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Abstract

Technical change that augments capital and labor input in a non-neutral way plays
an important role in explaining the relation between growth and other macroeconomic
outcomes. Previous research has shown that restricting technical change to be neutral
leads to overestimating the elasticity of substitution between capital and labor. I extend
this line of analysis to misspecification of the functional form. Evidence from Monte Carlo
simulations shows that the problem of biased estimates of the direction of technical change
is relevant in the estimation of aggregate CES and translog production functions. In
particular, I find examples where true technical change is neutral and estimated technical
change is strongly directed towards one factor.
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1 Introduction

Directed technical change means that not all inputs and sectors are affected by technical
change in an equal way. There are many reasons for technical change to be directed. They
have to do with properties of innovative technologies, supply of production factors, market
imperfections, tastes and incentives. Directed technical change has important implications for
the relation of economic growth to various other outcomes such as distribution, employment,
and structural change (see, i.a., Acemoglu (2002), Acemoglu and Guerrieri (2008)). A major
empirical challenge is how to identify the direction of technical change. In a standard two-
factor setting this means to identify whether technical change is more capital-augmenting or
labor-augmenting.
Ideally, we would identify technical change directly in terms of innovation output or technology

input. While there is work on aggregate R&D and on intangible assets in a broader sense,
the measures produced to date cannot claim to be proxies for total technical change at a
macroeconomic level. Residual and indirect measures of technical change like multifactor
productivity or estimated functions of time continue to play an important role. They are
considered in this paper.
The CES (constant-elasticity-of-substitution) production function with two factors of

production has been an important workhorse for analyzing directed technical change in both
theoretical and empirical research. Klump et al. (2007) and León-Ledesma, McAdam and
Willman (2010 and forthcoming) made major contributions laying out in a coherent way the
nonlinear systems estimation of normalized CES functions, providing evidence on the elasticity
of substitution and directed technical change in the U.S., and analyzing the numerical and
econometric properties of nonlinear systems estimation in Monte Carlo simulations. In their
simulation work, which produced a number of critical insights, the true data generating process
is assumed to be CES.
Building on this work, I go one step further and assume that the true data generating process is

not CES. At the macroeconomic level, which mixes many influences such as firm technologies,
reallocation and institutions, it can be particularly difficult to impose a functional form on
aggregate technology. While this paper does not answer the question how we should do it, I
want to give some examples of the kind of deviations from CES or translog functions (another
functional form frequently used in empirical research) we may have to account for when we
want to measure the direction of technical change at the macroeconomic level.
In a first approach I employ a more general production function, the generalized linear

homogenous Box-Cox function, which encompasses both the linear homogenous translog and
the linear homogenous CES production function as special cases. The functions are normalized
around sample averages. In a second approach I use a Cobb-Douglas style production function
with time-varying exponents and factor-augmenting progress. While previous papers were
interested in the elasticity of substitution between capital and labor, I focus on the drivers
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of growth to be explained by a production function: the contributions of capital deepening,
neutral technical change and directed technical change to labor productivity growth.
In the Monte Carlo simulations I estimate both CES and translog functions using a normalized

systems approach. The simulations with the data generated by Box-Cox functions exhibit little
systematic deviation in the contributions to growth that would arise from misspecification.
I conclude that normalization around averages makes the production functions too close to
introduce severe misspecifications.
Monte Carlo simulations that generate data out of a Cobb-Douglas function with varying

capital shares as exponents exhibit much stronger problems from misspecification. When true
technical change is directed towards capital or labor, estimated contributions to growth from
the non-neutral part of technical change look low. On the other hand, when true technical
change is purely neutral, the estimated contribution of directed technical change turns out to
be high.
Section 2 briefly summarizes the literature on macroeconomic production functions and

directed technical change to which this paper contributes. Section 3 explains how CES and
translog production functions are used to identify directed technical change and contributions
to growth. Novel aspects in this are the identification of factor-augmenting technical change
with the translog production function and the explicit comparison of contributions to growth
from both functional forms in a growth-accounting style. Section 4 describes the parameters
and data generating processes used in the Monte Carlo simulations and section 5 reports their
results. Section 6 concludes.
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2 Background

The functional form that is best suited to the theoretical modeling of factor-augmenting
technical change is the production function with a constant elasticity of substitution and
constant returns to scale. David and van de Klundert (1965) were the first to introduce directed
technical change into an econometric estimation of this function. With better understanding
of the formal properties of the CES function achieved, i.a., by the contributions by de La
Grandville (1989), Klump and de La Grandville (2000) and Klump and Saam (2008) on
normalization, it was possible to more systematically reveal the properties of the nonlinear
CES estimation with directed technical change. Using Monte Carlo simulations, León-Ledesma,
McAdam and Willman (2010 and forthcoming) show that the normalized systems approach is
superior to other approaches in identifying the highly nonlinear CES function. Moreover,
they find that restricting technical change to be neutral may severely bias the estimate of the
elasticity of substitution between capital and labor towards unity. The systems estimation of
CES production functions with directed technical change has been recently applied, i.a., by
Herrendorf et al. (forthcoming) and Baccianti (2013).
The standard approach of identifying technical change in a macroeconomic production

function consists in modeling it as a function of time. A different but conceptually related
approach is growth accounting (Hulten (2001)). In both approaches technical change is
not directly measured. Contrary to econometric estimation, standard growth accounting
does not allow for the identification of non-neutral technical change. Attempts to directly
measure technical change build on R&D data or more broadly on reducing residual multifactor
productivity (MFP) by accounting for intangible assets, or on measuring embodied technical
change through investment price decline (see, e.g., Oulton (2012)). None of these measures
can, however, be considered to date as a proxy for all productivity growth not driven by factor
accumulation at the aggregate level. On the other hand, MFP growth and measures based
on time trends lack the connection to their drivers and thus remain “measures of ignorance”
(Abramovitz (1956)). If time trends permit the identification of the direction of technical
change, this allows at least to describe which inputs are augmented by technical change. Also
the plausibility of the result can be checked against micro-level or anecdotal evidence. The
purpose of the present paper is to gain further insight on the identification of the direction of
technical change in estimations of aggregate production functions.
With regard to identification problems, Diamond et al. (1978) already noted that

“measurements of the direction of technical change and the elasticity of substitution (...) have
employed untested restrictions on the nature of production possibilities” (p.125). The authors
analytically discuss under which conditions technical change is or is not identified by a given
sequence of empirical observations. One way of identifying the direction of technical change
is obviously to impose a particular functional form. Some empirical studies, like the early
contribution by Appelbaum (1979), on which the Box-Cox function used in this paper is based,
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use econometric testing to discriminate between general and restricted functional forms. But
in applied macroeconomic research a common practice which hypotheses to test and how to
assess the power of the test under typical circumstances has not been established. Saltari and
Federici (2013) analyze misspecification of the parameters of a CES function arising from the
fact that one wants to estimate parameters that are valid in the long-run without taking this
time horizon into account in the econometric specification. I take a different perspective looking
at misspecification of the functional form.

