥(R,q)). The direct revelation mechanism associated with a
detailed solution 1 is such that all agents reveal their preferences R;y;, and
then v is applied to the corresponding MAP (R, ¢), implementing the RAM
U(R,q) = Z.

I assume that agent ¢ with the true preferences R;); can only misrepresent
her preferences by understating the number of objects that she finds accept-
able, i.e. by declaring a preference profile R.,, C R;y/ (we then say that R},
is IR for R;ps). T use this assumption for two reasons. The first is theoretical:
I have not specified the dis-utility that the consumption of an undesirable
object brings to an agent, as I have only focused on individually rational
assignments. I would need to specify such dis-utility to analyse the manipu-
lation of a solution by exaggerating the set of acceptable objects. The second
reason is that such an assumption has already been imposed in the study of
scheduling problems (e.g. Koutsoupias, 2014). In many scheduling problems
motivating MAPs, cancelling consumption could be strongly punished by the
central clearinghouse, particularly when other agents’ consumption depends
on other agents exhausting their bundles (no double tennis match can be
made with only 3 out of 4 players).'3

2There is no efficient solution that is strongly envy-free, i.e. that for any MAP (R, q)
with agents ¢ and j such that |R;p| < |Rjum|, ¢i(R,q) < ¢;(R,q) (Ortega, 2016).

13BMO04 impose an equivalent assumption: they require that the RAM of every MAP
must be individually rational according to the agents’ true preferences.
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A detailed solution 1) is group strategy-proof if for every MAP (R, q)
and every coalition S C N, # R’ satisfying i) Ry = Rjn Vj ¢ S, and ii)
R, is IR for Rgy, such that

VieS, w(W(R, q)=u(d(R,q) (19)

with strict inequality for at least one agent in S. A welfarist solution ¢
is group strategy-proof if every detailed solution v projecting onto ¢ is
group strategy-proof.

BMO04 show that no deterministic solution is group strategy-proof when
agents can obtain at most one object. Deterministic solutions include priority
ones, i.e. those in which agents choose sequentially their most preferred
available bundle according to some pre-specified order. The reason of why
deterministic solutions are manipulable by groups is that the agent with
the highest priority could change her report and still receive one acceptable
alternative, leaving her utility unchanged and, at the same time, benefiting
an agent with low priority: a property known as bossiness.

This argument does not extend to MAPs. Because agents can obtain
multiple objects, the agent with higher priority can belong to a manipulat-
ing coalition only by claiming fewer objects. But since she has the highest
priority, it is immediate that such manipulation would always give her strictly
less utility, so she cannot be in the coalition. The same argument applies to
all remaining agents and, consequently,

Lemma 3. Any deterministic priority solution is group strategy-proof.

The previous Lemma shows that group strategy-proofness is relatively
easy to achieve for MAPs in the dichotomous domain. In fact, it is evident
that EPO is also group strategy-proof and I show below that the ES solu-
tion is also group strategy-proof. Is CCE also group strategy-proof? There
are two extensions of our group strategy-proofness definition to set valued
solutions.

The first requires that for every MAP (R, q), there is no competitive
equilibrium of the manipulated MAP (R, q) that is weakly better than every
competitive equilibria of the original problem (R, ¢), for every member of the
manipulating coalition S. A stronger extension is that there is at least one
competitive equilibrium of (R, q) which yields a weakly higher utility than
some competitive equilibrium of (R',q), with strict inequality for at least
one member of the deviating coalition S. It turns out that CCE violates
both conditions. The reason for this is that a group can coordinate to make
several objects perfect, thus allowing those objects to have a zero price.

Theorem 4. ES and EPO are group strategy-proof but CCFE is not.
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The proof of ES being group strategy-proof can be found in the Appendix,
but I show that CCE is unambiguously manipulable by groups below.

Example 3 (CCE not group strategy-proof). Let n = 7, m = 4, and (R, q)
given by Table 4.

Table 4: Example 3.

N\M [a | By | ®CE alBly|6] ®CCF
a 1|1]|1]1]25 1/0|1]1][25- 257
b 1]1]1]1]25 1|1]0/|1][25- 257
c 111|125 1]1/0/|0]][2.5-2.57]
d 1101125 110 |1|1][[25-2.57]
e 1110125 1]1/0|1]|[25-2.57
f 111025 11|10 ]|[25-2.57
g 1lololol1 110lo0|o][057-1]
Total |7 |5 |5 |5 714144
g [4]4]4]4] | [a[d4]4]4] |
(a) True preferences R. (b) Misreport R’ for S = {a,b,c}.

