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Abstract

Procurement regulation aimed at curbing discrimination requires equal

treatment of sellers. However, Deb and Pai (2017) show that such regulation

imposes virtually no restrictions on the ability to discriminate. We propose a

simple rule – imitation perfection – that restricts discrimination significantly.

It ensures that in every equilibrium bidders with the same value distribution

and the same valuation earn the same expected surplus. If all bidders are

homogeneous, revenue and social surplus optimal auctions which are consis-

tent with imitation perfection exist. For heterogeneous bidders however, it is

incompatible with revenue and social surplus optimization. Thus, a trade-off

between non-discrimination and optimality exists.
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1 Introduction

Regulators go to great lengths to prevent discrimination in procurement. In its

rules for public procurement, for example, the World Trade Organization (WTO)

demands that governments comply with “non-discrimination, equality of treatment,

transparency and mutual recognition”. Furthermore, the WTO seeks “to avoid in-

troducing or continuing discriminatory measures that distort open procurement.”1

The European commission requires public buyers to reach their decision “in full

accordance with the principles of equal treatment, non-discrimination and trans-

parency.”2 These regulations imply that the rules and procedures of a procurement

process should treat suppliers equally. That is, the rules of a procurement process

must not depend on the identity of the suppliers. However, Deb and Pai (2017) show

that regulation requiring equal treatment of suppliers on its own imposes virtually

no restrictions on the ability to discriminate. In particular, such symmetric auctions

allow for perfect discrimination. That is, there exists a symmetric auction and an

equilibrium of this auction, in which the project is always awarded to a particular

bidder at the most favorable price. Hence, an auctioneer can favor a particular bid-

der in the most extreme way without violating existing legal hurdles. This in turn,

indicates that existing legal hurdles are not sufficient to prevent discrimination and

that regulators should not focus on rules that imply equal treatment but need to go

further to guarantee discrimination-free outcomes.

This article is complementary to Deb and Pai (2017) and provides an answer to

the question: what rules are sufficient in order to achieve discrimination-free out-

comes? We propose a simple rule named imitation perfection. Imitation perfection

requires that for any realization of bids and the resulting allocation and payments,

every bidder had the opportunity to imitate the allocation and payment of any

other bidder that outbid her. We show that imposing imitation perfection rules out

perfect discrimination. This is due to the fact that imitation perfection implies that

every bidder could have won the auction at (almost) the same price as the winning

bidder by slightly outbidding the highest bidder. More generally, in an imitation-

perfect auction each bidder had the opportunity to come arbitrarily close to the

ex-post allocation and payment of every bidder who outbid her.

We denote an equilibrium as non-discriminatory if among a group of (possibly

1See the General Agreement on Tariffs and Trade (GATT) (Article 1), General Agreement on
Trade in Services (GATS) (Article 2), and Agreement on Trade-Related Aspects of Intellectual
Property Rights (TRIPS) (Article 4) and World Trade Organization (2012).

2See Directive 2004/18/EC of the European Parliament and of the Council of 31 March 2004
on the coordination of procedures for the award of public works contracts, public supply contracts
and public service contracts.
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heterogeneous) bidders a pair of homogeneous bidders with the same value expects

the same surplus. Furthermore, we denote an mechanism as discrimination-free

if all of its equilibria are non-discriminatory. We show that each symmetric and

imitation-perfect auction is discrimination-free.

For a pair of ex-ante heterogeneous bidders there is no clear definition of a non-

discriminatory equilibrium. However, we show that in an imitation-perfect auction

the difference between the expected surplus of two ex-ante heterogeneous bidders

with the same valuation is limited by the asymmetry between these bidders. Thus,

we show that the auction designer’s ability to discriminate between (heterogeneous)

bidders in an imitation-perfect auction is limited by the asymmetry between these

bidders. This means, if at any point of the domain the distribution functions of two

bidders differ at most by some constant, then the expected surpluses of these two

bidders with the same valuation in the same imitation-perfect auction differ at most

by a linear expression of this constant regardless of the other bidders’ distributions.

Since we want the auctioneer to have enough freedom to choose the appropriate

auction mechansim, it is also useful to know whether an auctioneer can discriminate

in favor of a bidder by choosing among different imitation-perfect auctions. If at

any point of the domain the distribution functions of all bidders differ at most

by some constant, then the expected surpluses of a bidder with a given valuation

in two different imitation-perfect auctions differ at most by a linear expression of

this constant. In particular, this implies that the result, that a pair of ex-ante

homogenous bidders expects the same surplus given their valuation, is robust with

respect to small perturbations of homogeneity, even if the heterogeneity among the

other bidders is arbitrarily high.

Usually, the beneficiary of a procurement organization (the people of a country,

the CPO of a company, or its shareholders) is responsible for thousands of different

procurement projects with thousands of different bidders. According to the Euro-

pean Commission, there are over 250,000 public authorities involved in procurement

in the EU. Delegating the specific procurement project to a (potentially large) group

of agents is therefore unavoidable. Most of these agents will have the buyer’s best

interest in mind and will use the optimal procedures. There may, however, be some

agents who are corrupt and/or favor certain bidders.3 For the buyer, it is impossible

to monitor each of the procurement transactions and check whether the implemented

procedures were optimal. Thus, there is a need to set general procurement rules.

The set of procurement regulations should have the following properties. Firstly, it

should be easy to check whether these regulations have been followed. In particu-

3See Mironov and Zhuravskaya (2016) for some recent empirical evidence.
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lar, this should not require knowledge of unobservables such as subjective beliefs,

or the use of complicated calculations such as equilibrium analyses. Secondly, the

regulation should restrict corrupt agents in a meaningful way. Finally, honest agents

should maintain enough freedom to enable them to implement the optimal proce-

dures. Imitation perfection has all of these desirable properties. Firstly, a quick look

at the rules of the particular auction is sufficient to verify if the procurement process

satisfies imitation perfection. This is due to the fact that imitation perfection is a

property of the payment rule. Hence, the verification does not require information

on any details of the procurement project and can also be done ex-post. Secondly,

imitation perfection prevents corrupt agents from implementing perfectly discrim-

inatory outcomes and guarantees discrimination-free outcomes. Finally, imitation

perfection gives honest agents the opportunity to implement the efficient auction as

well as the revenue-optimal one if bidders are symmetric. In this respect, ensuring

that the procurement mechanism is imitation-perfect comes at no costs if all bidders

are ex-ante homogeneous.

If bidders are ex-ante heterogeneous, imitation perfection is neither compatible

with social surplus maximization nor with revenue maximization. Efficiency requires

that bidders with the same valuation place the same bids. We will show that in

imitation-perfect auctions the payment of a winning bidder depends only on her own

bid. This, however, implies that if bidders with the same valuation have different

beliefs about the bids they are competing against, it cannot be optimal for these

bidders to place the same bid. Applying similar reasoning to virtual valuations

indicates that imitation perfection is not compatible with revenue maximization

in the case of ex-ante heterogeneous bidders. Thus, there is a trade-off between

non-discrimination and optimality.

Relation to the literature

Only few papers deal with the question how general procurement rules must be

designed in order to achieve the goals of procurement organizations. Deb and Pai

(2017) analyze the common desideratum of “non-discrimination”. However, they

show that even equal and anonymous treatment of all bidders does not prevent dis-

crimination. Gretschko and Wambach (2016) analyze how far public scrutiny can

help to prevent corruption and discrimination. They consider a setting in which

the agent is privately informed about the preferences of the buyer regarding the

specifications of the horizontally differentiated sellers. The agent colludes with one

exogenously chosen seller. They show that in the optimal mechanism the agent

should have no discretion with respect to the probability of the favorite seller win-
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ning, which in turn induces the agent to truthfully report the preference of the buyer

whenever his favorite seller fails to win. Moreover, they demonstrate that intranspar-

ent negotiations have this feature of the optimal mechanism whenever the favorite

bidder fails to win the project and thus may outperform transparent auctions. Even

though we do not explicitly model an agent of the buyer, our model could easily be

extended by the introduction of an agent who, in exchange for a bribe, would bend

the rules of the mechanism in the most favorable way that is consistent with the

procurement regulations. Contrary to Gretschko and Wambach (2016), we do not

focus on the ability of the agent to manipulate the quality assessment of the buyer

but rather on the ability of an agent to design procurement mechanisms. To the

best of our knowledge, our article is therefore the first to investigate the design of

procurement regulations in the presence of corruption and manipulation of the rules

of the mechanism.4

In the majority of work on corruption in auctions, the ability of the agent to

manipulate is defined with respect to the particular mechanism. Either the agent is

able to favor one of the sellers within the rules of a particular mechanism (typically,

bid-rigging in first-price auctions) or the agent is able to manipulate the quality

assessment of the sellers for a particular mechanism. Examples of the first strand

of literature include Arozamena and Weinschelbaum (2009), Burguet and Perry

(2007), Burguet and Perry (2009), Cai et al. (2013), Compte et al. (2005), Menezes

and Monteiro (2006), and Lengwiler and Wolfstetter (2010). Examples of the second

strand include Laffont and Tirole (1991), Burguet and Che (2004), and Koessler and

Lambert-Mogiliansky (2013).

Finally, our article is related to the literature on mechanism design with fairness

concerns. As pointed out by Bolton et al. (2005) and Saito (2013) (among others),

market participants care about whether the rules governing a particular market

are procedurally fair. Thus, imitation perfection can be seen not only as a device

to prevent favoritism and corruption, but also as a possible way of ensuring that

all equilibria of a particular mechanism yield fair (discrimination-free) outcomes.

Previous approaches to mechanism design with fairness concerns in auctions and

other settings include Budish (2011), Bierbrauer et al. (2017), Bierbrauer and Netzer

(2016), Englmaier and Wambach (2010), and Rasch et al. (2012).

4Previous work on mechanism design with corruption focused on the ability of the agent to
manipulate the quality assessment and the principal’s optimal reaction to this. In particular, the
mechanism designed by the principal is tailored to the situation at hand and does not imply general
procurement regulations. See Celentani and Ganuza (2002) and Burguet (2017) for details.
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2 Model

Environment

Let N = {1, . . . , n} denote a set of risk-neutral bidders that compete for one indi-

visible item. Bidder i’s valuation vi for the item is drawn independently from the

interval V = [0, v] according to a continuous distribution function Fi and is this

bidder’s private information. The functions Fi are common knowledge among the

bidders. Denote by v−i ∈ V n−1 the vector containing all the valuations of bidder i’s

competitors.5

Symmetric auctions

We consider an auction mechanism in which all participants submit bids bi ∈ R+ and

the auction mechanism assigns the item based on these bids. Let b = (b1, . . . , bn) be

the tuple of bids and b−i the vector of all bids except the bid of bidder i. An auction

mechanism is a double (x, p) of an allocation function x and a payment function p.