3 Identification of Directed Technical Change

3.1 Normalized Neoclassical Production Functions

While it is by now well-known how to estimate directed technical change and the elasticity
of substitution using a CES function, much less attention has been paid to the two-factor
translog function in this context. The constant returns translog function can be interpreted
as a second-order approximation of a CES function (Kmenta (1967)). The translog function
has the advantage for econometrics of being linear in variables. On the other hand it does not
exhibit globally positive and diminishing returns. For this reason it is much less used in theory
(see, however, Ostbye (2010)). An early contribution by May and Denny (1979) estimates a
translog production function with non-neutral rates of factor-augmenting progress, but this
approach has not become standard in empirical research on economic growth (Somewhat more
common is the identification of directed technical change from translog production or cost
functions in energy economics.). León-Ledesma et al. (2010) note that the estimated coefficient
on which the identification of directed technical change depends is close to zero in a normalized
function. While this may represent a problem, it does not preclude econometric identification
a priori.
As previous contributions on CES functions, I am interested in factor-augmenting progress

of the multiplicative form. Macroeconomic identification of directed technical change will in
many cases require some assumptions that are based on definitions or theory rather than on
econometric testing. Defining technical progress to be of the multiplicative factor-augmenting
form is one of them. The general form of a technology for producing output Y as a function of
capital (K) and labor (N) with progress functions ΓK and ΓN depending on time t is then:

Y = F (ΓK(t)K,ΓN(t)N). (1)

Moreover I assume constant returns to scale and I normalize the production function. The
procedure of normalizing CES and translog functions builds on the work by Kmenta (1967),
Klump and de La Grandville (2000) and León-Ledesma et al. (2010). I will summarize here
only the most important properties and intuitions. Most work is related to CES functions,
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though a normalization is implicit in the very definition of the translog function, too.
Normalization allows to address three challenges related to the highly nonlinear CES

functions. First and most importantly, it allows to isolate the effect of the substitution
parameter. CES and translog functions can be constructed as functions that are tangent to a
Cobb-Douglas function and also tangent to one another. The point of tangency is specified in
a two-factor setting by the input and output values in the point of normalization (K0, N0, Y0)
and the output elasticity of capital, which equals the factor share of capital under competitive
remuneration (π0). Any point can be chosen as a point of tangency. In consequence, the
question on which function we end up if, e.g., a constant elasticity of substitution declines from
one to a lower value, does not have a well-determined answer without choosing a particular
point of normalization. The point of normalization implicit in the standard CES production
function introduced by Arrow et al. (1961) is Y0 = K0 = N0 = 1. In most empirical applications,
normalization is necessary to rescale this point to the data or vice versa. The choice of the point
of normalization is not trivial (see Klump and Saam (2008)). Current practice in empirical work
is to use either initial values or minima of data, or geometric averages for inputs and outputs
and the arithmetic average of the capital share. Second, normalization allows to calibrate the
distribution parameter of the CES and the translog function in an empirically meaningful way.
Third, normalization can be used to stabilize the nonlinear estimation of a CES function, by
calibrating instead of estimating the distribution parameter at the average of the capital share.
This alleviates the joint identification of the distribution and the substitution parameter (León-
Ledesma et al. (2010)). In macroeconomic applications, where the explanatory power of the
estimated equations is usually high, not much is imposed in calibrating the normalized factor
share instead of estimating it.
I will use normalization for both data generation and estimation. Deterministic data are

generated around the point of normalization with inputs and output at unity, which is implicit
in the standard CES function. Since stochastic components may lead to deviations from this,
the data are normalized again for estimation using arithmetic averages for the factor shares and
time and geometric averages for input and outputs. The geometric average of output can be
expected to correspond to the geometric average of inputs only for a Cobb-Douglas function.
For this reason, an additional “normalization constant” (León-Ledesma et al. (2010), p.1341)
is added to the CES function. It is expected to be close to one.

3.2 Estimation of Translog Functions

The translog function with factor-augmenting technical progress is obtained as a second-order
approximation to the function (1), considering as arguments of the function efficiency units of
capital and labor, ΓKK and ΓNN . Approximation in logarithms of (1) around the point of
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normalization (Y0, K0, N0, t0) yields:

ln Y = ln Y0 + aK ln
(

ΓK(t, t0)K
K0

)
+ aN ln

(
ΓN(t, t0)N

N0

)
+ bKK

2 ln
(

ΓK(t, t0)K
K0

)2

+ bNN
2 ln

(
ΓN(t, t0)N

N0

)2

+ bKN ln
(

ΓK(t, t0)K
K0

)
ln
(

ΓN(t, t0)N
N0

)
. (2)

Under constant returns to scale, the following restrictions are valid (see, e.g., May and Denny
(1979)):

aK + aN = 1 (3)

bKK + bKN = 0 (4)

bNN + bKN = 0. (5)

The coefficient of logarithmic capital can under competitive remuneration be identified as the
capital share at the point of normalization, aK = π0. Moreover, I define β = bKK . After
multiplying out, rearranging and introducing per capita values of variables y = Y

L
and k = K

L
,

a formulation analogous to May and Denny (1979), p.763, is obtained:

ln y = ln y0 + π0 ln
(
k

k0

)
+ π0 ln ΓK(t, t0) + (1− π0) ln ΓN(t, t0)

+ β

2 ln
(
k

k0

)2

+ β (ln ΓK(t, t0)− ln ΓN(t, t0)) ln
(
k

k0

)

+ β

2 (ln ΓK(t, t0)− ln ΓN(t, t0))2 . (6)

I consider how constant factor-augmenting technical change can be identified with this
function. Defining

ΓK(t, t0) = eγK(t−t0) (7)

ΓN(t, t0) = eγN (t−t0) (8)

and γk = γK − γN , one obtains:

ln y = ln y0 + π0 ln
(
k

k0

)
+ (γN + π0γk)(t− t0)

+ β

2 ln
(
k

k0

)2

+ βγk ln
(
k

k0

)
(t− t0) + β

2 γ
2
k(t− t0)2. (9)

In the Appendix I compare this with the more general function without restrictions on the
coefficient of the quadratic trend. This function allows for a time-varying neutral component
of technical change.
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The translog function is estimated with the following system (one equation is omitted because
of redundancy):

ln
(
y

y0

)
= ln ζ + π0 ln

(
k

k0

)
+ β

2 ln
(
k

k0

)2

+ κ(t− t0) ln
(
k

k0

)
+ θ

2(t− t0)2 (10)

π = π0 + β ln
(
k

k0

)
+ κ(t− t0) (11)

imposing the restriction

θ = κ2

β
, (12)

where ζ is a normalization constant expected to be close to one. Normalized values are set equal
to arithmetic averages in the case of the capital share and time and to geometric averages in the
case of inputs and output. Because of the restriction the system is estimated using nonlinear
seemingly unrelated regression (SUR). The numerical problems of nonlinear estimation are,
however, much less severe in this case than with the CES function, because the function is
linear except for the parameter restriction. The parameters of the production function are then
recovered writing them as in (9).

3.3 Estimation of CES Functions

The CES function is presented more briefly, since I follow the approach introduced by Klump
et al. (2007) and León-Ledesma et al. (2010). The normalized CES production function with
constant returns to scale and factor-augmenting technical change can be written as

Y = Y0

[
π0

(
K

K0
ΓK (t, t0)

)ψ
+ (1− π0)

(
N

N0
ΓN (t, t0)

)ψ] 1
ψ

, (13)

with σ = 1/(1 − ψ) as elasticity of substitution between capital and labor. The factor-
augmenting functions ΓK and ΓN are defined in the same way as in the previous section.
As discussed in León-Ledesma et al. (2010), the translog function represents a second-order

approximation to an arbitrary production function, thus also to a CES function. Since I do
not assume the true data generating process to be CES, it is, however, not in the focus of this
paper how well the translog approximates the CES function.
Following Klump et al. (2007) and León-Ledesma et al. (2010), I estimate the CES function
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using nonlinear SUR with the following system:

ln
(
y

y0

)
= ln ζ + γN(t− t0)

+ σ

σ − 1 ln
π0

(
k

k0
γk(t− t0)

)σ−1
σ

+ 1− π0

 (14)

ln π = ln π0 + 1− σ
σ

ln
(
yk0

ky0
− ln ζ − γK(t− t0)

)
(15)

ln (1− π) = ln (1− π0) + 1− σ
σ

ln
(
y

y0
− ln ζ − γN(t− t0)

)
. (16)

Normalized values are again set equal to arithmetic averages in the case of the capital share
and time and to geometric averages in the case of inputs and output.