Consider the coalition S = {a,b,c}. When agents submit their real pref-
erences, there exists a unique CCE that supports the ES solution: agents
a,b, and ¢ obtain 2.5 expected objects. By changing their report each for
a different object, as in subtable 4b, they make objects 5, v and 0 perfect,
consequently enlarging the set of CCE solutions, which includes utilities that
are always weakly above 2.5 and up to 2.57. By misrepresenting and creating
artificially perfect objects, they allow those to be priced at 0, weakly increas-
ing the number of expected objects received in any competitive equilibria of
(R, q), at the expense of agents with limited acceptable objects, in this case
g.

I do not discuss strategy-proofness (manipulation by individuals on their
own) since it is immediate that ES, CCE and EPO are strategy-proof. For
CCE, we can construct a selection of it that is strategy-proof, since reducing
the total demand for an object either reduces its price, relatively increasing
the price of other objects, or leaves its price unchanged.

Efficiency, fairness, and non-manipulability are standard goals in the de-
sign of resource allocation mechanisms. Before concluding, I discuss a new
goal that arises naturally for MAPs.
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6. Independence of Perfect Objects

Some solutions do not depend on the number of perfect objects desired
by an agent. If an agent finds a new perfect object to be acceptable, we could
expect that she would always receive one extra expected unit. This is what
our following property captures.

A solution ¢ is independent of perfect objects (IPO) if, for every
MAP, every i € N and for any of its perfect extensions ([R Ryw], ),

¢i(R,q) + 1= ¢i([R Ryw],q) (20)

IPO is a desirable property for two reasons. First, perfect objects belong
unambiguously to agents who find them acceptable, so they can argue that
they should obtain them fully, irrespective of the share they obtain from
over-demanded objects. Second, if the clearinghouse uses a solution that was
not PO, the set of agents who find perfect objects acceptable could avoid
reporting their demand for perfect objects and obtain them fully outside the
centralized mechanism, a real concern for scheduling applications in which
agents may organize teamwork activities on their own.

As we discussed before, EPO ignores the interaction between the assign-
ment of each object and clearly satisfies IPO. CCE also (partially) satisfies
this requirement.

Lemma 4. EPO is IPO. Although ES is not IPO, there ezists a selection of
CCFE that satisfies IPO.

Lemma 4 highlights that CCE can always assign a zero price to all perfect
objects: this is how we construct the selection of CCE that satisfies IPO. But
it may also assign a zero price to some perfect objects only, or to no perfect
object at all. The designer has a high degree of flexibility in choosing the
equilibrium prices.

The selection problem extends to Budish’s (2011) competitive mechanism
for CAP in which students reveal their preferences to a centralized clear-
inghouse which announces a corresponding equilibrium allocation. Budish
argues that this mechanism is transparent, meaning that students can ver-
ify that the allocation is an equilibrium. But the mechanism can be “ma-
nipulated from the inside”, selectively assigning zero prices to hand-picked
courses, while at the same time rightly arguing that it produces a competitive
allocation.

If TPO must be achieved (a decision depending on the context and the
designer’s objectives), we would like to have a solution that, at the same
time, avoids the multiplicity problem of the CCE, while being envy-free and
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as fair as possible. Such a solution exists: we call it the refined egalitarian
solution (ES*). To define it, we use the partition of M into P(R,¢) and
O(R,q), and split the original MAP (R, q) into two independent problems
(RNP(Rg)> @P(R,g)) a0d (RNO(R.q)> QO(R,q))s Which correspond to the indepen-
dent MAPs with perfect and over-demanded objects, respectively. ES* is
given by

¢ (R.q) = 6™ (RBno(rg) do(ra) + | Rirra)l (21)

ES* takes the egalitarian solution for the MAP with over-demanded ob-
jects only, and adds the number of perfect objects desired by the agent. ES*
is close to a suggestion in Budish (2011). Noting that some courses may be
in excess supply, he proposes to run the allocation mechanism only on the set
of over-demanded courses: “if some courses are known to be in substantial
excess supply, we can reformulate the problem as one of allocating only the
potential scarce courses’. ES* formalizes this suggestion. It also satisfies
several desiderata.