The allocation function

x : b→ (x1, . . . , xn) with xi ∈ [0, 1],
∑

xi ≤ 1

determines for each participant the probability of receiving the item and the payment

function

p : b→ (p1, . . . , pn) with pi ∈ R+

determines each participant’s payment.

A bidding strategy is a mapping βi : Vi → R+. A tuple β = (β1, . . . , βn) con-

stitutes an equilibrium of a mechanism if for all i and for all vi ∈ Vi the bid βi(vi)

maximizes over all bids b bidder i’s expected surplus

Uβ
i (vi) =

∫
V−i

[
vi · xi(b, β∗−i(v−i))− pi(b, β∗−i(v−i))

]
· f−i(v−i)dv−i.

Current public procurement regulation aimed at preventing discrimination re-

quires equal treatment of bidders.6 The restrictiveness of this requirement that all

5The process of a procurement auction is the same as the process of a sales auction, the only
difference being that the lowest bid is awarded the contract. The bidders do not have valuations for
the good but costs for fulfilling the contract. Due to the existence of the correspondence between
selling auctions and procurement auctions, the formal framework will be set up for selling auctions
and we will use the term auctions from now on. This has the advantage that most readers are
more familiar with this notation.

6The Directive 2004/18/EC of the European Parliament and of the Council of 31 March 2004
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bidders must be treated equally by the auction mechanism is analyzed by Deb and

Pai (2017), who provide the following definition.

Definition 1 (Symmetric auction). In a symmetric auction with reservation bid r

the following two conditions are fulfilled:

(i) The highest bidder wins, that is the allocation is given by

xi(bi,b−i) =

 1
#{j∈N :bj=bi} if bi ≥ max {b−i, r}

0 otherwise,

where r is a reservation bid.

(ii) The payment does not depend on the identity of the bidder and every bidder is

treated equally. Formally, let πn be a permutation of the elements 1, . . . , n. In

a symmetric auction, it holds true for all b = (b1, . . . , bn) that

pi(bπn(1), . . . , bπn(i−1), bπn(i), bπn(i+1), . . . , bπn(n)) = pπn(i)(bi, b−i).

In a symmetric auction, the highest bidder wins and the payment function is

anonymous. Hence, a bidder’s payment depends only on the bids and not on her

identity. Moreover, a permutation of all bids would lead to the same permutation

of payments and allocations.

In addition to the requirements of a symmetric auction, we assume that an

auction mechanism fulfills some monotonicity conditions. First, we require that the

payment of a bidder is nondecreasing in her own bid. Second, given that a bidder is

winning or losing, her payment should be nondecreasing in the other bidders’ bids.

Third, we require that the payment of a bidder is strictly increasing in at least one

component of the bid vector.

Assumption 1 (Monotone payment function). We call a payment function p of an

auction monotone if for every bidder i and for each vector of bids (b1, . . . , bi, . . . , bn)

the following holds:

(i) The payment of bidder i is nondecreasing in her bid, i.e. for all b′i with bi ≤ b′i

it holds that

pi(b1, . . . , bi, . . . , bn) ≤ pi(b1, . . . , b
′
i, . . . , bn).

on the coordination of procedures for the award of public works contracts, public supply contracts
and public service contracts requires the buyers to post in advance all decision criteria including
their weightings and reach their decision based on ”two award criteria only: the lowest price and
the most economically advantageous tender [...] in full accordance with the principles of equal
treatment, non-discrimination and transparency.”
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(ii) Given that a bidder is losing or winning, her payment is nondecreasing in the

other bidders’ bids. That is, if bi 6= max
j∈{1,...,n}

bj, then for every bid b′j with

bj ≤ b′j it holds that

pi(b1, . . . , bi, , . . . , bj . . . , bn) ≤ pi(b1, . . . , bi, , . . . , b
′
j . . . , bn)

and if bi = max
j∈{1,...,n}

bj, then for every bid b′j with bj ≤ b′j < bi it holds that

pi(b1, . . . , bi, , . . . , bj . . . , bn) ≤ pi(b1, . . . , bi, , . . . , b
′
j . . . , bn).

(iii) If i is the highest bidder, her payment is strictly increasing in at least one

component of the bid vector (b1, . . . , bi, . . . , bn).

We impose these conditions in order to ensure equilibrium existence. If the pay-

ment of a bidder was strictly decreasing in her own bid, she would place arbitrarily

high bids. A similar reasoning applies to the second and third condition. Consider

an auction with two bidders and a payment rule pi(bi, bj) = bi − A · bj. If A is

sufficiently large, an equilibrium does not exist, because bidders want to place ar-

bitrarily high bids. Finally, consider an auction in which a bidder pays a constant

independent of her bid, which contradicts the third condition. Again this bidder

has an incentive to place arbitrarily high bids and an equilibrium does not exist.

Although requiring a monotone payment function is a technical assumption, it is

not restrictive in the sense that it does not rule out any of the auction formats that

are popular in practice, like the first-price auction or the second-price auction.7

Discrimination-free auctions

The main insight of Deb and Pai (2017) is that even though the rules of a symmet-

ric auction treat all bidders equally, mechanisms with discriminating outcomes can

still be implemented. In particular, they demonstrate that almost every reasonable

mechanism has an implementation as a symmetric auction. Thus, requiring a sym-

metric auction, i.e. equal treatment, is not an effective anti-discrimination measure.

To get an idea of the discrimination that is possible in symmetric auctions, consider

the following example.

Example 1. An agency is in charge of running an auction among n bidders with

valuations in [0, 1]. One of the bidders, say bidder 1, has close ties to the agency.

7Note that Deb and Pai (2017), and Example 1 show that symmetric auctions with a monotone
payment function do not prevent perfect discrimination as defined in Definition 2.
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Thus, the agency does not aim at maximizing revenues but instead seeks to maximize

the revenue of bidder 1. In this case, the agency can implement the following sym-

metric auction. If only one bidder bids a strictly positive amount, all payments are

zero. If more than one bidder bids a strictly positive amount, all bidders who bid a

strictly positive amount pay their own bid plus (a penalty of) one. This auction has

a Bayes-Nash equilibrium in undominated strategies in which bidder 1, irrespective

of her valuation, bids some strictly positive amount b1 > 0. All other bidders bid

zero, irrespective of their valuations. In this case, bidder 1 receives the object with

certainty and pays nothing which constitutes the optimal outcome for bidder 1.

We call an equilibrium a perfect discrimination equilibrium if one bidder wins

the auction with certainty independent of her valuation and pays nothing.

Definition 2 (Perfect discrimination equilibrium). An equilibrium

(β1, . . . , βn) of an auction mechanism (x, p) is called a perfect discrimination equi-

librium if there exists a bidder i such that for any vector of valuations (v1, . . . vn) it

holds that:

xi(β1(v1), . . . , βn(vn)) = 1

pi(β1(v1), . . . , βn(vn)) = 0.

The corresponding outcome is called a perfect discrimination outcome.

Given that symmetric auctions do not prevent perfect discrimination, the aim

of this article is to provide a simple extension to the existing rules that restricts

discrimination in a meaningful way. A minimum requirement for the extension is

that it rules out perfect discrimination equilibria.8 In addition, we demand that in a

non-discriminatory equilibrium ex-ante homogeneous bidders with the same valua-

tion expect the same surplus. We denote a symmetric auction as discrimination-free

if all of its equilibria are non-discriminatory.

Definition 3 (Discrimination-free auction). An equilibrium (β1, . . . , βn) of a sym-

metric auction is called non-discriminatory if for all bidders i, j with Fi = Fj it

holds for all v ∈ [0, v] that

Uβ
i (v) =

∫
V−i

[v · xi(βi(v), β−i(v−i))− pi(βi(v), β−i(v−i))] · f−i(v−i)dv−i

8Note that Deb and Pai (2017) propose adjustments of symmetric auctions that may restrict
the class of implementable mechanisms. In particular, they consider auction mechanisms with
inactive losers, continuous payment rules, monotonic payment rules and ex-post individual ratio-
nality. However, it is easy to see that none of these adjustments prevents the existence of perfect
discrimination equilibria. This is due to the fact that any of these adjustments allows for the
implementation of the second-price auction. The second-price auction has perfectly-discriminating
equilibria in which one of the bidders bids bi ≥ max{v1, . . . , vn} and all other bidders bid zero.
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=

∫
V−j

[v · xj(βj(v), β−j(v−j))− pj(βj(v), β−j(v−j))] · f−j(v−j)dv−j = Uβ
j (v).

A symmetric auction is called discrimination-free if all equilibria of this auction are

non-discriminatory.

3 Imitation Perfection

In what follows we introduce a simple extension of the existing symmetric rules

which require equal treatment. We call this extension imitation perfection and show

that all symmetric auctions that are imitation-perfect are discrimination-free.

Imitation perfection requires that for any realization of bids each bidder could

have achieved the same allocation and payment as any other bidder who placed a

higher bid, i.e. could have perfectly imitated her competitor.

Definition 4 (Imitation perfection). A symmetric auction (x, p) is imitation-perfect

if for all bidders i, all bids bi, and all ε > 0 there exists a bid b′ > bi such that for all

vectors of bids (b1, . . . , bi, . . . , bj, . . . , bn) it holds for all j ∈ {1, . . . , n} with bj < bi

that

|pi(b1, . . . , bi, . . . , bj, . . . , bn)− pj(b1, . . . , bi, . . . , b′, . . . , bn)| < ε.9

In an imitation-perfect auction every bidder could have imitated the (ex-post)

allocation and payment of each higher bidder.10 A strength of our proposed rule is

that the verification of whether an auction is imitation-perfect can be done without

knowledge about the environment, such as the beliefs of the bidders or the selection

of a particular equilibrium. A simple verification of the payment rule, which can

either be done ex-ante or ex-post, is sufficient. In order to gain some intuition for

the definition of imitation perfection, we consider the following examples.

Example 2. Consider the mechanism proposed in Example 1. Recall that bidder 1

is the favorite bidder and if more than one bidder places a strictly positive bid, all

bidders who placed a strictly positive bid pay their bid plus a penalty of one. This

mechanism is not imitation-perfect. For b1 > 0 it holds that

p1(b1, 0, . . . , 0) = 0.

9It is sufficient to consider only the payment function, because in a symmetric auction the
allocation rule is fixed.