3.4 Factor Shares and Contributions to Growth

The elasticity of substitution between capital and labor is a parameter that plays an important
role in models of growth and distribution. It is usually not of interest for itself in applied
empirical research, but helps explaining empirical phenomena. Rather than reporting the
estimated substitution elasticities and rates of technical progress, I put measured technical
progress in relation to economic growth. This is done using the production function estimates
for a growth accounting decomposition. Before turning to this method, I offer a brief discussion
on the factor shares and substitution elasticities generated by translog and CES production
functions. Theoretical and empirical contributions on the CES functions have highlighted the
crucial role that the interdependence between the elasticity of substitution and the evolution
of factor income shares plays for growth and distribution. The following summary gives an
overview how both evolve under the CES and under the translog function. For the translog
function, the conditions for a positive and diminishing marginal product are also considered in
this context.
From the CES function one obtains the following capital share under competitive

remuneration:

π =
π0
(
Γk(t) kk0

)
π0
(
Γk(t) kk0

)
+ 1− π0

. (17)

As discussed in Klump and de La Grandville (2000) and León-Ledesma et al. (2010) the
derivative of the capital share with respect to the (augmented) capital intensity depends on the
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elasticity of substitution σ = 1
1−ψ :

∂π

∂(Γk(t)k) > 0 if ψ > 0

∂π

∂(Γk(t)k) = 0 if ψ = 0

∂π

∂(Γk(t)k) < 0 if ψ < 0. (18)

Under competitive factor remuneration, the capital income share resulting from the translog
function (10) and restriction (12) is

π = π0 + β ln
(
k

k0

)
+ κ(t− t0) (19)

= π0 + β

(
ln
(
k

k0

)
γk(t− t0)

)
. (20)

While the CES function with constant returns to scale has globally the neoclassical properties
of positive and diminishing marginal products, the translog function exhibits them only locally.
The translog function exhibits a positive marginal product of capital and labor when the capital
share lies between 0 and 1:

0 < π = π0 + β ln
(
k

k0

)
+ κ(t− t0) < 1. (21)

Taking the second derivative ∂y2/∂2k yields the condition for diminishing marginal productivity
(see also Ostbye (2010)):

π(1− π) > β. (22)

For β ≤ 0, a positive marginal product of both factors of production entails necessarily that
it is also diminishing. For β > 0, this is not the case. The elasticity of substitution between
capital and labor of a production function F is defined as

σ = d ln (K/N)
d ln(FN/FK) . (23)

Along a CES function, it is constant. Along a translog function it corresponds to (see also
Ostbye (2010) for the case without technical progress):

σ =
π(1− π)eγk(t−t0) k

k0

π(1− π)eγk(t−t0) k
k0
− β

. (24)

An important implication is that in the neoclassical region of a translog function, the elasticity
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of substitution always remains positive and above or below the threshold of one, depending on
β. The point of normalization represents the point in which the function approximates a CES
function. The elasticity of substitution in this point equals (see also Kmenta (1967)):

σ0 = π0(1− π0)
π0(1− π0)− β . (25)

The relation between capital share and elasticity of substitution is analogous to the relation
under a CES function:

∂π

∂(Γk(t)k) > 0 if β > 0

∂π

∂(Γk(t)k) = 0 if β = 0

∂π

∂(Γk(t)k) < 0 if β < 0. (26)

Now I turn to the application considered in this paper: the contribution of directed technical
change to growth. Under constant returns to scale, competitive factor remuneration and in
the absence of measurement error, the standard growth accounting decomposition describes
the contributions of capital deepening and technical progress (or more generally multifactor
productivity - MFP) to labor productivity growth. Assuming constant factor-augmenting
progress and using the Törnqvist index (which is exact in the translog case and a good
approximation in the CES case, see Diewert (1976)), MFP growth can be rewritten as a weighted
average of the progress rates:

∆ ln y(t) = π̄(t)∆ ln k(t) + ∆ lnMFP (t) (27)

= π̄(t)∆ ln k(t) + π̄(t)γK + [1− π̄(t)]γN , (28)

with π̄(t) = (π(t) + π(t − 1))/2. I use either the true production function or the estimated
production function for this decomposition and then take the average of contributions over all
periods. For determining the contribution of directed technical change, I define the lower of
both progress rates as the rate of purely neutral technical change (which may even be negative).
If capital-augmenting progress is faster, γK > γN , the contribution of neutral technical progress
in each period is γN and the contribution of directed capital-augmenting technical change is
π̄(t)(γK − γN) = π̄(t)γk. If technical change is directed towards labor, the neutral contribution
is γK and the non-neutral contribution is (π̄(t) − 1)γk. Stochastic disturbances are added
to technical progress in the simulations. The main question addressed in the Monte Carlo
experiment will be whether CES and translog functions estimate the direction and the order
of magnitude of the non-neutral part of technical change correctly if the true data generating
process is not CES or translog.
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4 Methodology of Monte Carlo Simulations with More
General Data Generating Processes

4.1 General Approach

In constructing a data generating process for Monte Carlo simulations that examine the
macroeconomic identifiability of the direction of technical change, I am facing a trade-off:
On the one hand, the aim is to extend the previous literature towards more general functional
misspecification assuming that we might not know nor reliably test whether the true function
is CES or not. On the other hand, going this avenue to an extreme might imply that any
identification of technical change breaks down if misspecification is just made severe enough.
The latter outcome seems a trivial result. An intermediate approach is to choose data generating
processes that have some relation to CES or translog functions without being exactly of that
form. I consider the data generating processes I introduce to be likely alternatives in a world
where CES and translog functions are plausible descriptions of potential paths of growth and
income distribution.
A function that encompasses both the CES and the translog function as special cases is

the generalized Box-Cox function (Appelbaum (1979)). When constant returns and symmetry
are imposed, it can be described intuitively in the following way: It consists of two additive
components, one is the CES function, the other is the collection of quadratic terms that yield
a translog function if added to a Cobb-Douglas function. The function becomes translog if the
first component is really Cobb-Douglas and it becomes CES if the second component is zero.
A second data generating process is based on the observation that most factor income shares

generated by my Box-Cox simulations evolve in an approximately linear way over time. Fitting
the trend, I use the generated output elasticities as if they were time-varying exponents of a
Cobb-Douglas function where directed technical change is again of the factor-augmenting form.
Even though exponents vary over time, I do not consider this variation as technological change.
Rather everything that is not accounted for by the given rates of factor-augmenting change is
attributed to change in inputs.
My primary interest in the second specification is not to analyze the bias in particular

parameter estimates that arises, nor even to know whether the data generating processes can be
the result of a particular parametric production function with inputs and multiplicative levels
of technology as arguments. I just want to know how the contribution of directed technical
change is assessed by the estimation of translog and CES functions if the true data generating
process is different, but not too different. To my knowledge a similar approach to assessing
the performance of translog and CES estimation has not been realized before. The two data
generating processes I construct are by no means to be viewed as exhaustive of what could be
done along these lines.
The steps of both Monte-Carlo simulations done with the statistical software STATA are the
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following:

1. Take generated time-series of capital and labor input (K(t), N(t)) and technology shocks

2. Generate factor shares

a) from the first-order conditions of the Box-Cox function

b) from a linear function of time derived from the Box-Cox simulations

3. Add a stochastic component to factor shares

4. Generate observed output

5. Perform CES and translog regressions

6. Perform growth accounting decompositions using predicted growth, predicted factor
shares and estimates of progress rates.