Lemma 5. The ES* solution is well-defined and single-valued, efficient, IPO,
envy-free, and Lorenz dominant for the problem (Rno(r,q):q)-

It is immediate that ES* is single-valued, efficient and IPO. The remaining
properties are straightforward modifications of the proofs of Lemmas 1 and
2 and Theorem 1. Unfortunately, the properties in Lemma 5 come at a
cost: ES* is not group strategy-proof.!* ES* can be manipulated by groups
reducing their demand in order to make some objects perfect. Therefore, the
members of the manipulating coalition obtain those objects fully, while also
obtaining an egalitarian fraction of the remaining over-demanded problem.

Group strategy-proofness and IPO are compatible. EPO satisfy them
both (plus uniqueness in utilities), and thus is a reasonable alternative to ES
if independence of perfect objects is more desirable than Lorenz dominance.

7. Conclusion

For multi-unit assignment problems with dichotomous preferences, the
egalitarian solution is Lorenz dominant, single-valued and group strategy-
proof. For these reasons, it stands as a more reasonable solution than the cel-
ebrated competitive equilibrium with equal incomes, which fails these three
desirable properties. If independence of perfect objects must be satisfied,
the refined egalitarian solution becomes an appealing alternative at the cost

For an example, use the MAP and manipulation R’ illustrated in Example 4.
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of group strategy-proofness. Random serial dictatorship is another reason-
able choice, since it satisfies independence of perfect objects, group strategy-
proofness and uniqueness, although at the cost of giving up on Lorenz dom-
inance.

I conclude with a brief discussion of two natural extensions

1. Some agents have restricted demands, i.e. they find many objects ac-
ceptable but only want some of them. This extension leaves efficiency
and fairness properties unchanged but makes ES and priority solu-
tions fail group strategy-proofness. The reason is that both solutions
becomes bossy: an agent who has his demand fulfilled does not care
exactly which objects she receives, and can modify her demand to help
another agent, as in BM04.

2. Some objects are in excess supply. If we dispose of over-demanded
copies of such objects so to make them perfect, the efficiency and fair-
ness properties are unaffected. A new form of manipulation emerges
as groups of agents may reduce their demand to make some objects
under-demanded and thus reducing the matching size of the MAP. But
the extra copies will be disposed of and the object will become perfect.
Lemma 6 case 3 shows that such manipulation is never successful, and
thus the ES remains group strategy-proof. EPO trivially remains group
strategy-proof.
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Appendix: Proofs

Theorem 1 The ES solution is well-defined and Lorenz dominant in the set
of efficient utility profiles.

Proof. 1 follow the construction in Theorem 1 in Bogomolnaia and Moulin
(2004). Fix a MAP (R,q). Consider the concave cooperative game (N, u)
where 1 : 2V — R is a function that assigns, to each subset of agents, the
maximum number of objects that they can obtain together. To formalize
this intuitive function, given a coalition S C N, let us partition the set of

objects M into M+ (S) and M~ (S), defined as
M*(S) ={k € M : [Rsi| < qr} (22)

The function p is given by

S A et 2 (23)

keMt(S) ieS keM—

This function is clearly submodular, i.e. for any two subsets T, S C N
u(S) +u(T) 2 p(SUT) +u(SNT) (24)

The “core from above” is defined as the following set of profiles
C(R,q) ={r e R"| Zx, =v(R,q) and AS C N : sz > u(S)}  (25)
1EN i€S

It follows from Theorem 3 in Dutta and Ray (1989) that the set C(R, q)
has a Lorenz dominant element and is the egalitarian solution. But by con-
struction of the “core from above”, U(R,q) C C(R,q), the ES solution is
also Lorenz dominant in the set of efficient utility profiles U(R, q). ]

Theorem 2 In any MAP (R, q), the CCE exists and thus the CCE solution
18 non-empty.