10Another definition of imitation perfection is that every bidder should be able to imitate every
bidder, not just every bidder that placed a higher bid. However, we will show that it is sufficient
to imitate every higher bidder in order to prevent discrimination and thus resort to the current
(more general) definition of imitation perfection.
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Bidder 1 wins the auction and pays nothing. For every bj > b1 it holds that

pj(b1, 0, . . . , 0, bj, 0, . . . 0)− p1(b1, 0, . . . , 0) > 1,

which implies that bidder 1 cannot be imitated.

Example 3. Consider a second-price auction with two bidders. If bidder 1 is bidding

b1 = 1/2 and bidder 2 is bidding b2 = 0, bidder 1 will receive the object and pay a

price of zero. Bidder 2 cannot imitate this outcome. By bidding above 1/2, bidder

2 would win the object but her payment would be 1/2.

Example 4. Consider a first-price auction with two bidders. If bidder 1 is bidding

b1 = 1/2 and bidder 2 is bidding b2 = 0, bidder 1 will receive the object and pay

a price of 1/2. By placing a bid marginally higher than 1/2 bidder 2 can imitate

bidder 1’s allocation and payment.

In the following, we will present the properties of an imitation-perfect auction

and of its outcomes. We start by demonstrating that imitation perfection does not

only prevent the perfect discrimination outcomes in the two examples but in general

rules out the existence of perfect discrimination equilibria in symmetric auctions.

Proposition 1. If there are at least two bidders i and j who have a strictly positive

valuation with a strictly positive probability, then a symmetric and imitation-perfect

auction does not have a perfect discrimination equilibrium.

Proof. Let (x, p) be an imitation-perfect symmetric auction and suppose (β1, . . . , βn)

is a perfect discrimination equilibrium. In a perfect discrimination equilibrium there

exists a bidder who wins the good with certainty and pays nothing. Without loss of

generality assume that this is bidder 1. All other bidders do not get the good and

pay at least zero.

Consider an arbitrary bidder j 6= 1 with valuation vj > 0. Imitation perfection

implies that there is a bid b′ > β1(v1) bidder j could have placed and won the

auction such that for all ε > 0:

|pj(β1(v1), . . . , b′, . . . , βn(vn))−
=0︷ ︸︸ ︷

p1(β1(v1), . . . , βj(vj), . . . , βn(vn)) | < ε

for all v1, . . . , vj−1, vj+1, . . . vn. Since β1(v1) was the highest bid, bidder j would win

the auction when bidding b′ and would pay an amount smaller ε. Hence, a perfect

discrimination equilibrium cannot exist in an imitation-perfect symmetric auction,

because each bidder j 6= 1 would have an incentive to deviate whenever she has a

strictly positive valuation for the good.
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We have established that imitation perfection fulfills the minimum requirement

of preventing perfect discrimination. The following theorem states that imitation-

perfect auctions are discrimination- free.

Theorem 1. A symmetric and imitation-perfect auction with reservation bid r is

discrimination-free.

Intuitively, Theorem 1 builds on the fundamental idea of imitation perfection

that bidders can imitate the allocation and payment of the other bidders that have

outbid them. Formally, we prove that homogeneous bidders follow identical strate-

gies. This ensures that ex-ante homogeneous bidders with the same valuation have

the same expected surplus. In order to do so, we adapt a technique of Chawla and

Hartline (2013). They show that for a given auction, if some interval [z, z] satisfies

utility crossing, that is, if for some bidders i and j it holds that Uβ
i (z) ≥ Uβ

j (z) and

Uβ
j (z) ≥ Uβ

i (z) and βj(v) ≥ βi(v) for all v ∈ [z, z], then the strategies of bidder i

and bidder j must be identical on this interval. If there is an interval of valuations of

positive measure such that the equilibrium prescribes that one bidder strictly out-

bids the other, we apply imitation perfection at the upper endpoint of this interval

in order to demonstrate that this interval satisfies utility crossing. Due to imitation

perfection, a deviating bid for bidder i exists, such that bidder i can achieve the

same expected surplus as bidder j. Bidder i’s surplus in equilibrium cannot, there-

fore, be lower than bidder j’s surplus as bidder i would otherwise have an incentive

to deviate. The formal proof is relegated to Appendix B.2.

One important class of imitation-perfect auctions are bid-determines-payment

auctions. Bid-determines-payment auctions, like the first-price and the all-pay auc-

tion, provide a simple and standard way to implement imitation-perfect symmetric

auctions.

Definition 5 (Bid-determines-payment auction). A symmetric auction satisfies the

bid-determines-payment rule if the payment of every bidder depends only on whether

or not she wins and on her bid. Formally, let Wi(b1, . . . , bi, . . . , bn) = Wi(b) be equal

to one if i is the winning bidder, and be equal to zero if she is not the winning bidder,

i.e

Wi(b1, . . . , bi, . . . , bn) =

1 if xi(b1, . . . , bn) = 1

0 otherwise.

Then an auction satisfies the bid-determines-payment rule if for every bidder i her

payment can be written as

pi(b1, . . . , bi, . . . , bn) = Wi(b) p
win(bi) + [1−Wi(b)] p

lose(bi)
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for some functions pwin, plose : R+ → R+.

For example, in the first-price auction it holds that pwin(bi) = bi and plose(bi) = 0,

whereas in the all-pay auction it holds that pwin(bi) = plose(bi) = bi. This definition

leads directly to the following proposition.

Proposition 2. A bid-determines-payment auction with a reservation bid such that

pwin and plose are right-continuous, is imitation perfect.

Proof. We have to show that each bidder i could have been imitated by a bidder j

who placed a lower bid than i. This is for each bidder i with bi > bj and every ε > 0

there is a b′ > bi such that

|pi(b1, . . . , bi, . . . , bj, . . . , bn)− pj(b1, . . . , bi, . . . , b′, . . . , bn)| < ε.

If bi is the highest bid, symmetry and the bid-determines-payment rule imply that

for any b′ > bi it holds that

|pi(b1, . . . , bi, . . . , bj, . . . , bn)− pj(b1, . . . , bi, . . . , b′, . . . , bn)|

= |pwin(bi)− pwin(b′)|.

Since pwin is right-continuous, for all ε > 0 there exists a b′ > bi such that

|pwin(bi)− pwin(b′)| < ε.

If bi is not the highest bid, symmetry and the bid-determines-payment rule imply

that for any b′′ > bi such that b′′ is still not the highest bid it holds that

|pi(b1, . . . , bi, . . . , bj, . . . , bn)− pj(b1, . . . , bi, . . . , b′′, . . . , bn)|

= |plose(bi)− plose(b′′)|.

Since plose is right-continuous, for all ε > 0 there exists a b′′ > bi such that

|pwin(bi)− pwin(b′)| < ε.

Combining Theorem 1 and Proposition 2, we can conclude that all bid-determines-

payment auctions with right-continuous functions pwin and plose are discrimination-

free.

13



Corollary 1. All bid-determines-payment auctions with a reservation bid such that

the functions pwin and plose are right-continuous are discrimination-free.

Note that while a bid-determines-payment rule implies imitation perfection, im-

itation perfection is more general. To see this, consider any mechanism where the

payment of a bidder depends only on her bid and on the bids of higher bidding bid-

ders. Such a mechanism is imitation-perfect but does not satisfy the bid-determines-

payment rule.

We conclude this section by stating the following properties of imitation perfec-

tion that will be useful in the sections to follow. They also serve as necessary and

sufficient conditions for imitation perfection.

Proposition 3. An auction is imitation-perfect if and only if the following holds

true:

(i) (Independence of lower bids) The payment of a bidder does not depend on the

bids of competitors who placed lower bids. For each bidder i and for all vectors

of bids (b1, . . . , bi, . . . , bj, . . . , bn), (b1, . . . , bi, . . . , b
′
j, . . . , bn) such that bi > bj

and bi > b′j it holds that

pi(b1, . . . , bi, . . . , bj, . . . , bn) = pi(b1, . . . , bi, . . . , b
′
j, . . . , bn).

(ii) (Right-continuity) If bidder i is not the lowest bidder and no other bidder placed

the same bid as bidder i, her payment is right-continuous in her bid. That is,

for every bid vector (b1, . . . , bi, . . . , bn)and for every ε > 0 there exists a δ > 0

such that for all b ∈ [bi, bi + δ) it holds that

|pi(b1, . . . , bi, . . . , bn)− pi(b1, . . . , b′, . . . , bn)| < ε

if bi 6= min
j 6=i

bj and bi 6= bj for all j 6= i.

Proof. The proof is relegated to Appendix B.1.

4 Imitation perfection with homogenous bidders

In this section we present further results for the case that bidders are ex-ante ho-

mogeneous. We provide conditions for the existence and uniqueness of equilibria

in symmetric and imitation-perfect auctions. Furthermore, we show that imitation

perfection is compatible with revenue and social surplus maximization.

A group of bidders is homogeneous if all bidders draw their valuations from the

same distribution, i.e. it holds for all i, j ∈ {1, . . . n} that Fi = Fj. From Theorem
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1 it directly follows that in a symmetric and imitation-perfect auction with ex-ante

homogeneous bidders, bidders with the same valuation expect the same surplus in

equilibrium.

Corollary 2. In a symmetric and imitation-perfect auction with a reservation bid

r and homogeneous bidders, it holds for every v ∈ [0, v̄] that

Uβ
i (v) =

∫
V−i

[v · xi(βi(v), β−i(v−i))− pi(βi(v), β−i(v−i))] · f−i(v−i)dv−i

=

∫
V−j

[v · xj(βj(v), β−j(v−j))− pj(βj(v), β−j(v−j))] · f−j(v−j)dv−j = Uβ
j (v).

Proposition 4 provides conditions under which an imitation-perfect auction has

a unique equilibrium.

Proposition 4. If the payment of bidder i is continuous in the bids of the other

bidders, whenever bi 6= bj for all j 6= i, and the strategy spaces of all bidders are

compact intervalls, then the following holds true in a symmetric and imitation-perfect

auction with a reservation bid:

(i) There exists a mixed strategy Bayes-Nash equilibrium.

(ii) If bidders are homogeneous, then there exists a unique nondecreasing Bayes-

Nash equilibrium in pure strategies.

Proof. The proof is relegated to Appendix B.3.

For example, all bid-determines-payment auctions with continuous functions pwin

and plose are imitation-perfect and fulfill the conditions. Hence, a unique nonde-

creasing Bayes-Nash equilibrium in pure strategies is guaranteed to exist in these

auctions.

