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Abstract 

We investigate whether appointing a middle management level affects startups’ innovation 

performance. Additional hierarchical levels are often suspected to restrict innovative activi-

ties. However, founders’ capacities for information processing and resource allocation are 

usually strongly limited while, at the same time, R&D decisions are among the most conse-

quential choices of startups. We argue that middle management is positively related to intro-

ducing product innovations because it improves the success rates from recombining existing 

knowledge as well as managing R&D personnel. In addition, we suggest that the effective-

ness of these mechanisms depends on the riskiness of a startup’s business opportunity. Based 

on a sample of German high-tech startups, we find support for our conjectures. 

  

Keywords: Middle management, innovation performance, R&D, startups, organizational de-

sign, R&D management 
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I. INTRODUCTION 

Launching innovative products onto the market is a central element in the strategies of most 

startups in high-technology sectors (Wiklund and Shepherd, 2003). Having discovered an 

entrepreneurial opportunity, many startups find themselves in a race to realize that opportuni-

ty and to introduce new products ahead of competitors or before their funding runs out 

(Venkataraman, 1997; Shane, 2000). Opportunities are realized when startups decide to act 

upon them by deploying resources and investments in the pursuit of perceived opportunities 

(Shane and Venkataraman, 2000; Eckardt and Shane, 2003; Shane, 2003). An important part 

of this process are decisions on research and development (R&D) activities that are challeng-

ing since technologies and market conditions are by definition novel and uncertain (Amit, 

Glosten, and Muller, 1990) while funding sources are limited (Hall, 2005). While we learn 

from existing literature how demanding and error prone R&D decisions are for the manage-

ment of established firms (Koput, 1997; Katila, 2002), we know comparatively little about 

the management of R&D in startups. Faced with many competing demands for attention, the 

burden on startup management, often times the founder or founding team, to evaluate many 

technological alternatives and to arrive at the most promising ones is high (Dencker and 

Gruber, 2015).  

In this study, we investigate whether startups can improve the likelihood for successful 

innovation by altering their organizational design through the introduction of a middle man-

agement. We expect a startup’s middle management to allow for better managing competing 

demands for attention and processing information related to R&D and technology develop-

ment in order to successfully realize innovation. We draw theoretical mechanisms from the 

literature on how middle managers increase a startup’s information processing capacity as 

well as free up attention of founders (Colombo and Grilli, 2013) and integrate them into 

models of R&D decision making. We reason that startups with middle management will in-
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crease their innovation performance in general, but also indirectly by re-using existing 

knowledge bases of the startup and managing R&D personnel more effectively. Further, we 

hypothesize that the latter will be more beneficial for startups with risky business opportuni-

ties while the former effects occur when opportunities are comparatively less risky. We test 

our theoretical reasoning using a unique sample of almost 3,700 firm-year observations of 

1,708 high-tech startups founded in Germany between 2005 and 2012. The information on 

these firms stems from linked employer-employee data that merges firm data from a panel 

survey with official register data on the employees who work in these firms. The results 

broadly confirm our theoretical expectations. 

Our theoretical model addresses a gap in existing literatures that are on the one hand ra-

ther critical of the effects of added hierarchical levels on innovation performance for the av-

erage firm (Burns and Stalker, 1961) but on the other hand recognize the establishment of 

middle management as a crucial milestone in the maturing of startups (Colombo and Grilli, 

2013). Intuitively, we would associate middle management with a higher level of formaliza-

tion and bureaucracy, a more “mechanistic” and less “organic” organizational structure that 

facilitates control and productivity but often stifles creativity and innovation (e.g., Burns and 

Stalker, 1961; Thompson, 1965; Dess, Lumpkin, and McKee, 1999; Shane and 

Venkataraman, 2000; Ireland, Covin, and Kuratko, 2009; Foss, Lyngsie, and Zahra, 2015). 

More recently, however, scholars have begun to argue for the benefits of formal structure to 

realize opportunities. Ireland and Webb (2009) suggest that centralization allows unambigu-

ous resource allocation decisions and facilitates monitoring and control. Foss et al. (2015) 

find that both decentralization and formalization help opportunity discovery and realization. 

Yet most research in this area assumes an established firm while scant attention has been paid 

to organizational structure in startups. Moreover, while Sine, Mitsuhashi and Kirsch (2006) 

show that startups with higher founding team formalization, specialization, and administra-
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tive intensity perform better than those with more organic structures, we know little about the 

relationship between organizational structure and innovation, a central outcome of opportuni-

ty realization.  

In that sense, we advance existing literature in two important ways. First, entrepreneur-

ship literature has largely acknowledged that startups adjust their organizational design while 

they mature (Baron, Burton, and Hannan, 1999; Colombo and Grilli, 2013) through a process 

of professionalization (Hellmann and Puri, 2002). However, we know comparatively little 

about how these changes in organizational design affect their innovation performance, argua-

bly a core strategic goal of most high-tech startups. Our theoretical model introduces infor-

mation processing and monitoring mechanisms from existing middle management literature 

into models of R&D decision making, thereby providing a basis for future theorizing. What is 

more, existing literature that investigates innovation outcomes of high-tech startups but ig-

nores its organizational design, particularly the presence of an additional hierarchical level, is 

likely to suffer from biased results. 

Second, an active stream in the strategic entrepreneurship literature focusses on how the 

internal organization of startups interacts with industry characteristics such as the business 

opportunities in an industry. These theoretical models largely equate the management capaci-

ty of a startup with its founder. Prior knowledge and experience of founders are assumed to 

be the primary source of success for startups and these effects are contingent on the startups’ 

business opportunity (e.g., Dencker and Gruber, 2015). We extend this contingency perspec-

tive to the organizational design choices of a startup by arguing that (a) a startup’s capacity 

for R&D decision making is not limited to its founder but can be extended through middle 

management and (b) the positive effects of these organizational design choices are contingent 

on the startup’s business opportunity. Our theoretical model can be a pathway for future theo-
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rizing on how the effectiveness of other organizational design choices of startups (apart from 

middle management) is contingent on their business opportunities. 

These academic insights have immediate implications for decision making in startups. 

Our results provide evidence for how the establishment of a middle management level in-

creases the odds for innovation success in high-tech startups. This evidence can alleviate con-

cerns among startup founders and/or owners about whether the introduction of a middle man-

agement makes startups more bureaucratic and less innovative. Our results show the opposite. 

These insights are also valuable to investors, consultants or government agencies advising 

high-tech startups. We show that the innovativeness of a high-tech startup is not merely a 

function of its technological decisions but also whether it puts an organization design in place 

that increases the management capacities for making these decisions. 

II. THEORY AND HYPOTHESES 

Innovation opportunities and decision making 

New technologies have long been characterized as a basis for the creation of new products, 

new processes, new markets, or new ways of organizing (Schumpeter, 1934), and entrepre-

neurs must discover and identify opportunities in which such new technologies could be used 

(e.g., Venkataraman, 1997; Shane, 2000; Dencker and Gruber, 2015). Opportunities are real-

ized when entrepreneurs decide to act upon them through a process of resource acquisition 

and organization (Shane, 2003). As a consequence, opportunity realization in entrepreneurial 

ventures depends often times on the founder or founding team and the decision to engage in 

identified opportunities. Following previous studies, we will refer to the founder(s) as the 

startup’s highest management level making these strategic decisions (e.g. Dencker and 

Gruber, 2015), given that very few startups hire professional top managers early in their life 
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cycle. Our terminology assumes that the hierarchical level below the founders (i.e. top man-

agement) is the middle management. 

Our theoretical reasoning is concerned with the realization of innovation opportunities. 

In other words, we predict the likelihood with which startups manage to introduce product 

innovations built from new technologies or the recombination of existing ones. The introduc-

tion of new products allows firms to alter current patterns of competition and cooperation, 

facilitate market entry, and gain market share based on a superior offering compared to in-

cumbent firms (Venkataraman, 1997; Wiklund and Shepherd, 2003). However, the realiza-

tion of such opportunities puts considerable demands on decision makers because invest-

ments in R&D have to be made, forcing deciders in startups to dedicate attention to the re-

combination of existing resources and the acquisition of new ones. 

While successful product innovations create important benefits for startups, making the 

necessary investment decisions is challenging for two primary reasons. First, the outcomes of 

investments in R&D are uncertain (Amit et al., 1990). On the technological side, experimen-

tation with novel or untested materials and procedures is by nature error prone and likely to 

fail. Even technologically feasible solutions often fail commercially due to a lack of customer 

acceptance (Gourville, 2006). Second, large parts of R&D expenditures consist of salaries for 

scientists and engineers or investments in specialized, non-fungible laboratories (Hall, 2005). 