Proof. Fix a MAP (R, q). Let p € R be an arbitrary price vector such that
p-q =n, and use the notation y; = R;); to denote the optimal consumption
bundle for agent i € N, and yy = (|Rn1|,---,|Rnm|). Note that

PYnNnZ2p-q (26)
Define the vector X as
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where UNIF denotes the uniform rationing rule: a mapping that gives to
every agent the money needed to buy her preferred bundle of objects as long
as it is less than A, chosen so that p - X = n. Define the sets of satiated and
non-satiated agents

No(p) = {ie N[ Xi=p-y} (28)
Ni(p) = {ieN|N<p-u} (29)

So that A; = AVi € N,. Define the demand correspondence d;(p) as

d; = i < N\ 30
(p) s ZiMIEHIaé%z'M){p M= } ( )

where Z(R;y) denotes the set of individually rational assignments for
Rinr. Note that d;(p) = {y;} for every i € Ny(p), while for agents in N, (p),
any vector z; € d;(p) satisfies p - z; = A\. By Berge’s maximum theorem,
the demand correspondence is upper hemi-continuous and convex valued.
The excess demand correspondence for the whole society, which inherits the
properties of d;, is given by

e(p) =dn(p) — q (31)

where dy(p) denotes the aggregate demand correspondence for each ob-
ject. Using the Gale-Nikaido-Debreu theorem (Theorem 7 in pp. 716-718 of
Debreu (1982)), we know that there exists both a price vector p* € R, and
an excess demand vector z* € e(p*) for which the following two conditions
are satisfied

t =0 (32)
prext = 0 (33)

Where Walras’ law in equation (33) holds by construction of X and d.
Finally, Vi € N

Ziy = di(p”) (34)
so that the corresponding Z* € Z(R, q) by equation (32), concluding the
proof of existence of CCE and the non-emptiness of the CCE solution. [

Lemma 2 ES, CCE and EPO are envy-free.
Proof. For an arbitrary MAP, let ¢™5(R,q) = (Uy,...,U;,Uj,...,U,), and

assume agent ¢ is envious of j, which means that R,y C R;j and that there
exists a Pigou-Dalton transfer € so that the utility profile U’ = (Uy,...,U; +
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e,Uj—¢,...,U,) €U(R,q). But U’ Lorenz dominates ¢ (R, q), so ¢"5(R, q)
was not the ES solution, a contradiction.

EPO is also clearly envy-free. Otherwise, agent ¢ is envious of j, which
means that R;y; C Riy and ¢FP9(R, q) > ¢f7°(R, q). But then EPO estab-
lishes thafc @fPO(R, q) = D pem Tik T = > wens ik - e = P¥PO(R, q),
a contradiction.

Any selection of the CCE solution is envy-free because of the standard
argument: if there is any agent who is envious, she could afford the schedule
of the agent she envies. O

Theorem 3 ES and EPO are group strategy-proof but CCFE is not.

I have shown in the main text that CCE is not group strategy-proof and
that EPO is group strategy-proof. To show that ES is group strategy-proof,
I start with a few preliminaries. Let Z%° denote the set of all feasible RAMs
supporting the egalitarian solution, i.e.

ZW={Z€Z(Rq) IVieN: Y zp=0¢"(Rq)} (35)

keM

A rule is non-bossy if no agent can affect someone else’s allocation without
changing her own utility. That is, a solution ¢ is non-bossy if, for every
MAP (R,q), Vi € N, and any manipulation R’ such that 1) Vj # i, Rjy =

" and 2) Riy © Ry, we have

We prove a useful auxiliary Lemma below.
Lemma 6. ES is non-bossy.

Proof. We proceed by way of contradiction. Let R’ be as specified in the
previous definition. The manipulation may come from a reduction of demand
for three types of objects:

1. k € O(R,q) and 3Z € Z" such that 2z = 0, so that after agent i
misreported, the set of efficient utility profiles is a subset of the original
one. Since the original ES utility profile can still be achieved in the
problem with misreported preferences, it is still Lorenz dominant and
hence the solution does not change.

2. k€ O(R,q) and zj > 0 VZ € Z55 so clearly agent i’s utility changes,
so she cannot be bossy.

24



3. k € P(R,q), but if agent ¢ reduces the number of perfect goods, she
always reduces the utility she obtains (as I prove below), so her utility
is not constant and she cannot be bossy.