The procedure, especially for the Box-Cox simulations, closely follows León-Ledesma et al.
(2010). I leave aside some features they introduce, such as autocorrelation, since I suspect
they are not central for the main conclusions of the approach. Additional robustness checks,
however, can be easily implemented.
For both simulation settings, I use the same time-series for inputs and technology shocks. The

stochastic component in this part of the simulation is kept fix over consecutive Monte Carlo
draws. The deterministic part of the function is normalized to Y0 = K0 = N0 = 1, which in the
absence of stochastic shocks would be reached at t0. In this way, I control the common point
of the production functions.
As in León-Ledesma et al. (2010), logarithmic capital and labor are assumed to follow an I(1)

process:

lnN(t) = n+ lnN(t− 1) + εN(t) (29)

lnK(t) = κ+ lnK(t− 1) + εK(t). (30)

I assume that κ = 0.02, n = 0, lnK(0) = −t0κ and lnN(0) = 0. The difference between lnK(t)
and lnN(t) is then trend-stationary. Factor-augmenting technology is assumed to deviate from
its trend by shocks εΓK and εΓN . The actual levels of technology are thus:

ΓK(t, t0) = eγK(t−t0)+εΓKt (31)

ΓN(t, t0) = eγN (t−t0)+εΓNt . (32)
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4.2 The Linear Homogenous Generalized Box-Cox Function

Appelbaum (1979) specifies a function that encompasses both the CES and the translog function
as special cases: the generalized Box-Cox transformation. In order to focus on capital-deepening
versus directed technical change, I assume that linear homogeneity and the constancy of rates
of factor-augmenting technical change are known. Appelbaum’s function can be written for
two factors of production (efficiency units of capital and labor, EK = ΓKK and EN = ΓNN)
in the following way:

Ydet(δ) = αKEK(λ) + αNEN(λ) + 1
2bKKEK(λ)2 + 1

2bKNEK(λ)EN(λ)

+ 1
2bNKEK(λ)EN(λ) + 1

2bNNEN(λ)2, (33)

with the following conditions imposing linear homogeneity

αK + αN = 1 (34)

λαK = bKK + bKN and λαN = bNN + bNK (35)

λ = δ. (36)

Symmetry is also assumed, that is

bKN = bNK . (37)

Ei(λ) with i ∈ {K,N} and Ydet(λ) are the Box-Cox transformation functions defined by

Ei(λ) = (Eλ
i − 1)/λ (38)

Ydet(λ) = (Y 2λ − 1)/2λ. (39)

For λ → 0 these functions become logarithmic functions. The subscript det signifies in
this context that output is considered at given inputs and technology, without shocks that
temporarily deviate factor payments from equilibrium values (see below).
In the following, I will always work with the symmetric linear homogenous case and write

α = αK and 1−α = αN . The b’s are also interdependent now, only one of them remains a free
parameter. The symmetric linear homogenous translog is obtained by assuming additionally
λ = 0 and the linear homogenous CES by assuming λαK = bKK and λαN = bNN .
Using first-order conditions, one obtains the following expression for the capital share

determined by inputs and technology:

(40)

πdet = αEλ
K + bKKE

λ
KEK(λ) + bKNE

λ
KEN(λ)

αEλ
K + (1− α)Eλ

N + bKKEλ
KEK(λ) + bKNEλ

KEN(λ) + bNNEλ
NEN(λ) + bNKEλ

NEK(λ) .
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With linear homogeneity and symmetry, the Box-Cox function (33) depends on three
parameters, α, λ and bKK , and additionally on the two rates of technical progress γK and
γN .
As León-Ledesma et al. (2010) I assume the distribution parameter α to be 0.4. The

values of λ are generated from commonly considered cases of the CES function. The
elasticity of substitution of the CES function is σ = 1/(1 − ψ) with ψ = 2λ if we write
the CES as a special case of the Box-Cox function (33). For the CES function I use the
values λ ∈ {−0.25,−0.1,−0.05,−0.02, 0.02, 0.05}, which correspond to the elasticities of
substitution σ ∈ {0.44, 0.67, 0.8, 0.91, 1.11, 1.3}. León-Ledesma et al. (2010) use the values
{0.2, 0.5, 0.9, 1.3}. I discard very low values since they lead to extreme declines in the capital
share. Since bKK = λα for the CES function, the CES substitution parameters considered
imply bKK ∈ {−0.625,−0.25,−0.125,−0.05, 0.05, 0.125}. We know that the translog function,
on the other hand, is obtained by λ = 0. To generate more variants of the Box-Cox, I take
each pair (bKK , λ) generated by the CES calibration and consider the variants (bKK , ωλ) with
ω ∈ {−0.7, 0, 0.5, 1, 1.7}. This includes the CES function (ω = 1), the translog function (ω = 0),
one case in between, and two more extreme cases in terms of λ for a given bKK . Note, however,
that this procedure does not match the CES with the translog function that represents its
second-order approximation.
Writing the first-order conditions from (33) as:

wdet = ∂Ydet
∂N

= (1− πdet)
Ydet
N

(41)

rdet = ∂Ydet
∂K

= πdet
Ydet
K

(42)

I compute the deterministic (or equilibrium) part of real wages and real interest rates from
equations (33) and (40). As León-Ledesma et al. (2010), I add a disturbance representing
shocks to equilibrium factor payments:

w = ∂Ydet
∂N

(1 + εw) (43)

r = ∂Ydet
∂K

(1 + εr) (44)

where εw ∼ N(0, 0.05w̄det) and εr ∼ N(0, 0.05r̄det). “Observed” output corresponding to GDP
in an aggregate economy is then obtained for each period as (time was omitted up to here)

Y (t) = r(t)K(t) + w(t)N(t). (45)
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As discussed in León-Ledesma et al. (2010), Y/Ydet is stationary. Table 4.1 summarizes the
parameters used for calibrating the Box-Cox simulations.

Table 4.1: Parameters of Box-Cox Simulations

Parameter Values

π0 Distribution parameter 0.4
γK Deterministic growth rate of capital-augmenting progress* 0.005, 0.01, 0.015
γN Deterministic growth rate of labor-augmenting progress* 0.015, 0.01, 0.005
σ Substitution elasticity of CES cases 0.44, 0.67, 0.8, 0.91, 1.11, 1.3
λCES CES substitution parameter in Box-Cox −0.25,−0.1,−0.05,−0.02, 0.02, 0.05
bKK Box-Cox parameter dependent on π0 and λCES −0.625,−0.25,−0.125,−0.05, 0.05, 0.125
ω Parameter to generate non-CES cases −0.7, 0, 0.5, 1, 1.7
κ Trend in capital growth 0.02
n Trend in labor growth 0
se(εKt ) Standard deviation of shock to capital 0.02
se(εNt ) Standard deviation of shock to labor 0.02
se(εrt ) Standard deviation of interest rate shock 0.05r̄det

se(εwt ) Standard deviation of wage shock 0.05w̄det

se(εΓK
t ) Standard deviation of technology shock to ΓK 0.0005

se(εΓN
t ) Standard deviation of technology shock to ΓN 0.0005

T Sample size (annual) 100
M Monte Carlo draws 400

*Note: As León-Ledesma et al. (2010) I assume γK + γN = 0.02.