Accordingly, firms are constrained in the available financing for R&D to equity capital or 

cash flows since external lenders find it difficult to finance uncertain investments with little 

collateral. Decision making in innovation activities is therefore particularly crucial for new 

ventures lacking the internal funds for sustaining innovation failures. 

Decision making in innovation activities can be conceptualized as a search process in 

which firms make heterogeneous decisions about which technologies to select or combine 

(Katila and Ahuja, 2002). Some of these choices lead to higher innovation performance than 
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others. The quality of these technology choices depends on the amount of attention that a firm 

can devote to screening potential alternatives (Koput, 1997). A lack of attention results in 

erroneous technology choices, missing out on important trends or spreading existing screen-

ing capacities too thinly. Management attention has often been described as one of the most 

important resources of the firm (Ocasio, 1997), but startups, in particular, are challenged to 

commit sufficient attention to realizing innovation opportunities. 

Hypotheses 

Startup decision making is typically dominated by the founders whose decisions have vital 

influence on the firm (Wasserman, 2012). As a consequence, prior literature has extensively 

studied the role of founder knowledge and experience in facilitating the recognition of entre-

preneurial opportunities and startup performance (e.g., Shane, 2000, 2003; Dencker and 

Gruber, 2015). Since founder decision making is not only concerned with the startup’s inno-

vation domain but encompasses all kinds of related and unrelated activities that are crucial for 

the survival of the firm, it is likely that capacity constraints impede the recognition and ex-

ploitation of innovation opportunities. We reason that startups can alleviate capacity con-

straints of the founders and facilitate innovation through organizational design choices. Or-

ganizational structure, in that sense, allocates the authority to make decisions, to deploy re-

sources, and to select the opportunities to pursue (e.g., Galbraith, 1977). Specifically, we ar-

gue that startups with a middle management possess higher information processing capacities 

compared to startups without such a hierarchical level, leading to better opportunity recogni-

tion and realization. 

The term middle management originates from the perspective that firms consist of at 

least two levels, i.e. a top management and line workers (Rajan and Wulf, 2003). The typical 

startup starts with these two levels, and the introduction of a hierarchical level in between, i.e. 

the middle management, constitutes a major organizational design change (Colombo and 
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Grilli, 2013). Middle managers are managerial or administrative specialists with delegated 

decision rights (Baron et al., 1999). They can reduce the ambiguity about the organization of 

work in a firm and thereby improve coordination and efficiency (Sine et al., 2006).  

Since all individuals are naturally limited in their capacity to acquire, store, process and 

transmit information (Simon, 1948), the establishment of a middle-management level can 

improve the information processing capacity of startups (Colombo and Grilli, 2013). The 

middle management of an organization allows it to handle a given amount of information 

more efficiently by enabling parallel information processing in which middle managers share 

information processing tasks with top management (Radner, 1993). 

Besides, the establishment of a middle management level allows firms to use existing in-

formation processing capacities more efficiently. Garicano (2000) conceptualizes the hierar-

chical decision making in firms based on the knowledge that is available to each employee 

for solving problems. Organizational hierarchies emerge because some employees are better 

equipped than others to deal with particularly hard problems. Line workers can deal with reg-

ular problems based on their own knowledge and turn to middle managers for increasingly 

exceptional or difficult problems. Middle managers turn to top management only if their 

knowledge is insufficient to deal with a particular problem. Hence, a middle management 

level frees up top management to focus on the most challenging problems of the organization. 

Moreover, middle management allows an organization to predict more accurately when 

problems or projects have reached a scope that benefit from organization-wide solutions 

(Harris and Raviv, 2002). The latter are most effectively addressed by top management since 

they have the broadest set of knowledge about the organization while lower level projects or 

problems do not require top management attention. In sum, middle management increases the 

information processing capacity of startups by enabling parallel processing and allowing de-
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cision making of its founders to focus on strategic and higher-value decisions while other 

decisions can be delegated to middle managers.  

We conjecture that the improvement in startup’s information processing capacity from 

introducing middle managers can be extended to improving decision making in R&D. R&D 

decisions are particularly complex and uncertain, requiring management attention and thor-

ough decision making. Middle managers allow founders to specialize in solving more strate-

gic problems and to use their skills and competences more productively. Since innovation is a 

domain of strategic importance for successfully entering markets and gaining market share, 

middle management is therefore likely to improve a startup’s ability to innovate and position 

its offering vis-à-vis the incumbents in the market. As a result, our first hypothesis reads: 

Hypothesis 1: Startups with middle management are more likely to introduce 

product innovations. 

Existing literature has frequently highlighted that startups are differentially endowed with 

resources upon market entry, including prior technological knowledge, invested capital, or 

managerial, entrepreneurial and industry experience of the founder (e.g., Shane, 2000; 

Dencker and Gruber, 2015). We focus on a startup’s prior technological knowledge base be-

cause the recombination of existing knowledge is a central determinant of a firm’s ability to 

innovate (Rosenkopf and Nerkar, 2001; Katila and Ahuja, 2002). We suggest that startups 

with a middle management will be more effective in recombining existing knowledge.  

Literature describing innovation performance based on the re-use of a firm’s existing 

technologies (i.e. deep search) summarizes its advantages across the dimensions of reliability, 

predictability and efficiency (Katila and Ahuja, 2002). We reason that new ventures with 

middle management will experience advantages across all three dimensions. First, the added 

information-processing capacity decreases the likelihood of errors and false starts when using 

the same knowledge elements repeatedly so that search becomes more reliable (Levinthal and 
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March, 1993). Second, middle management can be assumed to render the startup’s search 

more predictable because it enables a better understanding of the requirements that need to be 

met for successful innovation. Higher information processing capacity facilitates an under-

standing of how product development tasks can be decomposed into manageable sub-

problems, how recombination activities should be sequenced, and what elements are unnec-

essary and can thus be disregarded. Third, middle management allows for a deeper under-

standing of the existing knowledge base which increases a startup’s ability to identify valua-

ble knowledge elements that may not have been obvious to the founder. In sum, our second 

hypothesis reads: 

Hypothesis 2: Startups with middle management are more likely to introduce 

product innovations, and this likelihood increases with the size of the startup’s ex-

isting knowledge base. 

Apart from the positive influence of middle management on a startup’s ability to recombine 

existing knowledge, we argue that middle management can further influence current 

knowledge production by reducing the span of control for a startup’s employees. Tighter 

spans of control imply that the plans of an organization can be implemented more quickly if 

workers receive instructions from their managers more effectively (Keren and Levhari, 

1979). These theoretical models rest on the assumption that the goals and incentives of the 

owners and the employees of a firm differ, requiring monitoring or incentive alignments to 

overcome principal-agent problems from employees following their self-interests (Calvo and 

Wellisz, 1978; Qian, 1994). 

Jensen and Meckling (1995) suggest that the agency problems are especially pronounced 

when employees possess specific knowledge that is difficult to transfer. The R&D activities 

of startups create such conditions. Given that R&D evolves around experimentation with 

novel and untested procedures and materials, it is difficult to codify and monitor. Many R&D 
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outcomes occur as tacit knowledge in the understanding of R&D personnel and would be 

costly to codify comprehensively (Agrawal, Cockburn, and McHale, 2006). Besides, the 

knowledge from failed experiments is rarely codified but may be as valuable for eventually 

identifying promising R&D trajectories. 

The motivations of scientists and engineers for their work have also been found to differ 

from the goals of their firms (Gambardella, Ganco, and Honoré, 2015): R&D decisions of 

individuals can be driven by curiosity, an interest in learning about or confidence in particular 

technologies. This can lead to biased decision making of R&D personnel. One of the best 

documented biases of R&D personnel is the systematic negative bias about the quality or 

usability of knowledge from external sources (“not invented here syndrome”) (Katz and 

Allen, 1982; Antons and Piller, 2015). In the absence of a middle management, it falls on the 

startup’s founders to monitor the technological choices of its R&D personnel and ascertain 

that these choices are aligned with the overall goals of the startup. We reason that middle 

managers can share this management task either by supervising R&D personnel directly or 

freeing up founder capacities from monitoring other startup activities.  

We acknowledge that hierarchical layers can constrain the information flow between 

knowledge production and top management of organizations since the transfer of information 

rests on aggregation with potential losses of important details (Keren and Levhari, 1989; 

Stein, 2002). However, we suggest that on balance middle management will be particularly 

helpful for effectively managing R&D personnel because it can provide direction, set priori-

ties and correct mistakes. Based on the added monitoring capacity, market opportunities can 

be more reliably identified and evaluated so that R&D personnel can be focused on them. 

Monitoring by middle management allows for the targeted provision of resources in order to 

increase the likelihood of innovations. As a consequence, our third hypothesis reads as fol-

lows: 
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Hypothesis 3: Startups with middle management are more likely to introduce 

product innovations, and this likelihood increases with the size of the startup’s 

R&D personnel. 