If bidders are ex-ante homogeneous, the revenue-optimal auction can be imple-

mented as a first-price auction with an appropriate reservation bid (see Krishna

2009). Similarly, the efficient auction can be implemented as a first-price auction

without a reservation bid.

Corollary 3. The following holds true:

(i) There exists a symmetric and discrimination-free auction that is revenue-

optimal among all incentive compatible mechanisms.

(ii) There exists a symmetric and discrimination-free auction that is social surplus

maximizing among all incentive compatible mechanisms.
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Thus, the implementation of a discrimination-free auction is not in conflict with

the aims of revenue or social surplus maximization if all bidders are ex-ante homo-

geneous.

5 Imitation perfection with heterogeneous bid-

ders

In this section we analyze the extent to which imitation perfection limits discrimina-

tion between bidders that are ex-ante heterogeneous and examine whether imitation

perfection is compatible with revenue and social surplus maximization.

If bidders are ex-ante heterogeneous it is not reasonable to require that bidders

with the same valuation earn the same surplus in equilibrium. The heterogeneity

implies that different bidders face different degrees of competition and thus expect

a different surplus even if they have the same valuation.

Nevertheless, we will show that even in settings with ex-ante heterogeneous bid-

ders imitation perfection effectively limits the possible extent of discrimination.

The smaller the asymmetry between bidders, the smaller is the maximal differ-

ence between the expected surpluses of bidders with the same valuation in various

imitation-perfect mechanisms.

In order to provide a precise and tractable measure of heterogeneity or asym-

metry we follow Fibich et al. (2004). They show that for any set of distribution

functions F1, . . . , Fn defined on some interval [0, v] and for every i ∈ {1, . . . , n} the

distribution function Fi can be decomposed in the following way

Fi(v) = H(v) + δHi(v) (1)

where H(0) = 0, H(v) = 1, Hi(0) = Hi(v) = 0, |Hi| ≤ 1 on [0, v] and δ ≥ 0.11 In

particular, for every pair of bidders i and j there exists a δi,j ≥ 0 such that

Fi(v) = H(v) + δi,jHi(v), Fj(v) = H(v) + δi,jHj(v) (2)

where H(0) = 0, H(v) = 1, Hk(0) = Hk(v) = 0, and |Hk| ≤ 1 on [0, v] for k ∈ {i, j}.
The number δi,j formalizes the degree of heterogeneity between two specific bidders

i and j.

11One can set H = 1
n

∑n
i=1 Fi, δ = maxi maxv |Fi −H|, and Hi(v) = (Fi(v)−H(v))/δ.
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Proposition 5. In an imitation-perfect auction for every equilibrium β = (β1, . . . , βn)

and for every pair of bidders i, j it holds that

|Uβ
i (v)− Uβ

j (v)| ≤ δi,j + δi,j(v − v)

for every v ∈ [0, v] where δi,j is defined as in (2). That is, the difference between the

expected surplus of two bidders with the same valuation in the same imitation-perfect

auction is given by at most δi,j + δi,j(v− v) independent of the degree of asymmetry

of the other n− 2 bidders.

Proof. The proof is relegated to Appendix B.4.

The difference between the expected surplus of two bidders with the same val-

uation in the same imitation-perfect auction is given by at most δi,j + δi,j(v − v)

independent of the degree of heterogeneity between the other n− 2 bidders.

Theorem 1 states that in a symmetric and imitation-perfect auction two ex-

ante homogeneous bidders with the same valuation expect the same surplus even

if the heterogeneity among the other bidders is arbitrarily strong. Proposition 5

implies that this finding is robust towards small pertubations of homogeneity, which

is illustrated in the following example.

Example 5. Consider a first-price auction with two bidders. The valuation of

bidder 1 is uniformly distributed on the interval [0, 1000], the valuation of bidder 2

is uniformly distributed on the interval [0, 1001]. The difference in expected surpluses

of the two bidders is maximized at the valuation of 700 and is given by 0.125. The

upper bound provided in the first part of Proposition 5 is given by

δ + δ(v − v) =
1

1001
+

1001− 700

1001
≈ 0.302.

While Proposition 5 shows that there is little room for discrimination in sym-

metric and imitation-perfect auctions if bidders are ex-ante almost homogeneous, it

is obvious that extreme heterogeneity results in outcomes that are arbitrarily close

to perfect discrimination. This is illustrated in the following example.

Example 6. Consider a first-price auction with two bidders. Bidder 1’s valuation

is drawn from the interval [0, 1], whereas bidder 2’s valuation is drawn from the

interval [0, v] with v >> 1. Following Krishna (2009) one can derive the unique

equilibrium and show that for every v ∈ (0, 1] it holds that U2(v) > U1(v). Figure 1

illustrates the expected surpluses of bidder 1 (blue line) and bidder 2 (orange line)

for v ∈ [0, 1] and v = 100.
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Figure 1: U1(v), U2(v)
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Even if bidder 1 has a valuation of 1, bidder 2 will have a higher valuation with

a probability of 0.99. In contrast to that, bidder 2 can be sure to have the higher

valuation if her valuation is 1. This example highlights, that if bidders are extremely

ex-ante heterogeneous, their expected surpluses given the same valuation can also

differ extremely.

If bidders are ex-ante heterogeneous, the revenue equivalence theorem does not

hold. Hence, the expected surplus of a bidder with a given valuation can differ

between different symmetric and imitation-perfect auctions. Proposition 6 demon-

strates that the possible extent of discrimination is limited by the degree of hetero-

geneity. If the asymmetry between bidders is small, so is the extent to which the

auctioneer can discriminate between them by choosing different auction formats.

Proposition 6. Let A and B be imitation-perfect auctions with the same reservation

bid and βA = (βA1 , . . . , . . .
A
n ) be an equilibrium of A and βB = (βB1 , . . . , . . .

B
n ) be an

equilibrium of B. Furthermore, let Uβk

i (v) denote the expected surplus of bidder i

with valuation v ∈ [0, v] in auction k and equilibrium βk with k ∈ {A,B}. Then it

holds that

|UβA

i (v)− UβB

i (v)| ≤ 2δ + 2δv̄

for every v ∈ [0, v] where δ is defined as in (1). That is, for every bidder i with a

given valuation v the difference between the expected surpluses in any equilibrium of

A and B is given by at most 2δ + 2δv̄.

Proof. The proof is relegated to Appendix B.4.

If the ex-ante heterogeneity among bidders is sufficiently pronounced, an auc-

tioneer who knows the distributions of the bidders is able to substantially influence

her favorite bidder’s expected surplus by choosing among imitation-perfect auctions.

We illustrate the auctioneer’s possibility to influence her favorite bidder’s expected

surplus with the following example.
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Example 7. Consider an auctioneer who has to conduct a symmetric and imitation

perfect auction with two bidders. The valuation of bidder 1 is uniformly distributed

on the interval [0, 5] and the valuation of bidder 2 is uniformly distributed on the

interval [0, 10]. Assume that the auctioneer can either conduct a frist-price auction

or an all-pay auction. Following Krishna (2009) and Amann and Leininger (1996)

we can compute the unique equilibrium bidding functions for both bidders in both

auctions. If the auctioneer wants to favor bidder 1, he will conduct a first-price

auction. Independent from her valuation, bidder 1 expects a weakly higher surplus

in a first-price auction than in an all-pay auction. Figure 2 illustrates the difference

between the expected surplus of bidder 1 in the first-price and the all-pay auction for

all possible valuations.

Figure 2: UFPA
1 (v)− UAPA

1 (v)
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Notes. The difference between the expected surpluses UFPA
1 (v)−UAPA

1 (v)
obtains its maximum value of 0.126 at v = 2.9. In this case, bidder 1’s
surplus in a first-price auction is 39 percent larger than in an all-pay
auction.

Vice versa, the auctioneer can favor bidder 2 by conducting an all-pay auction.

Figure 3 illustrates that, independent of her valuation, bidder 2 expects a (weakly)

larger surplus in an all-pay auction.
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Figure 3: UAPA
2 (v)− UFPA

2 (v)
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Notes. The difference between the expected surpluses UAPA
2 (v)−UFPA

2 (v)
obtains its maximum value of 0.252 at v = 3.4. In this case, bidder 2’s
surplus in an all-pay auction is 24 percent larger than in a first-price
auction.

Finally, we will show that imitation is not compatible with efficiency and revenue

maximization if bidders are ex-ante heterogeneous.

Proposition 7. Assume there exists at least one pair of bidders j, k such that∫ v
0
Fj(z)dz 6=

∫ v
0
Fk(z)dz, then there is no efficient equilibrium in any symmetric

and imitation-perfect auction.

Proof. The proof is relegated to the Appendix B.5.

In symmetric auctions efficiency requires that bidders with the same valuation

place the same bid. As a consequence, ex-ante heterogeneous bidders face different

bid distributions. The winner’s payment in an imitation-perfect auction cannot de-

pend on others’ bids. This directly implies that following the same bidding strategy

cannot be optimal for ex-ante heterogeneous bidders. Applying similar reasoning to

virtual valuations indicates that imitation perfection is not compatible with revenue

maximization in the case of ex-ante heterogeneous bidders.

Proposition 8. Assume there exists at least one pair of bidders j, k such that∫ v
0
Fj(z)dz 6=

∫ v
0
Fk(z)dz. In this case, all equilibria of a symmetric and imitation-

perfect auction yield non-optimal outcomes. That is, the object is not always allo-

cated to the bidder with the highest virtual valuation.

Proof. The proof is relegated to Appendix B.5.

6 Conclusion

This article demonstrates that the existing rules imposed to prevent discrimina-

tion in procurement, which require equal treatment of bidders, are not sufficient to
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prevent even perfect discrimination. We introduce a simple extension to the ex-

isting rules called imitation perfection. Imitation perfection requires that for any

realization of bids and the resulting allocation and payments, every bidder had the

opportunity to imitate the allocation and payment of any other bidder who outbid

her. Imitation perfection can be easily verified without specific knowledge of details

of the environment and guarantees discrimination-free outcomes. If all bidders are

ex-ante homogeneous, both an imitation-perfect revenue optimal auction and an

imitation-perfect social surplus optimal auction exist. If bidders are heterogeneous,

imitation perfection still ensures that discrimination is limited in the following sense:

if at any point in the domain the distribution functions of two bidders differ at most

by some δ, then the expected surpluses of these two bidders with the same valua-

tion in the same imitation-perfect auction differ at most by a linear expression of δ

regardless of the other bidders’ distributions. Moreover, the expected surpluses of a

bidder with a given valuation in two different imitation-perfect auctions also differ

at most by a linear expression of δ.