4.3 A Technology with Time-Linear Factor Shares

To motivate the specification introduced in the section I take a short preview on the results:
The general Box-Cox function makes little difference to CES and translog functions as special
cases in my simulations. One reason for this may be the normalization. The functions all have
a common point around the variable averages, so there may be too little variation in total.
Different normalizations are investigated in ongoing research. But even if this observation
vanished then, it seems desirable to have more general data generating processes. We cannot
expect that the aggregate technology of a country is usefully depicted by a particular functional
form. We can, however, impose some a priori restrictions that enable us to make sense of the
relation between aggregate output and inputs. Already the aggregation of these variables
themselves is based on particular assumptions. With regard to technology, some assumptions
may be tested, but I suspect that it will not be possible to test all assumptions at the aggregate
level in a meaningful way.
At the aggregate level, I want to generate data that do not follow any standard functional

form, but are not too far away from such a functional form. The data generating processes
here are just examples of what is possible along these lines. I take the capital income shares
generated by each Box-Cox parametrization. Visual inspection revealed that their behavior
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over time in the interval considered is almost always close to linear. I estimate a linear trend
from

π(π0, λ, bkk, shocks) = a+ bπt+ ut. (46)

Then I take the observed Box-Cox share from period 1 (which is, with minor exceptions resulting
from error terms, either the minimum or the maximum) and generate the deterministic part of
the capital share from the new “technology”, adding a normally distributed disturbance with
standard deviation 0.01:

πlin(t) = π(0) + bπt+ επt . (47)

The input values and the rates of factor-augmenting technological progress are the same as
assumed in the Box-Cox simulations.
I assume that output is a Cobb-Douglas aggregate of inputs in efficiency units:

Y (t) = EK(t)πlin(t)EN(t)1−πlin(t). (48)

The exponents of the Cobb-Douglas aggregate are the factor shares and they are time-varying.
This variation, however, is not counted as technological progress, only the assumed rates of
factor-augmenting progress are. The variation of capital shares could also be generated by the
variation of inputs according to an assignment we do not know.
A difference between this specification and the previous Box-Cox specification is that I do not

control to which extent factor prices deviate from the marginal product of inputs. There may
be alternative ways to explicitly model such deviations through more complex shocks or market
imperfections. Future research could analyze more in detail the nature of the misspecification
of marginal productivity and the resulting estimation bias.

5 Results

5.1 Simulations with Box-Cox Technology

I report results of Monte Carlo simulations with three different constellations of true technical
change: directed more towards labor (Tables 5.1 and 5.2), purely neutral (Table 5.3) and
directed more towards capital (Table 5.4). Table 5.1 summarizes median contributions to labor
productivity growth when the true function is Box-Cox with technical change directed more
towards labor (γK = 0.005, γN = 0.015) and estimation is carried out with translog and CES
functions. I take this specification of technical progress rates as a baseline case, since both
theoretical and empirical research find labor-augmenting progress to be most relevant in the
long run (Acemoglu (2007); Klump et al. (2007)), while evidence also points to the presence
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of a capital-augmenting component in different cases (Klump et al. (2008)). Median rather
than mean contributions are reported, since the nonlinear CES estimation is prone to outliers.
Contributions to growth are reported as shares of total labor productivity growth falling to
capital accumulation, neutral technical change and directed technical change summing up to
100 percent. Contributions are averaged over 100 periods of observation.
The first result that springs to the eyes is that the contribution of capital ranging from around

41 to 44 percent seems to be tied down by the capital share (which is on average about 40
percent), in the same way it is in growth accounting. Note however that the growth accounting
contribution of capital is in general only proportional to the capital share, not equal. The near
equality here has to do with the fact that average capital growth (2 percent) and average output
growth (1.9 percent for all specifications) are nearly equal. I calibrate the capital share rather
than estimating it. But even with an estimated distribution parameter the estimated capital
share can be expected to lie close to the actual capital share if the error term is small, which is
the case in many time-series applications. So in the macroeconomic context, the information
gained on the contribution of capital to growth in a translog or CES systems estimation is
essentially the same as the information gained from growth accounting, unless one allows for
market imperfection (e.g., by introducing a mark-up into the estimation as in Klump et al.
(2007)). Residual MFP growth is thus also very similar. The additional insight that estimation
offers is then about the direction of technical change.
In interpreting the results on technical change in Table 5.1, first remember that λ = 0

represents the translog case and the CES case is found always two lines further down, with
λ also printed in italics. The translog function estimates the true contribution of neutral and
directed technical change quite well. The fit does not depend in any visible way on how close
the Box-Cox variant is to the translog in terms of the parameter λ. The CES overestimates
the contribution of neutral technical change and underestimates the contribution of directed
technical change. Looking at the estimated rates of technical progress (not reported here)
documents that their bias towards neutrality is higher with CES (up to 0.005) than with
translog (around 0.001). The result seems driven more by numerical problems with the highly
nonlinear CES estimation than by misspecification. It is also possible that stronger deviations
would be visible for shorter periods. Here I only present average growth rates and contributions
over 100 periods.
Table 5.2 yields further evidence on the dispersion of estimated contributions, reporting

the 10th and the 90th percentile of contributions of directed technical change and the share
of estimates that imply technical change to be directed more towards labor (so the correct
direction). For the translog function, the dispersion of the contributions increases with the
closeness to bKK = 0, which is the value corresponding to a Cobb-Douglas function if λ is also
0. This is intuitive since with a Cobb-Douglas function the identification of directed technical
change is not possible. Close to bKK = 0, the share of correctly estimated directions also
declines from nearly 100 percent to around 80 percent. With the CES function, estimated
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contributions of directed technical change exhibit higher dispersion. The share of correctly
estimated directions is still high, markedly lower than 80 percent only for bKK = −0.02. In this
problematic case, there are also a number of implausible results with contributions exceeding
100 percent. Note that the numbers on the contribution of directed technical change do not
indicate the sign of the direction. In those cases with high dispersion, the contributions at the
10th and the 90th percentile may be directed into opposite ways.
Tables 5.3 and 5.4 report results with data generating processes that assume different rates

of technical progress. True technical progress is purely neutral (γK = γN = 0.01) in Table
5.3 and directed more towards capital (γK = 0.015, γN = 0.005) in Table 5.4. I report again
the 10th and the 90th percentile of the contribution of directed technical change. In the case
of true technical progress being neutral, I additionally report the percentage of results with a
non-neutral part below a certain threshold (|gk| < 0.0025), that is, close to neutral. In the case
of true technical progress being directed more towards capital, I report the percentage of results
with the correct direction (γK > γN). The other results corresponding to Table 5.1 are not
reported for the alternative specifications of technical change, since the contribution of capital
remains pinned down by the capital share and the contribution of neutral technical change is
residual when the three contributions sum up to 100 percent.
If the true production function exhibits only neutral technical progress (Table 5.3), the

translog and CES estimations also tend to produce low estimates of directed technical change,
although the estimated contribution exceeds the true contribution (A true non-zero contribution
is caused by technology shocks.). The precision of the estimates is again worse close to bKK = 0.
If the true production function exhibits technical change that is directed more towards capital

(Table 5.4), the direction of technical change is quite accurately estimated, except for the lowest
value of bKK . The direction is determined with less error by the CES than by the translog
function. Contrary to the first case with true technical progress being more labor-augmenting,
the CES function now tends to identify higher contributions of directed technical change than
the translog function. Again no systematic influence of misspecification in parameters can be
detected, except for the lowest value of bKK . In sum, it seems that the simulated Box-Cox
specifications are too close to CES and translog functions to make any systematic effect of
misspecification visible.
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Table 5.1: Contributions to growth: Box-Cox function, γK = 0.005, γN = 0.015

Parameters Contrib. k Neutral Tech. Change Directed Tech. Change

bKK λ Box-Cox Translog CES Box-Cox Translog CES Box-Cox Translog CES

-0.25 0.4375 42.2 42.3 42.3 26.6 29.7 39.8 31.0 28.0 17.9
0 42.9 42.8 42.9 26.5 30.3 39.1 30.6 26.9 18.1
-0.3125 43.2 43.2 43.2 26.5 30.3 38.2 30.4 26.5 18.5
-0.625 43.4 43.4 43.6 26.5 30.3 37.5 30.1 26.2 18.9
-1.0625 43.7 43.8 43.9 26.4 30.2 36.9 29.9 26.0 19.2