Finally, Dencker and Gruber (2015) shed light on the business opportunity itself that a startup 

seeks to exploit and suggest that its riskiness will not only directly influence firm perfor-

mance but also condition the role of the founder’s industry and managerial experience. Miller 

(1992, 1993) relates the risk of a business to the dynamics of its environment, e.g. changes in 

input prices, competitor behavior, etc. On the one hand, such risks increase the odds of a 

startup’s failure (Miller, 1992). On the other hand, riskier businesses enable startups to find 

dissatisfied customers or niche markets that are not served by incumbent firms (Wiklund and 

Shepherd, 2003). Dencker and Gruber (2015), based on the intuitive assumption of a positive 

risk-return relationship, find that riskier opportunities are associated with greater startup per-

formance above and beyond the characteristics of the founder. Accordingly, we reason that 

the benefits that middle managers bring to the management of prior knowledge and R&D in 

startups are conditioned by the riskiness of a startup’s business opportunity.  

Risky business opportunities affect the R&D decision making of startups in two ways. 

First, they aggravate the consequences of failing innovations, e.g. due to a lack of reliability 

or desired functionality, for the startup. Startups with risky business opportunities may not 

have the financial resources and goodwill from customers, investors or suppliers to sustain a 

failed innovation. Accordingly, screening technologies and predicting success rates requires 

comparatively more attention from founders. Second, risky business opportunities imply that 

the technological and market demands for successful innovation are comparatively less pre-

dictable. Hence, they benefit from increasingly intense testing and adapting. The latter re-

quires more intensive management of current R&D activities. In sum, risky business oppor-

tunities tax the attention of founders especially with decision making in current R&D activi-
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ties. As a consequence, startups with risky business opportunities are also particularly likely 

to experience positive effects from middle management in directing current R&D activities 

and personnel. We propose:  

Hypothesis 4a: Startups with middle management are more likely to introduce 

product innovations, and the effect of middle management on the startup’s R&D 

personnel is stronger for risky business opportunities. 

Conversely, startups with comparatively less risky business opportunities benefit from more 

predictable environments. Technological and market conditions can be analyzed more relia-

bly, creating opportunities for exploiting existing technologies. Within such settings, the ben-

efit from involving middle management emerges from increased information processing ca-

pacities for identifying unrealized market potentials of existing technologies. We predict: 

Hypothesis 4b: Startups with middle management are more likely to introduce 

product innovations, and the effect of middle management on the prior knowledge 

base is stronger for comparatively less risky business opportunities. 

III. DATA AND METHODS 

Data 

We construct a dedicated dataset combining multiple data sources to test our hypotheses. It 

rests on a linked employer-employee panel dataset that matches firm-level data from the 

KfW/ZEW Startup Panel with the official employment statistics provided by the German 

Federal Employment Agency. The KfW/ZEW Startup Panel is a survey of German startups 

of the cohorts 2005-2012. It was established in 2008 as a joint project of the Centre for Euro-

pean Economic Research (ZEW), the KfW Bankengruppe (Germany’s and the world’s larg-

est state-owned promotional bank), and Creditreform (Germany’s largest credit rating agen-

cy). The KfW/ZEW Startup Panel is a stratified random sample of legally independent new 
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ventures drawn from the Mannheim Enterprise Panel (Mannheimer Unternehmenspanel - 

MUP). The MUP contains basic information such as addresses, year of startup, sector of ac-

tivity, and legal form, for almost all German firms (see Bersch et al., 2014, for a detailed de-

scription). The sample of the KfW/ZEW Startup Panel is drawn from almost all sectors of the 

MUP population (the primary sector, the energy sector, and the public sector are not includ-

ed) and stratified according to three criteria: (i) the year of a firm’s formation, (ii) the indus-

try, and (iii) whether or not a firm has received financial support from KfW. Stratification is 

controlled for by including dummy variables for the stratification cells in all regressions.  

When drawn into the sample firms are allowed to be not older than three years. Subsidi-

ary businesses and ventures that resulted from merger activities are excluded. Startups that 

participate once in the survey are subsequently followed for up to seven successive years (i.e. 

until they are eight years old. See Fryges, Gottschalk, and Kohn, 2010, for a detailed descrip-

tion). Data are collected using computer-assisted telephone interviews. In the present study, 

the survey data provide information about the founders’ characteristics (i.e. educational 

background and managerial and entrepreneurial leadership experience) and venture character-

istics (including innovation and R&D activities). 

We match the firm-level information with employee-level information from the official 

employment statistics provided by the Federal Employment Agency. The employment statis-

tics contain person-specific register data on all employees subject to social security contribu-

tions in Germany.1 This dataset is a rich source of employee records and allows us, most im-

portantly, to identify middle managers and R&D personnel based on occupation codes (see 

                                                 

1  In addition to regular full-time and part-time employees, this includes apprentices, interns, and marginally 

employed personnel. All notifications on employment and unemployment spells of an individual can be 

linked with the aid of a unique person-specific identifier thereby obtaining the complete employment histo-

ry of each employee. A further identifier makes it possible to match the employees to establishments. The 

data are reported by the employing establishment and are collected by the social security agencies. Report-

ing data about the employees is mandatory for the employing establishments in order to calculate the con-

tributions to the social security system. 
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variable description below). Moreover, the employment statistics also provide details regard-

ing further employee characteristics for the purpose of the present study. 

As there is no common identifier in the two data sets, we matched startups from the 

KfW/ZEW Startup Panel using a text search algorithm via startup names and addresses. The 

text search algorithm is described in detail in the Appendix B of Czarnitzki et al. (2015) and 

has proven to deliver very reliable results in various settings.  

We were able to match about 90% of the startups from the KfW/ZEW-Startup Panel that 

self- reported to have employees who are subject to social security contributions (during a 

telephone interview) with one or more establishments from the official employment statistics. 

Firms that self-reported to have employees subject to social security contributions, but which 

were not found in the official employment statistics, were removed from the sample. In addi-

tion, we adjusted for the possibility of incorrect matches or erroneous data in either dataset by 

excluding matches in the 1st and 100th percentiles of the difference between employment 

sizes reported during telephone interviews and to the social security agencies. To assess the 

quality of the matches in the resulting firm-year panel dataset, we calculated the correlation 

coefficient between the numbers of employees reported in the KfW/ZEW-Startup Panel and 

the numbers of employees reported in the official employment statistics. The correlation is 

slightly above 0.95 which makes us confident that the matching procedure led to reliable re-

sults. 

We obtain information from 3,407 startups that operate in knowledge-intensive indus-

tries and have at least one employee.2 Because we apply a one year time lag between inde-

pendent and dependent variables (see details below), we are able to draw on 3,699 observa-

tions from 1,708 startups in the panel dataset that we use for estimations.  

                                                 

2  “Knowledge-intensive industries” include “cutting-edge” and high-technology manufacturing, technology-

intensive services, software supply and consultancy, and skill-intensive services in line with Fryges et al. 

(2010).  
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Variables 

Dependent variable 

Our hypotheses predict the likelihood with which startups introduce product innovations. 

Accordingly, we create a dummy variable for the introduction of a product innovation in a 

given year. Product innovations can have various degrees of novelty. We require that a 

startup’s new product is new to the market, not just new to the startup itself.  

Explanatory variables 

Our main variables of interest on the right-hand side of our estimation equation are whether 

or not a firm employs at least one employee who is appointed with delegated decision making 

authority (“middle manager”), the size of the existing knowledge stock of a firm, the number 

of R&D employees, and the riskiness of the business opportunity a firm exploits.  

We construct our binary indicator for the presence of a middle manager from occupation 

codes available in the employment statistics of the German Federal Employment Agency. In 

the individual level data, occupations are coded using the five-digit occupation code 

KldB2010 (the German adaption of ISCO-08, devised by the Federal Employment Agency) 

which allows identifying employees with supervisory or executive competences.3 We classify 

such employees as “middle managers”. Analogously, we construct the number of R&D em-

ployees by summing up those employees that have occupation codes relating to R&D occu-

pations.4 

                                                 

3  Employees with supervisory or executive competences are identified by a “9” as fourth digit of the five-

digit KldB2010 occupation code. 
4  We apply the definition of R&D occupations of the German Federal Statistical Offices 

(https://www.klassifikationsserver.de/klassService/jsp/item/grouping.jsf?form:_idcl=form:tree:0:0:0:0:link

_expand_plus&autoScroll=&form_SUBMIT=1&javax.faces.ViewState=rO0ABXVyABNbTGphdmEubG

FuZy5PYmplY3Q7kM5YnxBzKWwCAAB4cAAAAAJ1cQB%2BAAAAAAACdAABZHB0ABYvanNw

L2l0ZW0vZ3JvdXBpbmcuanNw) 
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We approximate a firm’s existing knowledge stock by the number of patents the found-

er(s) of a firm held prior to the registration of the firm. We retrieve this information from the 

survey data of the KfW/ZEW Startup Panel.  