Appendices

A Definition of a direct mechanism

In a direct mechanism bidders report their valuations. Given a direct mechanism

(x, p) the functions Xi and Pi are called interim allocations and interim payments

for bidder i and are given by

Xi(vi) =

∫
V−i

xi(vi,v−i) · f−i(v−i)d(v−i)

Pi(vi) =

∫
V−i

pi(vi,v−i) · f−i(v−i)dv−i.

Here xi(vi,v−i) and pi(vi,v−i) denote the allocation and payment when all bidders

submit their true valuation.

Interim allocations and payments can also be defined for an equilibrium of an

arbitrary mechanism. If (β1, . . . , βn) is an equilibrium of an arbitrary mechanism

(x, p), interim allocations and payments are defined by

Xi(βi(vi)) =

∫
V−i

xi(βi(vi), β−i(v−i))f−i(v−i)d(v−i)
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Pi(βi(vi)) =

∫
V−i

pi(βi(vi), β−i(v−i))f−i(v−i)d(v−i)

for all i and all vi ∈ Vi. Note that interim allocations and interim payments for bidder

i depend not only on her strategy βi but on the whole strategy profile (β1, . . . , βn).

B Proofs

We begin with the proof of Proposition 3 since it used in other proofs.

B.1 Proof of Proposition 3

Proof. We start by showing that an imitation-perfect auction implies statements (i)

and (ii). First, we show that in an imitation-perfect auction for every bidder i the

payment of a bidder i does not depend on lower bids. Let bi be the bid of bidder i

and bj, b
′
j be bids such that bi > bj and bi > b′j. We have to show that

pi(b1, . . . bi, . . . bj, . . . , bn) = pi(b1, . . . bi, . . . b
′
j, . . . , bn).

Imitation perfection implies that for every bid bi of bidder i and every ε > 0 there

exists a bid b′ > bi such that

|pi(b1, . . . bi, . . . bj, . . . , bn)− pj(b1, . . . bi, . . . b′, . . . , bn)| < ε

2

and

|pi(b1, . . . bi, . . . b′j, . . . , bn)− pj(b1, . . . bi, . . . b′, . . . , bn)| < ε

2
.

It follows from the triangle inequality that

|pi(b1, . . . bi, . . . bj, . . . , bn)− pi(b1, . . . bi, . . . b′j, . . . , bn)| < ε.

Since ε can be chosen arbitrarily, it holds that

p1(b1, . . . , bj, . . . , bn) = p1(b1, . . . , b
′
j, . . . , bn)

for all bj, b
′
j < bi, i.e. the payment in an imitation-perfect auction does not depend

on the bids of competitors who placed lower bids.

Now we show that for every bidder i the payment function of bidder i is right-

continuous in her bid if there is at least one bidder j who placed a lower bid and

there is no tie with bidder i’s bid and another bid. Thus, we have to show that for
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every bid vector (b1, . . . , bi, . . . , bn) such that bi 6= min
k∈{1,...,n}

bk and bi 6= bj for j 6= i

and for every ε > 0 there exists a δ > 0 such that for all b with bi ≤ b < bi + δ it

holds that

|pi(b1, . . . , bi, . . . , bn)− pi(b1, . . . , b, . . . , bn)| < ε.

Let bj = min
k∈{1,...,n}

bk. Since bj < bi it follows from imitation perfection that for every

ε > 0 there exists a bid b′ > bi such that

|pi(b1, . . . , bi, . . . bj . . . , bn)− pj(b1, . . . bi, . . . , b′, . . . , bn)| < ε.

Since the auction is symmetric, it holds that

pj(b1, . . . , bi, . . . , b
′, . . . , bn) = pi(b1, . . . , b

′, . . . , bi, . . . , bn)

and therefore

|pi(b1, . . . , bi, . . . , bj, . . . , bn)− pi(b1, . . . , b′, . . . , bi, . . . , bn)| < ε.

Since b′ > bi > bi, it follows from the first part of Proposition 3 that

pi(b1, . . . , b
′, . . . , bi, . . . , bn) = pi(b1, . . . , b

′, . . . , bj, . . . , bn)

from which follows that

|pi(b1, . . . , bi, . . . , bj, . . . , bn)− pi(b1, . . . , b′, . . . , bj, . . . , bn)| < ε.

Let δ be defined by δ := b′ − bi. Since the payment function of bidder i is nonde-

creasing in her own bid it holds for every b with bi ≤ b < bi + δ that

|pi(b1, . . . , bi, . . . , bj, . . . , bn)− pi(b1, . . . , b, . . . , bi, . . . , bn)| < ε.

Hence, we have shown that the payment of bidder i is right-continuous if she is not

the lowest bidder and if there is no tie to her bid and another bid.

It remains for us to show that conditions (i) and (ii) imply that an auction is

imitation-perfect. Let i be a bidder and (b1, . . . , bi, . . . , bj, . . . , bn) be a vector of

bids such that bj < bi. Since bidder i is not the lowest bidder, her payment is

right-continuous in bi and therefore for every ε > 0 there exists a b′ > bi such that

|pi(b1, . . . , bi, . . . , bj, . . . , bn)− pi(b1, . . . , b′, . . . , bj, . . . , bn)| < ε.
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Since the payment of bidder i does not depend on lower bids, it holds that

pi(b1, . . . , b
′, . . . , bj, . . . , bn) = pi(b1, . . . , b

′, . . . , bi, . . . , bn).

Due to the symmetry of the auction it holds that

pi(b1, . . . , b
′, . . . , bi, . . . , bn) = pj(b1, . . . , bi, . . . , b

′, . . . , bn)

from which follows that

|pi(b1, . . . , bi, . . . , bj, . . . , bn)− pj(b1, . . . , bi, . . . , b′, . . . , bn)| < ε.

Therefore, the auction is imitation-perfect.

B.2 Proof of Theorem 1

Proof. Although this theorem directly follows from Proposition 5, we provide a sepa-

rate proof for Theorem 1 since this proof is less technical and may help to understand

the intuition behind the results in Theorem 1 and Proposition 5. We prove that the

auction is discrimination-free by demonstrating that in every equilibrium all bidders

follow identical strategies. In order to do so, we adapt a proof by Chawla and Hart-

line (2013). If there is a reservation bid, it is sufficient to show that strategies are

identical above the value of the reservation bid. Bidders bidding below the value of

the reservation bid have the same expected surplus of zero.

Let β = (β1, . . . , βn) be an equilibrium. We consider two arbitrary bidders i and

j who draw their valuations from the same distribution. Let r be the reservation

bid. For all k ∈ {1, . . . , n} we denote the endpoints of an interval of values over

which βk(v) = b by vk(b) and vk(b). For an arbitrary valuation v and bids bi =

βi(v), bj = βj(v) with bj > bi ≥ r it holds for the interim allocations that

Xi(bi) =
∏
k 6=i

Fk(vj(bi)) +
n−2∑
k=1

1

k
Pr(k bidders have bid bi)

≤
∏
k 6=i

Fk(vj(bi)) +
n−2∑
k=1

Pr(k bidders have bid bi)

≤
∏
k 6=j

Fk(vj(bj)) ≤ Xj(bj).

Since payments are nondecreasing and strictly increasing for the winner in her own
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bid, it cannot hold that Xi(bi) = Xj(bj) in equilibrium. Otherwise, bidding bj would

not be a best response for bidder 2. Therefore, bj > bi implies

Xi(bi) < Xj(bj). (3)

To show that bidders follow identical strategies, we use the following definition.

Definition 6 (Utility crossing). An interval [z, z], with z ≥ r, satisfies utility

crossing if βj ≥ βi for all v ∈ (z, z) and Uj(z) ≥ Ui(z) and Ui(z) ≥ Uj(z).

We will show that utility crossing implies βi(v) = βj(v) for all v ∈ [z, z]. Suppose

that βj > βi over some measurable interval of valuations. It then follows from (3)

that Xj(βj(v)) > Xi(βi(v)) for all v with βj(v) > βi(v). According to Myerson

(1981), it holds for every k and every vk that

Uβ
k (vk) = Uβ

k (0) +

∫ vk

0

Xk(βk(z))dz.

Applying this equation to z and z and rearranging it accordingly gives

Uβ
i (z)− Uβ

i (z) =

∫ z

z

Xi(βi(z))dz

and

Uβ
j (z)− Uβ

j (z) =

∫ z

z

Xj(βj(z))dz

from which follows that

Uβ
j (z)− Uβ

j (z) > Uβ
i (z)− Uβ

i (z),

which contradicts utility crossing. It therefore holds that βi(v) = βj(v) for all v in

[z, z].

Now assume that the strategies of bidder i and bidder j differ over some mea-

surable interval. We will show that this would imply that the interval of values over

which the strategies differ lies in an interval satisfying utility crossing. Hence, their

strategies cannot differ.

Consider the highest interval at which the strategies differ, w.l.o.g. bidder j bids

higher on this interval than bidder i. Formally, let

z = sup {v|βj(v) 6= βi(v)} .

Then w.l.o.g. it holds that βj(z) ≥ βi(z). Moreover, it holds that βj(v) ≥ βi(v). We
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will show that for every ε > 0 there exists a bid for bidder i with which she could

achieve an expected surplus of at least Uβ
j (v) − ε. Therefore, the expected surplus

of the bidder i’s equilibrium bid has to induce at least an expected surplus of Uβ
j (v)

and it holds that

Uβ
j (v) ≤ Uβ

i (v).

Let ε be greater than zero. If bidder i places any bid above βj(v), then bidder i

has at least the same winning probability as bidder j. Due to imitation perfection,

there exists a bid b such that for all bids b−(i,j) of the other n− 2 bidders besides i

and j it holds that

|pi(b, βj(v), b−(i,j))− pj(βi(v), βj(v), b−(i,j))| < ε

and due to monotonicity it holds that

pi(b, βj(v), b−(i,j))− pj(βi(v), βj(v), b−(i,j)) < ε.

The difference in expected payments of bidder j bidding βj(v) in equilibrium and of

bidder i deviating to b is given by∫
v−i∈[0,v]n−1

pi
(
b, βj(vj), β−(i,j)(v−(i,j))

)
f−i(v−i)dv−i

−
∫
v−j∈[0,v]n−1

pj
(
βi(vi), βj(v), β−(i,j)(v−(i,j))

)
f−j(v−j)dv−j .