-0.1 0.175 41.8 41.7 41.6 26.6 29.9 45.2 31.6 28.5 13.3
0 41.9 41.8 41.8 26.6 30.7 43.7 31.5 27.5 14.7
-0.125 42.0 42.0 41.9 26.6 30.7 42.8 31.4 27.3 15.3
-0.25 42.1 42.0 42.0 26.6 30.8 42.8 31.3 27.2 15.2
-0.425 42.2 42.1 42.1 26.6 30.8 41.8 31.2 27.0 16.1

-0.05 0.0875 41.6 41.5 41.3 26.6 30.8 46.1 31.8 27.6 12.8
0 41.6 41.5 41.4 26.6 30.2 47.1 31.7 28.4 11.5
-0.0625 41.7 41.6 41.4 26.6 31.0 47.9 31.7 27.5 10.6
-0.125 41.7 41.6 41.4 26.6 31.0 47.2 31.7 27.5 11.4
-0.2125 41.8 41.6 41.5 26.6 30.6 46.9 31.6 27.7 11.5

-0.02 0.035 41.4 41.4 41.3 26.7 29.7 25.8 31.9 28.9 33.0
0 41.4 41.3 41.2 26.7 28.7 30.4 31.9 30.1 28.3
-0.025 41.4 41.3 41.2 26.7 29.1 36.0 31.9 29.5 22.7
-0.05 41.5 41.3 41.2 26.7 29.8 35.5 31.9 29.0 23.1
-0.085 41.5 41.4 41.2 26.7 31.3 41.6 31.9 27.2 17.2

0.02 -0.035 41.2 41.1 41.3 26.7 29.0 28.0 32.1 29.9 30.7
0 41.2 41.1 41.2 26.7 28.7 28.6 32.1 30.3 30.1
0.025 41.2 41.1 41.2 26.7 30.5 32.0 32.1 28.5 26.8
0.05 41.2 41.1 41.2 26.7 28.4 31.1 32.1 30.6 27.9
0.085 41.1 41.0 41.2 26.7 30.5 31.2 32.2 28.5 27.7

-0.05 -0.0875 41.0 40.9 41.0 26.7 30.6 34.0 32.3 28.5 24.9
0 41.0 40.9 41.0 26.7 30.5 33.9 32.3 28.5 25.1
0.0625 41.0 40.8 40.9 26.7 30.6 35.3 32.3 28.7 23.8
0.125 40.9 40.8 40.9 26.7 30.2 34.2 32.3 29.0 24.9
0.2125 40.9 40.98 40.9 26.7 29.9 35.0 32.4 29.3 24.2

Median values of Monte Carlo simulations with 400 replications.
The values for the Box-Cox function are computed with true parameters.
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Table 5.2: Contributions of directed technical change: Box-Cox function, γK = 0.005, γN = 0.015

Parameters True Technology Translog Estimation CES Estimation
Percentiles Percentiles Percentiles

bKK λ 10th 90th 10th 90th Share bN > bK 10th 90th Share bN > bK

-0.25 0.4375 30.9 31.1 25.6 30.6 1.0 13.2 21.4 1.0
0 30.5 30.7 24.7 28.8 1.0 14.2 21.9 1.0
-0.3125 30.3 30.4 24.7 28.2 1.0 15.1 21.9 1.0
-0.625 30.0 30.2 24.5 27.6 1.0 15.5 22.0 1.0
-1.0625 29.8 30.0 26.4 27.4 1.0 16.0 21.6 1.0

-0.1 0.175 31.5 31.7 21.5 33.4 1.0 3.8 24.3 0.940
0 31.4 31.5 22.1 32.1 1.0 5.3 22.2 0.970
-0.125 31.3 31.5 23.0 31.4 1.0 6.8 22.6 0.973
-0.25 31.2 31.4 23.2 31.4 1.0 7.8 22.3 0.998
-0.425 31.1 31.3 22.9 30.3 1.0 8.7 22.2 0.998

-0.05 0.0875 31.7 31.9 12.8 36.9 0.965 7.3 65.7 0.793
0 31.6 31.8 16.5 36.7 0.965 9.2 46.1 0.820
-0.0625 31.6 31.8 17.1 35.2 0.988 10.6 46.1 0.837
-0.125 31.6 31.8 19.0 34.7 0.995 8.3 42.9 0.845
-0.2125 31.5 31.7 19.8 34.3 0.995 9.0 40.8 0.858

-0.02 0.035 31.8 32.0 7.3 65.7 0.793 4.5 155.7 0.535
0 31.8 32.0 9.2 46.1 0.820 6.4 148.3 0.458
-0.025 31.8 32.0 10.6 46.1 0.837 4.8 130.6 0.470
-0.05 31.8 32.0 8.3 42.9 0.845 5.7 123.2 0.447
-0.085 31.8 32.0 9.0 40.8 0.858 4.2 56.9 0.452

0.02 -0.035 32.0 32.2 8.6 52.5 0.783 6.9 50.5 0.790
0 32.0 32.2 7.3 47.8 0.842 6.9 46.8 0.813
0.025 32.0 32.2 6.4 44.6 0.822 8.0 43.8 0.830
0.05 32.0 32.2 9.6 44.0 0.863 6.6 43.3 0.825
0.085 32.1 32.3 9.4 44.1 0.863 6.5 41.2 0.860

-0.05 -0.0875 32.2 32.4 15.6 37.6 0.970 8.1 36.1 0.923
0 32.2 32.4 16.7 36.1 0.993 9.4 34.7 0.952
0.0625 32.2 32.4 17.9 36.5 0.980 9.0 34.2 0.965
0.125 32.2 32.4 19.7 35.9 0.990 11.8 33.3 0.978
0.2125 32.3 32.5 20.7 36.9 0.998 21.4 31.9 0.988

Median values of Monte Carlo simulations with 400 replications.
The values for the Box-Cox function are computed with true parameters.
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Table 5.3: Direction and contributions of directed technical change:
Box-Cox function γK = γN = 0.01

Parameters True Technology Translog Estimation CES Estimation
Percentiles Percentiles Percentiles

bKK λ 10th 90th 10th 90th Share |γk| < 0.0025 10th 90th Share |γk| < 0.0025

-0.25 0.4375 2.3 2.3 3.0 8.7 0.518 5.6 13.4 0.108
0 2.3 2.3 0.2 3.2 0.998 6.1 12.3 0.095
-0.3125 2.3 2.3 2.3 7.7 0.945 3.7 9.4 0.303
-0.625 2.3 2.3 3.0 9.4 0.708 3.1 8.1 0.643
-1.0625 2.2 2.3 2.9 9.8 0.610 2.8 7.1 0.778

-0.1 0.175 2.3 2.3 1.2 11.1 0.540 4.1 16.7 0.175
0 2.3 2.3 0.8 7.7 0.847 4.9 15.2 0.132
-0.125 2.3 2.3 0.6 9.2 0.877 4.7 14.6 0.178
-0.25 2.3 2.3 0.9 8.8 0.892 4.3 13.1 0.180
-0.425 2.3 2.3 0.8 8.8 0.762 4.2 12.7 0.195

-0.05 0.0875 2.3 2.3 1.4 21.5 0.425 3.6 26.1 0.168
0 2.3 2.3 1.5 18.7 0.498 3.8 24.9 0.183
-0.0625 2.3 2.3 0.9 16.4 0.555 3.5 23.0 0.160
-0.125 2.3 2.3 1.0 15.1 0.643 3.6 20.7 0.185
-0.2125 2.3 2.3 0.9 13.0 0.673 3.8 20.5 0.165