Following Dencker and Gruber (2015), we measure the riskiness of the business oppor-

tunity of a firm using the average credit rating score of all other German firms of the same 

age in the same three-digit NACE industry. Credit rating scores reach from 100 (best) to 600 

(worst, indicating default) and are retrieved from the credit rating agency Creditreform. The 

measure reflects the average likelihood of failure of comparable firms. Since information 

about startups is typically scarce, the probability of failure of comparable firms oftentimes 

determines the financing conditions and the financial pressure a new venture faces and hence 

measures the inherent riskiness of its business opportunity. Dencker and Gruber (2015) argue 

that this measure reflects the risk-return potential inherent in opportunities. Risk ratings, in 

that sense, proxy for the likelihood of insolvency in a given industry, and higher risk ratings 

should therefore also provide the basis for building high-performing startups (Stinchcombe, 

1965; Dencker and Gruber, 2015). 

We control for a number of factors that have frequently been shown to be associated with 

the likelihood to innovate (Ahuja, Lampert, and Tandon, 2008). Details on the construction of 

all variables are provided in Table 4 in Appendix A. We control for the resource availability 

of the startup by controlling for the number of founders and employees as well as for R&D in 

particular by including R&D expenditures (scaled by startup sales). Besides, we control for 

the quality of the startup’s human capital by including a dummy variable if at least one of the 

founders had tertiary education as well as the share of employees with tertiary education. 

Besides, founder experience has been found to impact startup performance (Colombo, 

Delmastro, and Grilli, 2004; Colombo and Grilli, 2005). We capture these effects with two 
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dummy variables indicating whether the founder had managerial or entrepreneurial experi-

ence as well as the number of years of industry experience of the founder.  

Taking into consideration structural differences among startups, we control for the 

startup’s age and whether it is incorporated (limited liability). We further add three industry 

dummies for technology intensive services, software supply and consultancy as well as skill-

intensive services. High-tech manufacturing startups will serve as our reference group. 

Estimation approach and identification 

Since our dependent variable is binary, we choose probit estimates with standard errors ro-

bust to clustering at the startup level as our main estimation method. In our analyses, we es-

timate a series of interaction effects. The interpretation of interaction effects in nonlinear 

models, such as probit or logit models, is not straightforward (Ai and Norton, 2003; Greene, 

2010). Therefore, we first re-calculated all interaction effects following Ai and Norton 

(2003). In addition, we double-checked all results with linear probability models as a robust-

ness check. We did not find qualitative differences to the reported marginal effects in both 

checks.  

Endogeneity is a potential issue in our empirical setting. A first source of endogeneity 

might stem from simultaneity/omitted variable bias. It seems plausible to assume that startups 

of higher quality might simultaneously have a higher probability of doing both, hiring a mid-

dle manager and introducing an innovation. If we cannot control for startup quality adequate-

ly, we might spuriously attribute changes in innovation propensity to the introduction of a 

middle management. We address this problem by a two-step strategy: We first pre-balance 

our sample with respect to firm-year observations with middle management and those with-

out over a large number of indicators for firm quality that are determined before a startup 

introduces a middle management (and potentially confounds the measures). Second, we con-
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trol for a wide range of contemporary or one period lagged indicators for firm quality directly 

in all estimated models.  

We apply entropy balancing to implement the pre-balancing empirically. Entropy balanc-

ing achieves balance over specified moments of selected covariates by deriving sample 

weights. The retrieved weights are then used in subsequent weighted estimations 

(Hainmueller, 2011; Hainmueller and Xu, 2013). Intuitively, this can be understood as the 

creation of a synthetic control group, where the observations in the control group are re-

weighted so that their specified sample moments mimic those of the treatment group as close-

ly as possible (cf. Abadie, Diamond, and Hainmueller, 2010). In contrast to other related 

methods, for instance propensity score matching, entropy balancing induces covariate balance 

directly, and not as the result of a propensity score matching procedure (which requires iter-

ated re-specifications of the propensity score estimation to achieve covariate balance). Entro-

py balancing has been applied for sample balancing in several recent studies (e.g., Bansak, 

Hainmueller, and Hangartner, 2016; Malesky and Taussig, 2016; Satyanath, Voigtländer, and 

Voth, 2017). Technical details on the derivation of the entropy balancing weights are provid-

ed in Appendix B.  

Our choice of indicators for startup quality that we use in the balancing exercise follows 

the results of Colombo and Grilli (2013) who analyze the antecedents of the emergence of a 

middle management layer in Italian high-tech startups. We balance on the full-time equiva-

lent employment size of the startup at the time of foundation including founders, whether the 

firm was incorporated with limited liability at the time of foundation, industry dummies, 

whether the firm reported to have equity investors in the first interview, the number of patents 

a firm founder held at the time of firm foundation, and measures for founder human capital 

(whether the founder has tertiary education, the founder’s years of industry experience, 

whether the founder had started a firm before, and whether the founder has experience as a 
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manager in dependent employment).5 The data show that, as expected, startups with middle 

management clearly outperform those without middle management with respect to nearly all 

firm quality indicators. After balancing, though, original differences are leveled entirely (see 

Table 5 in Appendix A for results).  

A second, closely related, source of endogeneity might arise from direct reverse causali-

ty, when firms appoint a middle manager in response to the introduction of a market novelty. 

We use only lagged values of middle management to reduce the potential bias caused.  

To assess the robustness of our identification strategy, we re-estimate our main models 

and instrument the presence of a middle manager by two measures that we regard as plausi-

bly exogenous to a startup’s innovation performance: (1) the number of executives in firms 

that filed bankruptcy in the same district and one-digit NACE industry in a given year and (2) 

the propensity that other firms in the sample, which operate in the same one-digit NACE in-

dustry and are in the same size category, have a middle management.6 The first instrument 

introduces exogenous variation due to a local supply shock of potential candidates for middle 

management positions. The second instrument introduces exogenous variation in the firms’ 

demands for middle managers.  

Because our IV model is over-identified (i.e., we use more instruments than endogenous 

regressors we instrument for) we use a (pooled) GMM approach to estimate the IV model and 

adjust the GMM weighting matrix and the standard errors for a potential clustering at the firm 

                                                 

5  For founding teams we use information on the founder with the highest education/most experience in the 

team. For improving the precision of the balancing of continuous variables (i.e. startup size and number of 

founder patents), we require that the first three moments of these variables are balanced, i.e. mean, vari-

ance and skewness. 
6  According to existing research, the necessity to introduce a hierarchical structure depends crucially on 

industry and firm size (Rajan and Zingales, 2001). However, the probability that other firms hire a middle 

manager should not directly influence a focal firm’s probability to launch an innovation on the market. For 

the generation of the instrument, we defined six size categories to achieve an as uniform as possible distri-

bution of observations over size categories: (1) 1 employee, (2) 2 employees, (3) 3 or 4 employees, (4) 5 to 

7 employees, (5) 8 to 14 employees, (6) more than 14 employees. 
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level. We find the proposed instruments to be valid and our identification strategy to be sup-

ported by the results of IV regressions (see results section for details). 

IV. RESULTS 

Summary statistics and a table of pairwise correlations are provided in Table 1 and Table 2. 

We learn from the descriptive statistics that 16% of startups in our sample report product in-

novations which gives some indication that achieving innovation success is challenging for 

the average high-tech startup. Startups are on average 3.87 years old, have 1.7 founders and 

employ 4.89 employees. They spend 12% of sales on R&D and employ 0.14 R&D employ-

ees, albeit with a substantial standard deviation. The number of R&D employees provides 

some indication that R&D positions are difficult to finance for startups. Similarly, founders 

hold 0.48 patents when creating the startup but also with a large standard deviation. 

Most of the startups operate in service sectors, especially technology-intensive services 

(42 percent). Thirty percent of startup operate in high-tech manufacturing sectors which typi-

cally have higher entry barriers, e.g. from necessary fixed capital investments. The riskiness 

of the business opportunities of startups in our sample is at an intermediate level at 308 on the 

scale between 100 and 600. Most startups are incorporated as limited liability companies 

(64%) but few have equity investors from the start (4%). Moreover, 10% of startups in our 

sample have a middle management. Hence, a sizable number of startups makes this organiza-

tional design choice but the majority of startups does not. This indicates that the introduction 

of a middle management has the potential to be a strategic decision differentiating startups 

from their peers. 

None of the correlations between the explanatory variables reach levels that indicate col-

linearity problems. This is supported by the variance inflation factor (VIF) that has an aver-
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age value of 1.45 for our main models. The VIF is far below usually applied critical levels of 

10 (Belsley, Kuh, and Welsh, 1980). 