Now I prove that reducing the number of perfect objects which agent
1 desires always strictly reduces her utility. The certain loss of the perfect
object(s) must be exactly compensated by an increase of the shares she gets
from all over-demanded objects, which is constant in any Z € ZFS. Agent
i was not getting full shares of those objects (as otherwise we obtain a con-
tradiction) so another agent(s) j must be obtaining shares for those objects,
implying ¢7°(R,q) < ¢[°(R, q) (because otherwise the ES would give those
shares to agent 7). Some of the shares obtained by agent j in ¢(R,q) must
be transferred to agent i in ¢(R’,q): this is a Pigou-Dalton transfer because
if agent ¢ did not obtain a lower utility in the misrepresented problem then
he would not obtain the shares of j. Moreover,

5 (R, q) — 1 < ¢75(R,q) < (R, q) (37)

as otherwise 7 does not transfer any shares to ¢ when ¢ reduces the number
of perfect objects. Let v be the Pigou-Dalton transfer from j to i required
so that the utility of 7 is kept constant. We have

PSR, q) = ¢5(R,q) — 1+ =¢5(R,q) —v < ¢75(R,j)  (38)

showing that indeed reducing the number of perfect objects always yields
lower utility, and thus concluding the proof that ES is non-bossy. [

We are now ready to prove that ES is group strategy-proof. We will do
this by showing that nobody can join a manipulating coalition.

Proof. By way of contradiction, assume there exists a MAP (R, q), a coalition
S C N, and a manipulation R’ such that, for alli € S ¢P3(R', q) > ¢P3(R, q),
and for some j € S qﬁ?S(R’, q) > gb}ES(R, q).

Let ¢®5(R,q) = U and order the agents such that U < ... < UFS.
We will show by induction on the order of agents the following property

i¢S (39)

There are two cases in which an agent ¢ can be in S. Case 1) either she
gets more utility, ¢"S(R/, q) > ¢F5(R, q), or case 2) she gets the same utility
but she changes her reported preferences to help another member of S. This
is ruled out by the non-bossiness of ES so we focus on case 1) only.
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We prove it for ¢ = 1 first, i.e. the agent with lowest utility. Agent 1
gets a strictly higher number of objects with the new profile R’, which must
come from a set of objects K C O(R, q) from which he was not getting full
shares (K = {k € M | 3Z € Z¥5 : 0 < 2, < 1}), and which agents 2,... ¢
also desire and U = UF® = ... = UFS. Those agents exhaust ¢ entirely;
ie. Vk € K,VZ € 258 3 2 = .

Let "= {1,...,t}NS. For any preference matrix R/, that is individually
rational for Rry, the objects {k € K | Rnp # Rly,} become less over-
demanded for agents {1,...,t} \ 7, and therefore the agents in 7" get less
objects as a whole. Therefore there must be at least one agent in 7" who is
worst off, and the coalition S is not viable. Therefore 1 ¢ S.

Now we assume that ¢ ¢ S for agent i = h — 1 and we show it holds
for agent h. We must have that U < |Rpy|. We assume ¢75(R, ¢)F <

BS(R, q) as otherwise our argument for agent 1 works exactly the same.

If agent h € S, it must be that there exists a manipulation R’ so that
on(R',q) > ¢n(R,q). The increase in her utility must come from more object
shares on over-demanded objects which she was not obtaining fully, i.e. K" =
{ke M |3Z € Z¥ :0 < z,; < 1}. Some of these objects are exhausted by
agents 1,..., h — 1. There is no way agent h could get more shares from any
of those objects because {1,...,h— 1} NS = () by our induction step.

Therefore, the increase must come from objects that are not exhausted by
{1,...,h—1}. Those objects become less over-demanded for {h,...,n}\ S,
and therefore agents in S get less object shares as a whole. It follows that
there must be a agent in S who gets less utility, so coalition S is not viable.
Therefore h ¢ S, and this concludes the proof. [

Lemma 4 EPO is IPO. Although ES is not IPO, there exists a selection of
CCFE that satisfies IPO.

Proof. EPO is clearly TPO, as discussed in the main text. To show that ES
is not IPO, let n =5 M = {a},q=4,and R" =[11111]. ¢¥5(R,q) = 0.8
for any agent, but adding a perfect object k' with capacity 4 for any agent i
changes ¢ ([R Ryw], (4,4)) = 1.75 # 2.

To show that there is a selection of ®““F that is IPO, let (Z*, p*) be a
CCE of (R,q) and ([R Rny],q) be a perfect extension of (R,q) . Then fix
pp, = 0 and, for every ¢ € N let 27, = 1if rjy = 1, and 0 otherwise. The
pair ([Z* Zx.], (Pt .., p5,0)) is a CCE of the perfect extension ([R Ryy],q),
because everybody interested in the perfect object is able to afford it, and
the demand for &’ equals its supply, because the new object k" is perfect. [J
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