-0.02 0.035 2.3 2.3 4.2 40.0 0.207 5.6 85.7 0.123
0 2.3 2.3 2.6 34.3 0.228 5.8 55.8 0.165
-0.025 2.3 2.3 2.6 35.6 0.267 5.1 50.4 0.863
-0.05 2.3 2.3 2.0 31.4 0.280 4.6 46.5 0.150
-0.085 2.3 2.3 2.0 27.0 0.317 4.9 41.9 0.170

0.02 -0.035 2.3 2.4 3.2 39.2 0.175 4.1 45.2 0.192
0 2.3 2.4 2.8 35.5 0.238 2.8 39.5 0.212
0.025 2.3 2.4 3.8 31.7 0.235 2.8 34.1 0.250
0.05 2.3 2.4 3.5 32.6 0.225 2.1 31.3 0.267
0.085 2.3 2.4 2.8 28.4 0.31 2.6 28.9 0.232

0.05 -0.0875 2.3 2.4 2.0 19.4 0.498 1.5 18.7 0.423
0 2.3 2.4 1.3 15.9 0.542 1.2 16.0 0.478
0.0625 2.3 2.4 1.2 16.3 0.555 1.5 16.2 0.520
0.125 2.3 2.4 1.2 15.5 0.525 1.3 13.6 0.50
0.2125 2.3 2.4 1.0 13.4 0.607 1.1 12.7 0.555

Median values of Monte Carlo simulations with 400 replications.
The values for the Box-Cox function are computed with true parameters.
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Table 5.4: Direction and contributions of directed technical change:
Box-Cox function γK = 0.015, γN = 0.005

Parameters True Technology Translog Estimation CES Estimation
Percentiles Percentiles Percentiles

bKK λ 10th 90th 10th 90th Share γK > γN 10th 90th Share γK > γN

-0.25 0.4375 24.3 24.4 16.7 20.8 1.0 200.0 204.8 0
0 24.6 24.7 18.4 21.6 1.0 16.2 22.5 1.0
-0.3125 24.9 25.0 35.1 39.9 0.095 23.5 29.0 1.0
-0.625 25.1 25.2 36.2 39.7 0.087 25.3 30.1 1.0
-1.0625 25.2 25.3 36.9 39.4 0.055 25.8 30.1 1.0

-0.1 0.175 24.0 24.1 21.2 28.7 1.0 28.4 40.9 1.0
0 24.2 24.3 16.0 22.5 0.990 26.9 36.0 1.0
-0.125 24.3 24.3 13.3 21.0 0.970 25.3 34.0 1.0
-0.25 24.3 24.4 12.4 19.9 0.937 24.8 32.4 1.0
-0.425 24.4 24.5 12.2 34.3 0.883 24.5 31.7 1.0

-0.05 0.0875 24.0 24.1 15.6 28.4 0.982 22.5 41.7 1.0
0 24.0 24.1 12.8 26.7 0.980 22.8 41.1 1.0
-0.0875 24.1 24.1 12.2 23.5 0.993 22.5 38.3 1.0
-0.125 24.1 24.2 11.4 22.8 0.998 23.0 37.6 1.0
-0.2125 24.1 24.2 12.0 22.4 0.990 23.1 37.3 1.0

-0.02 0.035 23.9 24.0 5.0 45.4 0.825 14.0 68.9 0.975
0 23.9 24.0 6.3 38.9 0.843 18.3 62.3 0.995
-0.025 23.9 24.0 4.5 37.3 0.870 16.1 59.3 0.993
-0.05 23.9 24.0 7.6 34.4 0.903 17.1 56.4 0.993
-0.085 24.0 24.0 7.3 33.8 0.910 18.8 53.1 1.0

0.02 -0.035 23.8 23.9 5.2 43.7 0.797 4.8 56.3 0.870
0 23.8 23.9 6.9 34.8 0.855 6.1 51.7 0.905
0.025 23.8 23.9 5.8 35.1 0.873 6.6 48.6 0.917
0.05 23.8 23.9 8.7 34.7 0.920 4.9 47.0 0.945
0.085 23.8 23.9 8.0 32.7 0.942 7.4 43.7 0.973

0.05 -0.0875 23.7 23.8 8.2 22.3 0.990 15.0 35.1 1.0
0 23.7 23.8 12.7 24.6 0.998 16.1 33.5 1.0
0.0625 23.7 23.8 13.8 26.5 1.0 16.5 34.4 1.0
0.125 23.7 23.8 15.4 26.3 1.0 16.5 32.4 1.0
0.2125 23.7 23.8 17.0 26.5 1.0 19.0 32.4 1.0

Median values of Monte Carlo simulations with 400 replications.
The values for the Box-Cox function are computed with true parameters.
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5.2 Simulations with Linear Factor Shares

With linear factor shares and output generated as a Cobb-Douglas aggregate using these shares,
I again investigate three different constellations of true technical change. In the estimation
the capital contribution is pinned down by the factor share in same way as in the Box-Cox
simulations. Neutral technical change is largely overestimated and directed technical change
underestimated in the case when true technical change is directed towards labor (Table 5.5).
Whereas the true contribution of directed technical change lies between 30 and 33 percent, it is
estimated with values between 3 and 10 percent by both the CES and the translog function. At
these small values, individual estimations are likely to exhibit insignificant estimates. Thus with
the present data generating process, technical change looks essentially neutral when estimated
with CES and translog functions, although there is an important labor-directed component in
the true specification. Looking at the dispersion of the estimates and the sign of the direction
in Table 5.6, we see that most translog estimations yield the wrong sign, since estimates with
more labor-augmenting technical change make up less than 50 percent, in some cases even 0
percent. The CES function captures the direction better, except for the lowest value of bKK .
The dispersion of estimated contributions becomes very large close to bKK = 0, in the other
cases it is low.
As in the previous section, I report results with alternative rates of technical progress using

a more summary tabulation of results. In Table 5.7, true technical progress is assumed to
be neutral (γK = γN = 0.01) and in Table 5.8 it is more capital-augmenting (γK = 0.015,
γN = 0.005).
When true technical change is directed more towards labor (Table 5.8), the correct direction

(γK > γN) is rather found by the translog than by the CES function. Though the estimated
contributions by directed technical change remain low and in total, technical change would
be seen as neutral from the estimations. The dispersion of estimates is lower than when true
technical change is more labor-augmenting.
The case in which true technical change is purely neutral (Table 5.7) yields the strongest

and most disturbing result of my analysis. Every estimation conducted with CES and translog
functions finds non-neutral technical change (As a threshold I choose differences in technical
progress of at least 0.0025.). The translog function comes up with a high share of degenerate
results with implausibly high technology growth rates. The 10th percentile of the estimated
contribution of directed technical change turns out to be stable at around 30 percent. The CES
function yields a quite precisely estimated contribution of directed technical change of around
40 to 45 percent. Non-neutral technical change can be found although the true technology is
neutral.
While it should be seen as open to discussion whether the data generating process chosen

here is typical for the kind of misspecification we should be wary of, the simulations so far lead
to somewhat puzzling conclusions: The presence of non-neutral technical change is detected by
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estimation if true technical change is purely neutral, and vice versa.