Since the payment of a bidder does not depend on lower bids and for all vi ∈ [0, v] it

holds that βj(v) > βi(vi) and for all vj ∈ [0, v] it holds that b > βj(vj), the difference

in expected payments is equal to∫
vj∈[0,v]

∫
v−(i,j)∈[0,v]n−1

pi
(
b, β−(i,j)(v−(i,j))

)
f−(i,j)(v−(i,j))dv−(i,j)fj(vj)dvj

−
∫
vi∈[0,v]n−1

∫
v−(i,j)∈[0,v]n−1

pj
(
βj(v), β−(i,j)(v−(i,j))

)
f−(i,j)(v−(i,j))dv−(i,j)fi(vi)dvi

=

∫
v−(i,j)∈[0,v]n−1

pi
(
b, β−(i,j)(v−(i,j))

)
f−(i,j)(v−(i,j))dv−(i,j)

−
∫
v−(i,j)∈[0,v]n−1

pj
(
βj(v), β−(i,j)(v−(i,j))

)
f−(i,j)(v−(i,j))dv−(i,j)
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<

∫
v−(i,j)∈[0,v]n−1

εf−(i,j)(v−(i,j))dv−(i,j) ≤ ε.

Hence, we have shown that for every ε > 0 there exists a deviating bid b such that

bidder i can achieve an expected surplus of at least Uβ
j (v) − ε from which follows

that

Uβ
j (v) ≤ Uβ

i (v).

If we go from z to 0, let z be the first value at which the strategies of bidder i

and bidder j imply equal bids, i.e. formally it holds that

z = sup {v < z|βi(v) = βj(v)} .

We will show that the interval [z, v] satisfies utility crossing. In order to do so,

it is left to show that Uj(z) ≥ Ui(z). If for every v ∈ [0, v] (besides a set of measure

zero) it holds that βj(v) > βi(v), then this follows from Myerson (1981). If there

exists a measurable set V of valuations such that for every v ∈ V it holds that

βi(v) ≥ βj(v), then either the bidding strategies cross in z, or they are equal over

some interval. In the latter case, we redefine z to be some point in this interval. In

both cases it holds that βi(z) = βj(z).

The expected payment of bidder i is given by

Pi(βi(z)) =

∫
vj∈[0,z],v−(i,j)∈[0,v]n−2

pi(βi(z), βj(vj),β−(i,j)(v−(i,j)))f−i(v−i)dv−i

+

∫
vj∈[z,v],v−(i,j)∈[0,v]n−2

pi(βi(z), βj(vj),β−(i,j)(v−(i,j)))f−i(v−i)dv−i.

Because the payment does not depend on lower bids, the mechanism is symmetric

and the distributions of bidder i and j are equal, this is equal to∫
vi∈[0,z],v−(i,j)∈[0,v]n−2

pj(βj(z), βi(vi),β−(i,j)(v−(i,j)))f−j(v−j)dv−j

+

∫
vj∈[z,v],v−(i,j)∈[0,v]n−2

pi(βi(z), βj(vj),β−(i,j)(v−(i,j)))f−i(v−i)dv−i.

Since the payment function is nondecreasing in the other bidders’s bids conditional

on winning or loosing and bidder j’s bids are higher than, or equal to those of bidder

i, above z, this is greater or equal than∫
vi∈[0,z],v−(i,j)∈[0,v]n−2

pj(βj(z), βi(vi),β−(i,j)(v−(i,j)))f−j(v−j)dv−j
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+

∫
vj∈[z,v],v−(i,j)∈[0,v]n−2

pi(βi(z), βi(vj),β−(i,j)(v−(i,j)))f−i(v−i)dv−i.

Since the mechanism is symmetric and the distribution of bidder i and j is equal,

this is equal to∫
vi∈[0,z],v−(i,j)∈[0,v]n−2

pj(βj(z), βi(vi),β−(i,j)(v−(i,j)))f−j(v−j)dv−ij

+

∫
vi∈[z,v],v−(i,j)∈[0,v]n−2

pj(βj(z), βi(vi),β−(i,j)(v−(i,j)))f−j(v−j)dv−j = Pj(βj(z)).

Suppose that at z bidder j’s allocation probability is lower than that of bidder

i. There is then a mass point in the bid distribution of bidder j at z and it holds

that vj(βj(z)) < vi(βi(z)) ≤ z. For a sufficiently small δ, it therefore holds that

βi(vi(βi(z))− δ) > βj(vi(βi(z))− δ) = βj(z) = βi(z− δ). This results in a contradic-

tion as bidding strategies cannot be decreasing in equilibrium. Since bidder j has

at least the same allocation probability, and at most the same expected payment as

bidder i at z, it follows that Uβ
j (z) ≥ Uβ

i (z) and therefore, the strategies of bidder

i and bidder j are equal on [z, z]. The existence of asymmetric mixed equilibria is

ruled out by Lemma 3.10 in Chawla and Hartline (2013).

B.3 Proof of Proposition 4

Proof of part (i). The existence of a Bayes-Nash equilibrium (in possibly mixed

strategies) follows from Corollary 5.2 in Reny (1999). It states that if the mixed

extension of a compact Hausdorff Game is better-reply secure, then an equilibrium

exists. Since the game is a compact Hausdorff Game by assumption, it is left to

show that in its mixed extension an imitation-perfect auction where the payment

of a bidder is continuous in the other bidders’ bids (in case there is no tie with her

bid and another bid) is better-reply secure. For a given vector of mixed strategies

(γ1, . . . , γi, . . . , γn) we define the utility ui(γ1, . . . , γi, . . . , γn) of bidder i to be her

expected utility if all bidders bid according to (γ1, . . . , γi, . . . , γn). Formally, for

j ∈ {1, . . . , n} let γj(b) be the probability with which bid b is played according to

the mixed strategy γj. Then it holds that

ui(γ1, . . . , γi, . . . , γn)

=

∫
(R+)n

n∏
j=1

γj(bj)(xi(b1, . . . , bi, . . . , bn)vi − pi(b1, . . . , bi, . . . , bn)).

Let (γ1, . . . , γn) be a vector of mixed strategies and i be a bidder such that
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i’s action is not optimal given the other bidders’ actions. Since bidder i is not

acting optimally, there exists another mixed strategy γ′i which maximizes bidder

i’s surplus given the other bidders’ strategies. In particular, there exists a strictly

positive number ε such that

ui(γ1, . . . , γ
′
i, . . . , γn)− ui(γ1, . . . , γi, . . . , γn) = ε.

Let S ′i be the set of all bids which are played with positive probability given strategy

γ′i. Then bidder i must be indifferent between all bids in S ′i given the other bidders’

strategies. Let b′i be an arbitrary element in S ′i. Then it must hold that

ui(γ1, . . . , b
′
i, . . . , γn)− ui(γ1, . . . , γi, . . . , γn) = δ.

First, we consider the case that none of the bids played with positive probability

by a bidder j 6= i are arbitrarily close to b′i. For a sufficiently small deviation of

the other bidders’ bids, bidder i will have the same winning probability. Moreover,

by assumption bidder i’s payment function is continuous in the other bidders’ bids.

Hence, there exists a δ > 0 such that for all γ−i
′ with d(γ−i,γ−i

′) < δ it holds that

xi(γ−i, b
′
i) = xi(γ

′
−i, b

′′
i )

and

|pi(b′i,γ−i)− pi(b′i,γ′−i)| < ε

from which follows that

|ui(b′i,γ−i)− ui(b′i,γ′−i)| < ε.

Thus, bidder i can secure a strictly higher payoff by bidding b′i.

Finally, we have to consider the case where there exists a bid bj which is played

with positive probability by a bidder j and is arbitrarily close to b′i. It can’t be

the case that bj = b′i because then b′i would not be surplus maximizing for bidder i.

Therefore, bidder i’s payment function is continuous in the other bidders’ bids. Let

b′′i be a bid strictly higher than b′i such that

pi(γ1, . . . , b
′′
i , . . . , γn)− pi(γ1, . . . , b′i, . . . , γn) <

ε

2
.

Then for a sufficiently small deviation of the other bidders’ bids, bidder i will have

the same winning probability. Since the payment of bidder i is continuous in the

other bidders’ bids, there exists a δ > 0 such that for every γ−i
′ with d(γ−i,γ

′
−i) < δ
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it holds that

xi(γ−i, b
′
i) ≤ xi(γ

′
−i, b

′′
i )

and

|pi(b′′i , γ−i)− pi(b′′i , γ′−i)| <
ε

2
.

Due to the triangle inequality it holds that

|pi(γ−i, b′i)− pi(γ′−i, b′′i )|

≤ |pi(γ−i, b′i)− pi(γ−i, b′′i )|+ |pi(γ−i, b′′i )− pi(γ′−i, b′′i )|

<
ε

2
+
ε

2
= ε.

Therefore, it holds that

ui(γ
′
−i, b

′′
i ) > ui(γ−i, b

′
i)− δ = ui(γ−i, γi)

from which follows that bidder i can secure a strictly higher surplus by bidding b′′i .

Proof of part (ii). Uniqueness follows from Theorem 4.5 in Chawla and Hartline

(2013). It follows from Lemma 3.10 in Chawla and Hartline (2013) that if a mixed

strategy equilibrium exists, then a pure strategy equilibrium also exists. Since the

equilibrium is unique, it has to be a pure strategy equilibrium. It follows from

Lemma 3.9 in Chawla and Hartline (2013) that the equilibrium is nondecreasing.

B.4 Proof of Proposition 5 and Proposition 6

Proof. Before proving the propositions, we first state two lemmas. Lemma 1 serves

as a preparation for the proof of Proposition 5. Given this lemma, Proposition 5 can

be shown by using the characterization of expected utilities as in Myerson (1981).

Lemma 1. Let bidders’ values be distributed as in Proposition 5. In an imitation-

perfect auction it holds for every equilibrium β = (β1, . . . , βn), every valuation v and

every pair of bidders i and j that∣∣∣∣∫ v

0

Xi(βi(z))−Xj(βj(z))dz

∣∣∣∣ ≤ δi,j + δi,j(v − v).

Proof. Let v be a valuation in [0, v]. We adapt the proof of Theorem 1 and proceed

in the following steps:
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(i) Let v′ be an arbitrary valuation in [0, v] and bi = βi(v
′) and bj = βj(v

′) with

bj > bi. Then it holds that Xi(bi) ≤ Xj(bj) + δi,j.

(ii) If it holds that βj(v) ≥ βi(v), then it holds that Uβ
i (v) ≥ Uβ

j (v).