 

------ Table 1 about here ------ 

------ Table 2 about here ------ 

 

In line with Hypothesis 1, our main multivariate regression estimates from weighted Probit 

models reveal a significant and positive relationship between middle management and a 

startup’s likelihood to introduce a product innovation (Column A of Table 3; see Column A 

of Table 6 in Appendix A for results of the unbalanced/non-weighted model). Employing at 

least one middle manager increases the likelihood to introduce a market novelty by 7.2 per-

centage points. Given that the average propensity to introduce a market novelty in the sample 

is 16%, this effect size stands for a substantial increase. 

 

------ Table 3 about here ------ 

 

The marginal effects of the wide range of included control variables show the expected signs. 

Most noteworthy, the R&D intensity has a positive and significant effect, as does the size of 

the existing knowledge stock (patents at time of foundation), the number of R&D employees, 

and the share of employees with tertiary education.  

We apply interaction and split sample analyses, to test the moderating effects on the rela-

tionship between middle management and innovation performance that we proposed in Hy-

potheses 2 to 4b (Table 3; Column B-F). In support of Hypothesis 2, we find a positive and 

significant interaction effect between the presence of a middle management level and a 

startups’ existing knowledge stock. Hence, middle management seems to become especially 
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effective in managing innovation when middle managers can draw on larger stocks of exist-

ing knowledge. In addition, it seems reasonable to assume that middle managers help startups 

to translate inventions into marketable innovations and hence facilitate the commercialization 

of previously recognized opportunities. In contrast, our data does not support Hypothesis 3: 

The interaction effect between middle management and the number of R&D employees is 

positive but insignificant in the full sample. As we will show in the following, understanding 

the relationship between middle management, the number of R&D employees, and innova-

tion requires a more nuanced explanation. 

To assess how the riskiness of a firm’s business opportunity influences the moderating 

effects of the prior knowledge stock and the R&D personnel (Hypotheses 4a and 4b), we split 

our sample at the industry median of the riskiness of the business opportunity.7 In support of 

Hypothesis 4a, we find that the interaction between middle management and the number of 

R&D employees is only positive and significant for firms that exploit risky opportunities. In 

contrast, and in support of Hypothesis 4b, the interaction term between middle management 

and the size of a startup’s prior knowledge stock is only positive and significant for less risky 

business opportunities. These results support the hypothesized rationale that in highly risky 

businesses, which need to adapt to their business environment constantly and keep the cost of 

these adaptions under control, middle management plays an important role in supporting the 

founders in monitoring ongoing R&D. In contrast, in less risky but more stable environments 

that allow recombining a startup’s existing knowledge stock middle management seems to 

facilitate innovation by rendering the search for innovation through the recombination of ex-

isting technologies more efficiently and reliably.  

                                                 

7  We split the sample at the industry medians of the industries used for the stratification of the KfW/ZEW 

Startup Panel. We control for these stratification industries by industry fixed effects in all models. Since 

the opportunity risk measure is generated on a three-digit NACE level, this procedure implies that we 

compare “more risky” opportunities to opportunities that are less risky but generally comparable. 
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Robustness checks 

As described before, we apply an instrumental variables approach as a robustness check 

(Table 7 in Appendix A). In a first step, we instrument lagged middle management to repli-

cate our main analyses (i.e. we replicate Table 3, Column A). Both instruments have a posi-

tive and statistically significant impact on the probability to employ a middle manager in the 

first stage of the IV regression. The joint first stage F-statistics of the instruments is 10.45. As 

a rule of thumb, first stage F-statistics of 10 and below indicate critically weak instruments. 

The Hansen-J test for over-identification has a p-value of 0.106: over-identification and the 

validity of our instruments cannot be rejected at a 10% significance level. When instrument-

ed, the effect of middle management remains positive and significant. 

In a second step, we re-run the IV model but use contemporary (and not lagged) explana-

tory variables. Since the effect of middle management is identified by exogenous variation in 

the IV model, a specification without lags yields unbiased estimates. However, the precision 

of the estimates should increase due to the increase in the sample size. This allows us to pro-

vide some evidence whether the fact that the coefficient and the standard error of middle 

management become somewhat inflated in the lagged IV specification can be attributed to the 

rather week instruments. As in the first specification, both instruments have a significantly 

positive relationship with the propensity to employ a middle manager in the first stage. The 

power of the instruments is higher with a first stage F-statistic of 20.75 and a p-value of the 

Hansen-J test for over-identification of 0.511. As a consequence of the stronger instruments, 

the inflation of the estimated coefficient for middle management decreases considerably (to 

0.247). Hence, we conclude that overall the IV specifications support a causal interpretation 

of our results.  

As a second robustness check, we increase the level of detail of the included industry 

fixed effects. We do so to assure that our estimates are not driven by industry differences in 
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the propensity to innovate we do not control for. The industry controls in our main models 

reflect the stratification criteria of the KfW/ZEW-Startup Panel and are included on the level 

of stratification to control for firms’ probabilities to be drawn into the sample. When we in-

crease the level of detail of the industry fixed effects up to the two digit NACE level, the 

marginal effect of middle management changes only slightly (see Columns C and D of Table 

6 in Appendix A). Hence, we are confident that controlling for industry differences at the 

level of the industry stratification of the sample yields unbiased results.  

V. DISCUSSION 

Do middle managers help startups to introduce innovative products to the market? And if so, 

when are middle managers most effective? Our research addresses a fundamental puzzle in 

the literature on organizational design. On the one hand, middle management is typically as-

sociated with a higher level of formalization and bureaucracy and therefore bears the risk of 

hampering creativity and innovation in the average firm (e.g., Burns and Stalker, 1961; 

Thompson, 1965). On the other hand, organizational structure such as a middle management 

level can help firms to allocate resources, to facilitate monitoring and control, and therefore 

to realize opportunities (Ireland and Webb, 2009; Foss et al., 2015). 

Our research provides a number of compelling findings to address this gap in existing re-

search for a high-tech startup context. Based on a unique sample of almost 3,700 firm-year 

observations between 2005 and 2012, we find that high-tech startups with middle manage-

ment have a higher likelihood of introducing product innovations. We attribute this finding to 

the fact that the establishment of middle management leads to increased information pro-

cessing and monitoring capacity in the startup (Colombo and Grilli, 2013). Middle manage-

ment frees up founders to focus on the most challenging problems of the organization. It also 

allows an organization to predict more accurately when problems or projects require organi-
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zation-wide solutions (Harris and Raviv, 2002). In that sense, middle management enables 

parallel processing and allows decision making of its founders to focus on strategic and high-

er-value decisions while other decisions can be delegated to middle managers. This should be 

particularly true for decision making in R&D. Since R&D decisions are complex and uncer-

tain, they require management attention and thorough decision making. Middle managers 

allow founders to focus on these decisions and therefore improve a startup’s ability to inno-

vate. 

Moreover, we find evidence that middle managers facilitate the recombination of exist-

ing knowledge, a central determinant of a firm’s ability to innovate (Rosenkopf and Nerkar, 

2001; Katila and Ahuja, 2002). Middle managers, through the added information-processing 

capacity, apparently decrease the likelihood of errors and false starts when using the same 

knowledge elements repeatedly so that search becomes more reliable (Levinthal and March, 

1993). They also make the search for innovation more predictable due to a better understand-

ing of the requirements that need to be met for successful innovation. The increased infor-

mation processing capacity helps understand how product development tasks can be decom-

posed into manageable sub-problems, how they should be sequenced, and which elements to 

disregard. 

Contrary to our expectations, we do not find a positive and significant interaction effect 

between middle management and the size of a startup’s current R&D personnel. We had ex-

pected middle management to be of value in directing and focusing current knowledge pro-

duction and technology development by reducing the span of control for a startup’s employ-

ees, leading to quicker implementation of plans because of tighter spans of control (Keren 

and Levhari, 1979). However, our results indicate that this relationship is more complex and 

requires an understanding of the riskiness of the startup’s business opportunity. Splitting the 

sample into two groups with below and above median riskiness reveals that the interaction 
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between middle management and current R&D personnel is positive and significant for firms 

that operate in industries with risky business opportunities. However, there is no significant 

interaction effect for less risky opportunities. In contrast, the interaction term between middle 

management and the startup’s existing knowledge is only positive and significant in indus-

tries with less risky business opportunities. These results support our expectations that 

startups in highly risky businesses need to continuously adapt and dedicate management at-

tention which is why middle management is particularly helpful in supporting founders. In 

more stable environments, middle managers help with recombining a startup’s existing 

knowledge stock. 

Taken together, our findings advance academic research along two dimensions. First, ex-

isting entrepreneurship literature emphasizes how startups mature and professionalize 

through their organizational design choices (Baron et al., 1999; Colombo and Grilli, 2013; 

Hellmann and Puri, 2002). Our theoretical model focusses on one particular organizational 

design choice, i.e. the establishment of a middle management layer in a startup, and links it to 

innovation performance, arguably one of the most crucial strategic outcomes for high-tech 

startups. We integrate mechanisms on information processing and monitoring from existing 

middle management literature into models of R&D decision making. On the one hand, this 

provides a basis for future studies to theorize about how middle management affects other 

strategic outcomes of startups, e.g. internationalization. On the other hand, it highlights a 

weakness in existing literature investigating innovation outcomes of high-tech startups. Stud-

ies ignoring the hierarchical levels are likely to suffer from biased results. 

Second, recent research in strategic entrepreneurship emphasizes how the riskiness of a 

startup’s business opportunity conditions the value of founder knowledge and experience for 

startup success (e.g., Dencker and Gruber, 2015). We find that this contingency effect of a 

startup’s business opportunity is not limited to founder characteristics. Instead, we show how 
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middle management can extend the management capacities of a startup for making R&D de-

cisions and that the effects differ depending on the riskiness of the startup’s business oppor-

tunities. Our theoretical model can be a pathway for future theorizing on how the effective-

ness of other organizational design choices of startups (apart from middle management) is 

contingent on their business opportunities. 

Apart from these academic contributions, our findings have relevance for decision mak-

ing in startups. We provide evidence of the benefits of middle management for startups and 

outline conditions under which the establishment of a middle management level is most ef-

fective. These insights translate into direct recommendations for the management of startups. 

They suggest that startups should hire middle managers as soon as the startup finances allow 

to do so (Michelacci and Quadrini, 2005) in order to improve the realization of opportunities. 

There is a particularly strong case for the establishment of middle management in high-tech 

startups that have a strong technological base and whose prior knowledge offers numerous 

opportunities for recombination. Moreover, high-tech startups that continue to invest into 

R&D because the business opportunity they exploit features high-risk and return prospects 

also benefit from middle managers. Founders should critically question their own information 

processing capabilities and to what extent they can dedicate attention to innovation. Similar-

ly, startup advisors such as investors, consultants or government agencies should take these 

mechanisms into account. We show that the likelihood for innovation success of a startup is 

not limited to technological decisions of its founders but includes organizational design 

choices which will make it more likely that the startup will have the information processing 

and monitoring capacities in place to arrive at promising R&D decisions. 
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VI. CONCLUDING REMARKS 

We have argued theoretically and shown empirically that establishing a middle management 

layer can help startups to introduce product innovations. The positive effects of middle man-

agement seem to arise through improved capabilities for information processing, monitoring 

and decision making. These improvements help startups prioritize between the creation of 

new knowledge and the exploitation of existing knowledge, dependent on the riskiness of a 

startup’s business opportunity.  

Nevertheless, our research is not without limitations. First, our research investigates only 

an individual organizational design choice and seeks to isolate its effect on innovation. How-

ever, the organizational structure of startups can be characterized by several other dimensions 

that may interact with the establishment of a middle management level. Future research 

should therefore also consider other design choices and study their interrelationships. Second, 

while our research design allows us to capture the effect of middle management across a 

number of startups and industries, smaller scale and/or qualitative studies may be better posi-

tioned to delineate communication and coordination patterns by which middle managers and 

founders interact in their R&D decisions. Finally, while we use panel data that enables us to 

control for a large number of firm- as well as individual-specific factors in our models and to 

use one period lagged explanatory variables to reduce the risk of reverse causality, the re-

maining time dimension in our panel dataset is not large enough to estimate meaningful fixed 

effects specifications. Hence there may be some remaining unobserved heterogeneity in indi-

vidual or firm characteristics that can offer alternative explanations for our empirical results. 

However, since we are able demonstrate the robustness of our results by using different 

methods of identification, including a pre-balancing of our sample and instrumental variables 

models, we consider the potential remaining bias to be very small at most. 
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TABLES 

Table 1: Descriptive statistics 

  

 

All firms (N = 3,699) 

Variable Unit Mean S.D. Min Max 

      Product innovation (y/n)  (y/n) 0.16 0.37 0.00 1.00 

Firm has middle management (y/n) - lag  (y/n) 0.10 0.30 0.00 1.00 

Risk of business opportunity Score 308.32 14.64 239.00 461.58 

Number of R&D employees - lag  Count 0.14 0.64 0.00 13.00 

Number of patents bef. foundation Count 0.48 7.40 0.00 180.00 

R&D intensity (R&D/sales) - lag  Share 0.12 0.34 0.00 2.00 

Number of founders Count 1.70 0.98 1.00 9.00 

Founder with tertiary education (y/n) (y/n) 0.65 0.48 0.00 1.00 

Founder has managerial experience (y/n) (y/n) 0.51 0.50 0.00 1.00 

Founder has entrepreneurial experience (y/n) (y/n) 0.47 0.50 0.00 1.00 

Years of industry experience Count 19.48 9.06 2.00 48.00 

Number of dep. employees - lag Count 4.89 5.16 1.00 45.00 

Employees with tertiary edu. (share) - lag  Share 0.25 0.33 0.00 1.00 

Equity capital in year of foundation (y/n) 0.04 0.20 0.00 1.00 

Limited liability (y/n) 0.64 0.48 0.00 1.00 

Firm age Count 3.87 1.56 1.08 8.00 

High-technology manufacturing  (y/n) 0.30 0.46 0.00 1.00 

Technology-intensive services  (y/n) 0.42 0.49 0.00 1.00 

Software supply and consultancy  (y/n) 0.14 0.35 0.00 1.00 

Skill-intensive services  (y/n) 0.14 0.35 0.00 1.00 

Year 2008 (y/n) 0.12 0.32 0.00 1.00 

Year 2009 (y/n) 0.19 0.39 0.00 1.00 

Year 2010 (y/n) 0.20 0.40 0.00 1.00 

Year 2011 (y/n) 0.24 0.43 0.00 1.00 

Year 2012 (y/n) 0.26 0.44 0.00 1.00 

Notes: Additional control variable: funding by KfW bank 
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Table 2: Pairwise correlations of dependent and main explanatory variables (n = 3,699) 

 Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

(1) Product innovation (y/n)  1               

(2) Firm has Middle Management (y/n) - lag  0.1114* 1              

(3) Risk of business opportunity (log) 0.0715* 0.0347* 1             

(4) Number of RnD Employees - lag  0.0610* 0.0878* -0.0148 1            

(5) Number of Patents bef. foundation 0.0266 -0.0167 0.0081 -0.0039 1           

(6) R&D intensity (R&D/sales) - lag  0.2771* 0.1024* 0.0532* 0.0519* 0.0694* 1          

(7) # Founders in team (log) 0.1162* 0.1026* 0.0573* 0.0495* 0.0176 0.1227* 1         

(8) Founder with tertiary education (y/n) 0.1116* 0.0582* -0.0076 0.0683* 0.0405* 0.1394* 0.2787* 1        

(9) Founder has managerial experience (y/n) 0.0316 0.0479* -0.0377* 0.0405* -0.0107 0.0301 -0.0016 0.0517* 1       

(10) Founder has entrepreneurial experience (y/n) 0.1115* 0.0688* 0.1082* 0.0224 0.0457* 0.0750* 0.2699* 0.1011* -0.2094* 1      

(11) Years of industry experience -0.0169 0.0042 -0.0328* 0.0452* 0.0542* -0.0276 0.0085 -0.0953* 0.1209* 0.0419* 1     

(12) Number of dep. Employees (log) - lag  0.0877* 0.2525* -0.007 0.2144* -0.0332* 0.0442* 0.1548* 0.0076 0.0450* 0.0837* 0.0416* 1    

(13) Employees with tertiary edu. (share) - lag  0.0724* 0.0845* 0.0212 0.0867* -0.0263 0.1840* 0.1556* 0.3152* 0.0296 0.0815* -0.0500* -0.0072 1   

(14) Equity capital in year of foundation 0.1025* 0.1105* 0.0015 0.0691* -0.0039 0.2892* 0.1093* 0.0705* -0.0146 0.0652* -0.0662* 0.1129* 0.1280* 1  

(15) Limited liability 0.1984* 0.1568* 0.1742* 0.1039* 0.0362* 0.2007* 0.3519* 0.3064* -0.0187 0.2911* 0.0102 0.2246* 0.2120* 0.1508* 1 

(16) Firm age (log) -0.0804* 0.0199 0.1528* 0.0036 0.0029 -0.0712* -0.0232 -0.0353* -0.0422* -0.0350* 0.1569* 0.1236* 0.0055 -0.0329* -0.1146* 

Notes: * denotes the statistical significance of a pairwise correlation at a 5% level.  
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Table 3: Main results 

Dependent variable: A B C D E F 

 

Full Sample Full Sample Full Sample Full Sample Risk > MED Risk <= MED 

Product innovation M.E.  (S.E.) M.E.  (S.E.) M.E.  (S.E.) M.E.  (S.E.) M.E.  (S.E.) M.E.  (S.E.) 