(iii) For every z ∈ [0, v] with βi(z) = βj(z) and βj(z) ≥ βi(z) for all z ∈ [z, v] it

holds that ∫ v

z

Xj(βj(z))−Xi(βi(z))dz ≤ δi,j + δi,j(v − z).

(iv) It holds that ∣∣∣∣∫ v

0

Xi(βi(z))−Xj(βj(z))dz

∣∣∣∣ ≤ δi,j + δi,j(v − v).

Proof of step (i). If one of the bids is below the reservation bid, the statement follows

immediately. If both bids are above the reservation bid, similarly to the proof of

Theorem 1 we have:

Xi(βi(v
′)) = Fj(vj(bi))

∏
k 6=i,j

Fk(vj(bi)) +
n−2∑
k=1

1

k
Pr(k bidders have bid bi)

≤ Fj(vj(bi))
∏
k 6=i,j

Fk(vj(bi)) +
n−2∑
k=i

Pr(k bidders have bid bi)

≤ Fj(vj(bj))
∏
k 6=i,j

Fk(vj(bj))

≤ Fi(vi(bj) + δi,j)
∏
k 6=i,j

Fk(vj(bj))

≤ Xj(βj(v
′)) + δi,j.

Proof of step (ii). Assume it holds that βj(v) ≥ βi(v). We will show that for every

ε > 0 there exists a bid for bidder i with which she could achieve an expected surplus

of at least Uβ
j (v)− ε. Therefore, the expected surplus of bidder i’s equilibrium bid

has to induce at least an expected surplus of Uβ
j (v) and it holds that

Uβ
j (v) ≤ Uβ

i (v).

Let ε be greater than zero. If bidder i places any bid above βj(v), then bidder i

has at least the same winning probability as bidder j. Due to imitation perfection,
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there exists a bid b such that for all bids b−(i,j) of the other n− 2 bidders besides i

and j it holds that

|pi(b, βj(v), b−(i,j))− pj(βi(v), βj(v), b−(i,j))| < ε

and due to monotonicity it holds that

pi(b, βj(v), b−(i,j))− pj(βi(v), βj(v), b−(i,j)) < ε.

The difference in expected payments of bidder j bidding βj(v) in equilibrium and of

bidder i deviating to b is given by∫
v−i∈[0,v]n−1

pi
(
b, βj(vj), β−(i,j)(v−(i,j))

)
f−i(v−i)dv−i

−
∫
v−j∈[0,v]n−1

pj
(
βi(vi), βj(v), β−(i,j)(v−(i,j))

)
f−j(v−j)dv−j .

Since the payment of a bidder does not depend on lower bids and for all vi ∈ [0, v] it

holds that βj(v) > βi(vi) and for all vj ∈ [0, v] it holds that b > βj(vj), the difference

in expected payments is equal to∫
vj∈[0,v]

∫
v−(i,j)∈[0,v]n−2

pi
(
b, β−(i,j)(v−(i,j))

)
f−(i,j)(v−(i,j))dv−(i,j)fj(vj)dvj

−
∫
vi∈[0,v]

∫
v−(i,j)∈[0,v]n−2

pj
(
βj(v), β−(i,j)(v−(i,j))

)
f−(i,j)(v−(i,j))dv−(i,j)fi(vi)dvi

=

∫
v−(i,j)∈[0,v]n−2

pi
(
b, β−(i,j)(v−(i,j))

)
f−(i,j)(v−(i,j))dv−(i,j)

−
∫
v−(i,j)∈[0,v]n−2

pj
(
βj(v), β−(i,j)(v−(i,j))

)
f−(i,j)(v−(i,j))dv−(i,j)

<

∫
v−(i,j)∈[0,v]n−2

εf−(i,j)(v−(i,j))dv−(i,j) ≤ ε.

Hence, we have shown that for every ε > 0 there exists a deviating bid b such that

bidder i can achieve an expected surplus of at least Uβ
j (v) − ε from which follows

that

Uβ
j (v) ≤ Uβ

i (v).
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Proof of step (iii). Assume that the statement in step (iii) is not true and that there

exists a valuation z ∈ [0, v] with βi(z) = βj(z) and βj(z) ≥ βi(z) for all z ∈ [z, v]

such that ∫ v

z

Xj(βj(z))−Xi(βi(z))dz > δi,j + δi,j(v − z).

Due to Myerson (1981), it holds that

Uβ
j (v)− Uβ

i (v)− Uβ
j (z) + Uβ

i (z) > δi,j + δi,j(v − z).

It follows from step (ii) that Uβ
i (v) ≥ Uβ

j (v) and therefore it must hold that

−Uβ
j (z) + Uβ

i (z) > δi,j + δi,j(v − z)

⇔ −Xj(βj(z)) + Pj(βj(z)) +Xi(βi(z))− Pi(βi(z)) > δi,j + δi,j(v − z).

Since βj(z) = βi(z), it follows from step (i) that

−Xj(βj(z)) +Xi(βi(z)) ≤ δi,j.

Therefore, it must hold that

Pj(βj(z))− Pi(βi(z)) > +δi,j(v − z). (4)

Similarly as in the proof of Theorem 1, we consider the two cases where bidder

j’s valuation is either an element in [0, z] or in [z, v]. In the first case we make use of

the fact that the payment of a bidder does not depend on lower bids. In the second

case we use the assumption that the payment function is monotone.

It holds that

Pj(βj(z))− Pi(βi(z))

=

∫
v(−i,j)∈[0,v]n−2

∫ z

0

pj(βj(z), βi(z), β−(i,j)(v−(i,j)))fi(z)dzf−(i,j)(v−(i,j))dv−(i,j)

+

∫
v(−i,j)∈[0,v]n−2

∫ v

z

pj(βj(z), βi(z), β−(i,j)(v−(i,j)))fi(z)dzf−(i,j)(v−(i,j))dv−(i,j)

−
∫
v(−i,j)∈[0,v]n−2

∫ z

0

pi(βi(z), βj(z), β−(i,j)(v−(i,j)))fi(z)dzf−(i,j)(v−(i,j))dv−(i,j)

−
∫
v(−i,j)∈[0,v]n−2

∫ v

z

pi(βi(z), βj(z), β−(i,j)(v−(i,j)))fi(z)dzf−(i,j)(v−(i,j))dv−(i,j).
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Since the payment does not depend on lower bids, it holds that∫
v(−i,j)∈[0,v]n−2

∫ z

0

pj(βj(z), βi(z), β−(i,j)(v−(i,j)))fi(z)dzf−(i,j)(v−(i,j))dv−(i,j)

−
∫
v(−i,j)∈[0,v]n−2

∫ z

0

pi(βi(z), βj(z), β−(i,j)(v−(i,j)))fi(z)dzf−(i,j)(v−(i,j))dv−(i,j)

=

∫
v(−i,j)∈[0,v]n−2

pi(βi(z), β−(i,j)(v−(i,j)))f−(i,j)(v−(i,j))dv−(i,j)[Fi(z)−Fj(z)]. (5)

Since the payment function is nondecreasing in the other bidders’ bids given that a

bidder looses and βi(z) = βj(z), it holds that∫
v(−i,j)∈[0,v]n−2

∫ v

z

pj(βj(z), βi(z), β−(i,j)(v−(i,j)))fi(z)dzf−(i,j)(v−(i,j))dv−(i,j)

−
∫
v(−i,j)∈[0,v]n−2

∫ v

z

pi(βi(z), βj(z), β−(i,j)(v−(i,j)))fi(z)dzf−(i,j)(v−(i,j))dv−(i,j)

≤
∫
v(−i,j)∈[0,v]n−2

∫ v

z

pj(βj(z), βj(z), β−(i,j)(v−(i,j)))fi(z)dzf−(i,j)(v−(i,j))dv−(i,j)

−
∫
v(−i,j)∈[0,v]n−2

∫ v

z

pi(βj(z), βj(z), β−(i,j)(v−(i,j)))fi(z)dzf−(i,j)(v−(i,j))dv−(i,j).

Partial integration gives that this term is equal to∫
v(−i,j)∈[0,v]n−2

pj(βj(z), βj(z), β−(i,j)(v−(i,j)))f−(i,j)(v−(i,j))dv−(i,j)

·[(Fi(v)− Fi(z))− (Fj(v)− Fj(z))]

−
∫
v(−i,j)∈[0,v]n−2

∫ v

z

pi(βj(z), βj(z), β−(i,j)(v−(i,j)))f−(i,j)(v−(i,j))dv−(i,j)[Fi(z)−Fj(z)]dz.

Adding this term to equation gives that

Pj(βj(z))− Pi(βi(z)) ≤ (v − z)δi,j

which is a contradiction to (4). Hence, we conclude that for every valuation z ∈ [0, v]

with βi(z) = βj(z) and βj(z) ≥ βi(z) for all z ∈ [z, v] it holds that∫ v

z

Xj(βj(z))−Xi(βi(z))dz ≤ δi,j + δi,j(v − z).
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Proof of step (iv). This last step finally shows the statement in Lemma 1. Assume

there exists a valuation v ∈ [0, v] such that∣∣∣∣∫ v

0

Xi(βi(z))−Xj(βj(z))dz

∣∣∣∣ > δi,j + δi,j(v − v).

Assume w.l.o.g. that it holds that∫ v

0

Xj(βj(z))−Xi(βi(z))dz > δi,j + δi,j(v − v).

Let A := {z ∈ [0, v] | βj(z) < βi(z)} and B := [0, v] \ A. It holds that∫ v

0

Xj(βj(z))−Xi(βi(z))dz

=

∫
A

Xj(βj(z))−Xi(βi(z))dz +

∫
B

Xj(βj(z))−Xi(βi(z))dz

≤
∫
A

Xj(βi(z))−Xi(βi(z))dz +

∫
B

Xj(βj(z))−Xi(βi(z))dz.

Therefore, it is sufficient to consider the case where βj(z) ≥ βi(z) for all z ∈ [0, v].

Let v∗ = inf{z ≥ v | βi(z) ≥ βj(z)}. It follows from step (ii) that the set

{z ≥ v | βi(z) ≥ βj(z)}

is not empty and therefore, v∗ exists. In other words, the interval [0, v∗] is the

smallest extension of the interval [0, v] such that the strategies of bidder i and j are

equal at the endpoint v∗.

For a bidder with valuation zero the utility from winning the auction is zero.

Since the payment cannot be negative, it must be zero in order for the auction to

be individually rational. Therefore, it holds

Uβ
j (0) = Uβ

i (0). (6)

Due to Myerson (1981) it holds that∫ v

0

Xj(βj(z))−Xi(βi(z))dz = Uβ
j (v)− Uβ

j (0)− Uβ
i (v) + Uβ

i (0).

It follows from step (ii) and (6) that∫ v

0

Xj(βj(z))−Xi(βi(z))dz = −Uβ
j (0) + Uβ

i (0) = 0.
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Therefore, it holds that∫ v∗

0

Xj(βj(z))−Xi(βi(z))dz +

∫ v

v∗
Xj(βj(z))−Xi(βi(z))dz = 0

⇔
∫ v∗

0

Xj(βj(z))−Xi(βi(z))dz =

∫ v

v∗
Xi(βi(z))−Xj(βj(z))dz.

In order to find an upper bound for the term
∫ v
v∗
Xi(βj(z))−Xj(βi(z))dz, it is again

sufficient to consider the case where βi(z) ≥ βj(z) for all z ∈ [v∗, v]. It follows from

step (iii) that∫ v∗

0

Xj(βj(z))−Xi(βi(z))dz =

∫ v

v∗
Xi(βi(z))−Xj(βj(z))dz ≤ δi,j + δi,j(v − v∗).

Hence, it holds that∫ v

0

Xj(βj(z))−Xi(βi(z))dz +

∫ v∗

v

Xj(βj(z))−Xi(βi(z))dz

=

∫ v

v∗
Xi(βi(z))−Xj(βj(z))dz ≤ δi,j + δi,j(v − v∗)

⇔
∫ v

0

Xj(βj(z))−Xi(βi(z))dz ≤ δi,j + δi,j(v − v∗) +

∫ v∗

v

Xi(βi(z))−Xj(βj(z))dz.

Due to step (i), it holds that∫ v∗

v

Xi(βi(z))−Xj(βj(z))dz =

∫ v∗

v

Xi(βi(z))−Xj(βj(z))dz ≤ δi,j(v
∗ − v)

from which follows that∫ v

0

Xj(βj(z))−Xi(βi(z))dz ≤ δi,j + δi,j(v − v∗) + δi,j(v
∗ − v) = δi,j + δi,j(v − v).

We conclude that the assumption that the statement in step (iv), i.e. in Lemma 2,

is not true, leads to a contradiction.

The proof of step (iv) completes the proof of Lemma 1.

Lemma 2 serves as a preparation for the proof of Proposition 6. Given this

lemma, Proposition 6 can be shown by using the characterization of expected utilities

as in Myerson (1981).

Lemma 2. Let bidders’ values be distributed as in Proposition 5 and let A and B

be two mechanisms with reservation bid r. Let Xk
i (v) denote the expected winning

36



probability of bidder i with valuation v in mechanism k for k ∈ {A,B}. For every

bidder i with valuation v ≥ r it holds that∣∣∣∣∫ v

r

XA
i (z)−XB

i (v)dz

∣∣∣∣ ≤ 2δ + 2δv.

Proof. The idea of the proof is to find a constant for mechanism A and B which

lies between the expected surplus of the lowest and the highest bidder at v. Due to

Lemma 1, the difference between the expected surpluses is limited by δ and, there-

fore, the difference between the constant and the lowest (or the highest) expected

surplus is limited by δ+ δ(v− v). Lemma 1 also implies that the difference between

the expected surplus of the highest (or lowest) bidder and bidder i is limited by

δ + δ(v − v). Since the constant is the same for both mechanisms, we can find the

desired upper bound by applying the triangle inequality.

Let β = (β1, . . . βn) be an equilibrium of mechanism A and β′ = (β′1, . . . β
′
n) be

an equilibrium of mechanism B. W.l.o.g. let β1(v) = min
i=1,...,n

{βi(v)} and βn(v) =

max
i=1,...,n

{βi(v)}. It subsequently holds that

β−12 (β1(v)) · . . . · β−1n (β1(v)) ≤ v · . . . · v

≤ β−11 (βn(v)) · . . . · β−1n−1(βn(v)).

It follows that

F2(β
−1
2 (β1(v))) · . . . · Fn(β−1n (β1(v)))

≤ F2(v) · . . . · Fn(v)

≤ F1(β
−1
1 (βn(v))) · . . . · Fn−1(β−1n−1(βn(v))) + δ.

Let Xk
i (v, F1, . . . , Fn) denote the expected winning probability of bidder i with val-

uation v in mechanism k for k ∈ {A,B} for value distributions F1, . . . , Fn. It then

holds for all v ≥ r that

XA
1 (v, F1, . . . , Fn) ≤ F2(v) · . . . · Fn(v) ≤ XA

n (v, F1, . . . , Fn) + δ.

Integration gives∫ v

r

XA
1 (z, F1, . . . , Fn)dz ≤

∫ v

r

F2(z) · . . . · Fn(z)dz

≤
∫ v

r

XA
n (z, F1, . . . , Fn)dz + vδ ≤

∫ v

r

XA
i (z, F1, . . . , Fn)dz + vδ + δ
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≤
∫ v

r

XA
1 (z, F1, . . . , Fn)dz + (2v − v)δ + 2δ

where the last two inequalities follow from Lemma 1. Therefore, it holds that∣∣∣∣∫ v

r

XA
i (z, F1, . . . , Fn)− F2(v) · . . . · Fn(v)dz

∣∣∣∣ ≤ vδ + δ.

The analogue result holds for mechanism B. Finally, our result follows from the

triangle inequality.

After stating and proving both lemmas, we can prove Proposition 5 and Propo-

sition 6. Due to Myerson (1981) it holds that

|Uj(βj)(v)− Ui(βj)(v)|

= Uβ
j (0)− Uβ

i (0) +

∣∣∣∣∫ v

0

Xj(βj(z))−Xi(βi(z))dz

∣∣∣∣ .
Due to (6), Proposition 5 follows from Lemma 1. Proposition 6 follows from the

application of Lemma 2.

For bidder i with valuation v the difference in expected surpluses between the

two mechanisms is given by ∫ v

r

∣∣XA
i (z)−XB

i (z)
∣∣ dz.

It follows from Lemma 2 that∫ v

r

∣∣XA
i (z)−XB

i (z)
∣∣ dz ≤ 2δ + 2δv.

The proof for mixed strategies follows from Lemma 3.10 in Chawla and Hartline

(2013).

B.5 Proof of Propositions 7 and 8

Proof. It is w.l.o.g. to assume that the pair of bidders with different distribution

functions are bidder 1 and 2 and it holds that
∫ v
0
F1(z)dz <

∫ v
0
F2(z)dz. Suppose

there exists an efficient equilibrium (β1, . . . , βn). Let (xd, pd) be the corresponding

direct mechanism, i.e.

xdi (v1, . . . , vn) = xi(β1(v1), . . . , βn(vn))pdi (v1, . . . , vn) = pi(β1(v1), . . . , βn(vn))
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According to Myerson (1981) and using the fact that xd is efficient it holds for every

v ∈ [0, v] that

P d
2 (v) = vXd

2 (v)−
∫ v

0

Xd
2 (z)dz + P d

2 (0)

= v

∫
v−2∈[0,v]n−1

xd2(v,v−2)f−2(v−2)dv−2

−
∫ v

0

[∫
v−2∈[0,v]n−1

xd2(z,v−2)f−2(v−2)dv−2

]
dz + P d

2 (0)

= v

∫
v−2∈[0,v]n−1

1 · f−2(v−2)dv−2

−
∫ v

0

[∫
v−2∈[0,z]n−1

1 · f−2(v−2)dv−2

]
dz + P d

2 (0)

= F−2(v)v2 −
∫ v

0

F−2(z)dz + P d
2 (0), (7)

where F−2(z) denotes F1(z) · F3(z) · . . . · Fn(z).

It follows from Proposition 3 that the payment of a winning bidder with valuation

v can be written as a function pwd(v) that does not depend on the losing bidders’

reported values. Using the definition of interim payments we can conclude

P d
2 (v) =

∫
v−2∈[0,v]n−1

pwd2(v)f−2(v−2)dv−2

+

∫
v−2∈([0,v]\[0,v])n−1

pd2(v,v−2)f−2(v−2)dv−2

= F−2(v)pwd2(v) +

∫
v−2∈([0,v]\[0,v])n−1

pd2(v,v−2)f−2(v−2)dv−2. (8)

Equating (7) and (8) yields

pwd2(v) = (1/F−2(v))

(
F−2(v)v −

∫ v

0

F−2(z)dz + P d
2 (0)

−
∫
v−2∈([0,v]\[0,v])n−1

pd2(v,v−2)f−2(v−2)dv−2

)
. (9)

Since in a symmetric auction a permutation of bids yields to an analogue permuta-

tion of outcomes, it follows for any vectors of valuations (v̂, v2, . . . , vn), (v̂, v′2, . . . , v
′
n)

39



where v̂ is the highest value that

pwd1(v̂) = pwd1(v̂, v2, . . . vn) = pwd2(v2, v̂, . . . , vn) = pwd2(v̂)

and similarly

pwd1(v̂) = pwd1(v̂, v′2, . . . , v
′
n) = pwd2(v′2, v̂, . . . , v

′
n) = pwd2(v̂).

In other words, the payment of a winning bidder depends only on her bid and neither

on the bids of other bidders, nor on the identity of the other bidders. It follows from

Myerson (1981) that in a direct mechanism the expected utility of bidder 1 with

value v is

U1(v) =

∫ v

0

Xd
i (z)dz + U1(0) =

∫ v

0

F−1(z)dz − P d
1 (0). (10)

By definition, the interim utility for bidder 1 with value v is

U1(v) = −
∫
v−1∈([0,v]\[0,v])n−1

pd1(v,v−2)f−1(v−1)dv−1

+F−1(v)v − F−1(v)pwd1(v)

(9)
= −

∫
v−1∈([0,v]\[0,v])n−1

pd1(v,v−1)f−1(v−1)dv−1

+F−1(v)v (−F−1(v)/F−2(v))

(
F−2(v)v −

∫ v

0

F−2(z)dz + P d
2 (0)

−
∫
v−2∈([0,v]\[0,v])n−1

pd2(v,v−2)f−2(v−2)dv−2

)
.

It holds that F1(v) = F2(v) and therefore F−1(v) = F−2(v) and the expression for

the expected utility simplifies to

U1(v) =

∫ v

0

F−2(z)dz − P d
2 (0) <

∫ v

0

F−1(z)dz − P d
1 (0)

10
= U1(v)

The strict inequality is due to
∫ v
0
F1(z)dz <

∫ v
0
F2(z)dz. This constitutes a contradic-

tion. The proof of Proposition 8 works in the same way with the only difference being

that the distributions are replaced with the corresponding virtual valuations.
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