 

  

 

  

 

    

Firm has middle management (y/n) - lag  0.072 (0.026)*** 0.054 (0.026)** 0.069 (0.028)** 0.054 (0.027)** 0.059 (0.039) 0.042 (0.037) 

       Number of patents before foundation 0.002 (0.001)* 0.001 (0.001)** 0.002 (0.001)* 0.001 (0.001)** 0.002 (0.001)*** -0.001 (0.001) 

Number of R&D employees - lag  0.040 (0.019)** 0.033 (0.016)** 0.032 (0.023) 0.032 (0.023) 0.020 (0.031) 0.038 (0.023) 

       Middle management * # patents bef. found. - lag  

 

0.167 (0.079)** 

 

0.167 (0.080)** 0.083 (0.080) 0.285 (0.105)*** 

Middle management * # R&D empl. - lag  

  

0.012 (0.025) 0.001 (0.026) 0.073 (0.042)* -0.038 (0.028) 

       Risk of business opportunity (log) 0.397 (0.299) 0.406 (0.299) 0.394 (0.299) 0.406 (0.299) 0.549 (0.389) 0.115 (0.779) 

R&D intensity (R&D/sales) - lag  0.120 (0.029)*** 0.115 (0.028)*** 0.120 (0.029)*** 0.115 (0.028)*** 0.102 (0.032)*** 0.110 (0.045)** 

# Founders in team (log) 0.022 (0.029) 0.024 (0.029) 0.022 (0.029) 0.024 (0.029) 0.006 (0.035) 0.052 (0.039) 

Founder with tertiary education (y/n) 0.014 (0.035) 0.013 (0.034) 0.014 (0.035) 0.013 (0.034) 0.028 (0.044) -0.012 (0.045) 

Founder has managerial experience (y/n) 0.055 (0.028)* 0.054 (0.028)* 0.055 (0.028)* 0.054 (0.028)* 0.081 (0.038)** 0.035 (0.038) 

Founder has entrepreneurial exp. (y/n) 0.029 (0.029) 0.025 (0.029) 0.028 (0.029) 0.025 (0.029) 0.026 (0.039) 0.014 (0.035) 

Founder’s years of industry experience -0.000 (0.002) -0.000 (0.002) -0.000 (0.002) -0.000 (0.002) 0.001 (0.002) -0.003 (0.002) 

Number of dep. employees (log) - lag  -0.022 (0.014) -0.021 (0.014) -0.022 (0.014) -0.021 (0.014) -0.024 (0.020) -0.020 (0.019) 

Employees with tertiary edu. (share) - lag  0.123 (0.039)*** 0.122 (0.038)*** 0.125 (0.039)*** 0.122 (0.038)*** 0.111 (0.053)** 0.102 (0.050)** 

Equity capital in year of foundation 0.016 (0.052) 0.004 (0.050) 0.016 (0.052) 0.004 (0.050) 0.038 (0.070) -0.038 (0.064) 

Limited liability 0.063 (0.048) 0.059 (0.048) 0.063 (0.048) 0.059 (0.048) 0.051 (0.061) 0.077 (0.066) 

Firm age (log) -0.047 (0.032) -0.047 (0.031) -0.048 (0.032) -0.047 (0.031) -0.045 (0.041) 0.001 (0.044) 

Technology-intensive services  -0.186 (0.035)*** -0.183 (0.034)*** -0.187 (0.035)*** -0.183 (0.034)*** -0.142 (0.046)*** -0.207 (0.043)*** 

Software supply and consultancy  -0.008 (0.041) 0.001 (0.040) -0.008 (0.041) 0.001 (0.040) 0.020 (0.055) -0.018 (0.066) 

Skill-intensive services  -0.133 (0.043)*** -0.128 (0.042)*** -0.133 (0.043)*** -0.128 (0.042)*** -0.153 (0.054)*** -0.105 (0.057)* 

 

  

 

  

 

    

Constant and year fixed effecs Yes Yes Yes Yes Yes Yes 

 

  

 

  

 

    

N / Pseudo R-sq. 3699 / 0.12 3699 / 0.13 3699 / 0.12 3699 / 0.13 1904 / 0.14 1795 / 0.16 

Notes: Marginal effects from probit models. Significance levels: *** 1%, ** 5%, * 10%. Cluster robust standard errors in parentheses. Baseline category for industry controls: high-tech manufacturing. Additional control var. in all 

regressions: Funding by KfW bank
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APPENDICES 

Appendix A: Tables and figures 

Table 4: Details on measures 

Variable Construction 

       
Product innovation   

Dummy variable - Takes a value of one for a firm-year observation if a firm intro-

duces a product innovation that is  a national or worldwide market novelty in a year 

            

Firm has middle management 

Dummy variable - At least one dependent employee in firm is classified as having 

supervisory or executive competence according to the KldB2010 (ISCO-08) occu-

pation code  

            
R&D employees 

Number of dependent employees who are classified as R&D personnel according to 

the KldB2010 (ISCO-08) occupation code 

            Patents before foundation Number of patents a founder self-reported to hold at the time of firm foundation 

  
R&D intensity 

R&D expenses/total sales - largest percentile is winsorized and missing values are 

imputed by one period lagged values if possible 

            
Riskiness of business opportunity 

Credit rating score of other firms of the same age in the same NACE4 industry - 

credit rating scores reach from 100 (best) to 600 (worst) 

  Number of founders Number of founders (in the founding team) according to the survey data 

  

Number of dep. employees  

Number of reportable employees subject to social insurance contributions. This 

includes regular full-time and part-time employees, apprentices, interns, and mar-

ginally employed personnel. 

            
Founder with tertiary education   

Dummy variable - Takes a value of one if the founder (or at least one founder in the 

team) has a tertiary degree 

            Employees with tertiary education  Share of dependent employees with tertiary degree 

  
Entrepreneurial experience 

Dummy variable - Takes a value of one if the founder (or at least one founder in the 

team) started up an own company before. 

  
Managerial experience 

Dummy variable - Takes a value of one if the founder (or at least one founder in the 

team) has managerial experience as employee from prior employment 

  
Industry experience 

Years of industry experience of the founder (or the founder with the longest experi-

ence in the team) 

  

Equity capital in year of foundation 
Dummy variable – Takes a value of one if a firm reported any equity investors 

during the first interview 

  

Limited liability 
Dummy variable – Takes a value of one if a firm is incorporated with limited liabil-

ity 

  
Firm age Age of startup in years 
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Table 5: Entropy balancing outcomes 

  Treatment group Control group 

  Before weighting  

  Mean Variance Skewness Mean Variance Skewness 

    
  

  Equity capital in year of foundation 0.112 0.100 2.460 0.036 0.035 4.989 

Limited liability at foundation 0.871 0.113 -2.216 0.611 0.238 -0.455 
Founder with tertiary education (y/n) 0.740 0.193 -1.091 0.646 0.229 -0.609 

Years of industry experience 19.590 81.620 0.405 19.460 82.100 0.466 
Founder has managerial experience (y/n) 0.583 0.244 -0.335 0.502 0.250 -0.006 

Founder has entrepreneurial experience (y/n) 0.577 0.245 -0.312 0.461 0.249 0.157 

Full-time eq. empl. size at foundation (incl. founders) 3.186 23.060 2.850 1.997 6.929 2.547 
High-technology manufacturing  0.364 0.232 0.565 0.291 0.206 0.921 

Technology-intensive services  0.339 0.225 0.681 0.429 0.245 0.288 
Software supply and consultancy  0.165 0.138 1.802 0.136 0.117 2.126 

  After weighting 

  Mean Variance Skewness Mean Variance Skewness 

       Equity capital in year of foundation 0.112 0.100 2.460 0.112 0.099 2.463 

Limited liability at foundation 0.871 0.113 -2.216 0.870 0.113 -2.195 
Founder with tertiary education (y/n) 0.740 0.193 -1.091 0.739 0.193 -1.089 

Years of industry experience 19.590 81.620 0.405 19.590 81.610 0.406 

Founder has managerial experience (y/n) 0.583 0.244 -0.335 0.583 0.243 -0.335 
Founder has entrepreneurial experience (y/n) 0.577 0.245 -0.312 0.577 0.244 -0.310 

Full-time eq. empl. size at foundation (incl. founders) 3.186 23.060 2.850 3.183 23.030 2.852 
High-technology manufacturing  0.364 0.232 0.565 0.364 0.232 0.565 

Technology-intensive services  0.339 0.225 0.681 0.339 0.224 0.680 

Software supply and consultancy  0.165 0.138 1.802 0.165 0.138 1.804 
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Table 6: Additional specifications and robustness check estimates 

Dependent variable: A B C D 

 

Not balanced Full Sample Full Sample - OLS Full Sample - OLS 

Product innovation M.E. (S.E.) M.E. (S.E.) M.E. (S.E.) M.E. (S.E.) 

Firm has middle management (y/n) - lag  0.047 (0.019)** 

 

0.074 (0.028)*** 0.064 (0.027)** 

     Number of patents before foundation 0.001 (0.000)* 

   Number of R&D employees - lag  0.017 (0.010)* 

   
     Middle management in firms in risky environment - lag  

 

0.052 (0.036) 

  Middle management in firms in non-risky environment - lag  

 

0.050 (0.035) 

  
     Middle management * # Patents bef. foundation (firms in risky env.) - lag  

 

0.090 (0.086) 

  Middle management * # Patents bef. foundation  (firms in non-risky env.) - lag  

 

0.266 (0.099)*** 

  Middle management * # R&D employees (firms in risky env.) - lag  

 

0.072 (0.043)* 

  Middle management * # R&D employees (firms in non-risky env.) - lag  

 

-0.044 (0.028) 

  
     # Patents bef. foundation in firms in risky environment 

 

0.003 (0.001)*** 

  # Patents bef. foundation in firms in non-risky environment 

 

-0.001 (0.001) 

  # R&D employees in firms in risky environment - lag  

 

0.027 (0.031) 

  # R&D employees in firms in non-risky environment - lag  

 

0.037 (0.022)* 

  
     Risk of business opportunity (log) 0.399 (0.161)** 0.289 (0.293) 0.436 (0.309) 0.199 (0.404) 

R&D intensity (R&D/sales) - lag  0.139 (0.017)*** 0.117 (0.027)*** 0.159 (0.038)*** 0.143 (0.037)*** 

# Founders in team (log) 0.009 (0.015) 0.025 (0.028) 0.017 (0.031) 0.011 (0.029) 

Founder with tertiary education (y/n) 0.047 (0.018)*** 0.009 (0.033) 0.023 (0.035) 0.021 (0.034) 

Founder has managerial experience (y/n) 0.031 (0.014)** 0.059 (0.028)** 0.043 (0.030) 0.048 (0.029)* 

Founder has entrepreneurial experience (y/n) 0.043 (0.015)*** 0.022 (0.028) 0.029 (0.031) 0.027 (0.029) 

Years of industry experience -0.001 (0.001) -0.000 (0.002) 0.000 (0.002) -0.001 (0.002) 

Number of dep. employees (log) - lag  0.006 (0.008) -0.023 (0.014) -0.017 (0.016) -0.017 (0.015) 

Employees with tertiary edu. (share) - lag  -0.000 (0.020) 0.118 (0.038)*** 0.146 (0.045)*** 0.127 (0.044)*** 

Equity capital in year of foundation 0.003 (0.035) 0.001 (0.049) 0.024 (0.064) 0.011 (0.056) 

Limited liability 0.078 (0.019)*** 0.066 (0.048) 0.055 (0.037) 0.042 (0.035) 

Firm age (log) -0.058 (0.016)*** -0.039 (0.030) -0.039 (0.034) -0.048 (0.033) 

 

  

 

  

 Stratification industry fixed effects Yes Yes   

 NACE 1-digit fixed effects   

 

Yes 

 NACE 2-digit fixed effects   

 

  Yes 

Year fixed effects and constant Yes Yes Yes Yes 

 

  

 

  

 N / Pseudo R-sq. 3699 / 0.14 3699 3699 3699 

Notes: Marginal effects from probit models in Column A and B). Significance levels: *** 1%, ** 5%, * 10%. Cluster robust standard errors in parentheses. Baseline category for industry controls: high-tech manufacturing. Additional 

control var. in all regressions: Funding by KfW bank.
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Table 7: GMM-IV Estimation 

Dependent variable: A B C 

 

1st stage - lags 2nd stage - lags 2nd stage - no lags 

Product innovation M.E. (S.E.) M.E. (S.E.) M.E. (S.E.) 

    Firm has middle management (y/n) - lag  

 

0.370 (0.204)* 

 Firm has middle management (y/n) 

  

0.247 (0.139)* 

    

Executives involved in firms (same NACE-1 and district) 0.000 (0.000)* 

 

 

Share of firms with middle manager (same NACE-1 and size class) 0.580 (0.138)*** 

 

 

   

 

Risk of business opportunity (log) 0.108 (0.131) 0.324 (0.190)* 0.083 (0.069) 

R&D intensity (R&D/sales) - lag  0.038 (0.025) 0.215 (0.031)***  

R&D intensity (R&D/sales) 

  

0.204 (0.023)*** 

Number of Patents bef. foundation 0.000 (0.000)* 0.001 (0.001) 0.001 (0.001) 

Number of R&D employees - lag  0.008 (0.012) 0.019 (0.014)  

Number of R&D employees   0.017 (0.01)* 

# Founders in team (log) 0.012 (0.017) 0.010 (0.018) 0.007 (0.014) 

Founder with tertiary education (y/n) -0.001 (0.015) 0.051 (0.017)*** 0.052 (0.013)*** 

Equity capital in year of foundation 0.075 (0.042)* -0.014 (0.055) -0.004 (0.042) 

Founder has managerial experience (y/n) 0.024 (0.012)** 0.022 (0.015) 0.02 (0.012)* 

Founder has entrepreneurial experience (y/n) 0.013 (0.014) 0.037 (0.016)** 0.032 (0.012)** 

Years of industry experience 0.000 (0.001) -0.001 (0.001) -0.001 (0.001) 

Number of dep. employees (log) - lag  0.015 (0.012) -0.021 (0.015)  

Number of dep. employees (log) 

  

-0.004 (0.013) 

Employees with tertiary edu. (share) - lag  0.043 (0.019)** -0.015 (0.023)  

Employees with tertiary edu. (share) 

  

-0.007 (0.019) 

Full-time eq. empl. size at foundation (incl. founders) 0.000 (0.003) 0.002 (0.003) 0.000 (0.002) 

Limited liability 0.032 (0.014)** 0.044 (0.018)** 0.053 (0.013)*** 

Firm age (log) 0.004 (0.014) -0.058 (0.018)*** 0.001 (0.009) 

   

 

Technology-intensive services  -0.024 (0.018) -0.116 (0.021)*** -0.091 (0.016)*** 

Software supply and consultancy  -0.004 (0.025) -0.026 (0.030) -0.017 (0.023) 

Skill-intensive services  -0.002 (0.020) -0.113 (0.024)*** -0.082 (0.018)*** 

   

 

Year fixed effects and constant Yes Yes Yes 

   
 

First stage F-statistic of instruments 

 

10.45 20.75 

First stage Hansen's J-Test p-value 

 

0.106 0.511 

   

 

N / (Pseudo) R-sq. 3699 / 0.10 3699 / 0.08 5847 / 0.09 

Notes: Significance levels: *** 1%, ** 5%, * 10%. Cluster robust standard errors in parentheses. Baseline category for industry controls: high-tech manufacturing. 

Additional control var. in all regressions: Funding by KfW bank. 
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Appendix B: Technical Appendix 

Entropy balancing 

In contrast to other related methods, for instance propensity score weighting, entropy balanc-

ing induces covariate balance directly, and not as the result of a propensity score matching 

procedure, which requires iterated re-specifications of the propensity score estimation to 

achieve covariate balance. The sampling weights are chosen as the solution to the minimiza-

tion problem 

min
𝑤𝑖

𝐻(𝑤) =  ∑ ℎ(𝑤𝑖)

{𝑖|𝐷=0}

 

Under the constraints that  

∑ 𝑤𝑖𝑐𝑟𝑖(𝑋𝑖) = 𝑚𝑟{𝑖|𝐷 = 0}  with 𝑟 ∈ 1, … 𝑅 and 

∑ 𝑤𝑖 = 1{𝑖|𝐷 = 0}  and 

𝑤𝑖 ≥ 0  for all  𝑖 such that 𝐷 = 0 

𝑤𝑖 denotes the weights for each observation from the control group. ℎ(𝑤𝑖) is a distance 

measure which measures the distance between the chosen weights and a set of base weights. 

𝑤𝑖𝑐𝑟𝑖(𝑋𝑖) = 𝑚𝑟 denotes the balance constraints for the R moments to balance for each co-

variate (for further details we refer to Hainmueller, 2011; Hainmueller and Xu, 2013). Entro-

py balancing therefore induces covariance balance directly and explicitly minimizes the 

weight given to each observation from the control group. 

 

 

 