Table 5.5: Contributions to growth: linear capital share, γK = 0.005, γN = 0.015

Cap. Share Contrib. k Neutral Tech. Change Directed Tech. Change

Start End True Translog CES True Translog CES True Translog CES

0.537 0.297 42.6 41.9 42.0 26.6 54.8 54.5 30.9 3.3 3.5
0.561 0.282 42.8 42.1 42.2 26.5 54.6 52.1 30.6 3.3 5.6
0.576 0.277 42.9 42.2 42.3 26.5 54.5 50.7 30.5 3.4 7.0
0.595 0.264 43.3 42.5 42.7 26.5 54.1 49.3 30.2 3.4 8.1
0.617 0.249 43.6 42.8 43.0 26.5 54.4 48.1 30.0 3.4 9.2

0.456 0.358 41.9 41.5 41.5 26.6 54.8 56.5 31.5 3.2 2.0
0.463 0.357 41.8 41.4 41.4 26.6 54.8 56.7 31.5 3.3 1.9
0.470 0.349 41.9 41.4 41.3 26.6 54.7 56.9 31.5 3.4 1.6
0.474 0.345 41.7 41.3 41.3 26.7 55.2 57.4 31.6 3.3 1.3
0.490 0.338 42.4 41.9 41.9 26.6 55.1 57.2 31.0 3.3 0.9

0.426 0.381 41.4 41.1 41.1 26.7 54.8 57.8 31.9 4.2 1.1
0.434 0.378 41.8 41.4 41.4 26.6 54.8 57.4 31.6 3.8 1.2
0.438 0.373 41.9 41.5 41.5 26.6 54.7 57.0 31.5 3.8 1.5
0.437 0.374 41.5 41.2 41.2 26.7 55.2 57.3 31.8 3.7 1.5
0.445 0.370 41.9 41.5 41.5 26.6 55.1 56.8 31.5 3.4 1.7

0.408 0.397 41.2 41.1 41.1 26.7 50.4 46.9 32.1 8.7 12.1
0.412 0.391 41.4 41.4 41.4 26.7 51.5 50.6 32.0 7.4 8.2
0.416 0.392 41.6 41.5 41.5 26.6 51.9 53.0 31.7 6.8 5.6
0.415 0.388 41.4 41.2 41.2 26.7 52.5 54.3 31.9 6.4 4.6
0.417 0.389 41.4 41.5 41.5 26.7 53.0 55.6 31.9 5.9 3.3

0.387 0.409 41.0 40.9 40.9 26.7 50.8 53.3 32.3 8.4 5.8
0.386 0.408 41.1 41.0 41.0 26.7 52.4 55.5 32.2 6.6 3.5
0.387 0.410 41.2 41.1 41.1 26.7 52.4 52.4 32.1 6.6 3.6
0.383 0.411 41.0 40.8 40.8 26.7 53.3 53.3 32.3 5.9 3.0
0.385 0.413 41.3 41.1 41.2 26.7 53.5 53.5 32.0 5.4 2.4

0.372 0.422 41.0 40.9 40.9 26.7 55.3 57.9 32.3 3.8 1.3
0.369 0.423 41.1 41.0 41.0 26.7 55.3 57.5 32.2 3.7 1.5
0.363 0.424 40.8 40.7 40.7 26.7 55.7 57.6 32.4 3.6 1.7
0.359 0.429 40.7 40.6 40.6 26.7 56.0 57.7 32.5 3.4 1.7
0.359 0.432 41.0 40.9 41.0 26.7 55.6 56.9 32.3 3.5 2.2

Median values of Monte Carlo simulations with 400 replications.
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Table 5.6: Contributions of directed technical change: linear capital share, γK = 0.005, γN = 0.015

Cap. Share True Technology Translog Estimation CES Estimation
Percentiles Percentiles Percentiles

Start End 10th 90th 10th 90th Share γN > γK 10th 90th Share γN > γK

0.537 0.297 30.8 31.0 2.3 4.2 0 1.5 6.0 0.005
0.561 0.282 30.5 30.7 2.3 4.1 0 3.3 8.3 0
0.576 0.277 30.4 30.6 2.7 4.1 0 4.6 9.8 0
0.595 0.264 30.1 30.3 2.8 4.1 0 5.4 10.7 0
0.617 0.249 29.9 30.1 2.8 4.1 0 6.8 11.7 0

0.456 0.358 31.4 31.6 1.4 5.6 0.043 0.9 2.9 0.980
0.463 0.357 31.4 31.6 1.4 5.4 0.013 0.6 2.8 0.942
0.470 0.349 31.4 31.6 1.5 5.1 0.013 0.3 2.5 0.875
0.474 0.345 31.5 31.7 1.6 4.7 0.015 0.3 2.4 0.813
0.490 0.338 31.5 31.7 1.7 4.8 0.005 0.2 2.1 0.925

0.426 0.381 31.8 32.0 0.9 9.1 0.225 0.2 3.4 0.585
0.434 0.378 31.5 31.7 1.1 8.5 0.195 0.3 3.2 0.690
0.438 0.373 31.4 31.6 0.9 7.1 0.142 0.3 3.1 0.820
0.437 0.374 31.7 31.9 0.9 6.8 0.115 0.3 3.0 0.880
0.445 0.370 31.4 31.6 0.9 7.0 0.105 0.5 3.0 0.925

0.408 0.397 32.0 32.2 1.9 27.5 0.355 1.1 98 0.725
0.412 0.391 31.9 32.1 1.4 27.5 0.403 1.0 99.7 0.748
0.416 0.392 31.7 31.9 1.4 26.0 0.333 0.7 101.7 0.673
0.415 0.388 31.8 32.0 1.6 24.8 0.325 0.8 103.7 0.635
0.417 0.389 31.8 32.0 1.3 24.5 0.285 0.7 103.7 0.582

0.387 0.409 32.2 32.2 1.6 29.2 0.403 0.9 37.9 0.507
0.386 0.408 32.2 32.2 1.1 23.0 0.350 0.9 21.2 0.455
0.387 0.410 32.1 32.1 1.3 26.0 0.385 0.7 23.5 0.517
0.383 0.411 32.3 32.3 0.8 21.7 0.333 0.6 21.5 0.463
0.385 0.413 32.0 32.2 1.3 16.3 0.295 0.4 10.2 0.425

0.372 0.422 32.2 32.4 0.9 7.8 0.185 0.2 3.7 0.642
0.369 0.423 32.2 32.4 0.7 7.2 0.17 0.2 3.4 0.772
0.363 0.424 32.4 32.6 1.1 6.4 0.157 0.2 3.7 0.842
0.359 0.429 32.5 32.7 0.7 6.3 0.130 0.3 3.5 0.918
0.359 0.432 32.3 32.5 0.9 6.2 0.108 0.6 3.6 0.957

Median values of Monte Carlo simulations with 400 replications.
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Table 5.7: Direction and contributions of directed technical change:
linear capital share γK = γN = 0.01

Cap. share True Technology Translog Estimation CES Estimation
Percentiles Percentiles Percentiles

Start End 10th 90th 10th 90th Share |γk| < 0.0025 10th 90th Share |γk| < 0.0025

0.165 0.646 2.3 2.3 33.2 22041 0 42.7 44.1 0
0.157 0.683 2.3 2.3 34 20968 0 43.0 44.3 0
0.152 0.706 2.3 2.3 34.3 21014 0 42.8 44.0 0
0.136 0.733 2.3 2.3 34.6 20560 0 42.5 43.7 0
0.115 0.765 2.2 2.3 34.9 21213 0 41.2 42.3 0

0.313 0.497 2.3 2.3 32.8 11520 0 43.5 44.8 0
0.307 0.512 2.3 2.3 32.9 12532 0 43.5 45.0 0
0.295 0.524 2.3 2.3 33.0 13054 0 43.6 45.1 0
0.287 0.533 2.3 2.3 33.0 13741 0 43.4 45.1 0
0.275 0.556 2.3 2.3 33.4 13862 0 43.9 45.7 0

0.359 0.446 2.3 2.4 32.8 9142 0 42.7 45.6 0
0.353 0.458 2.3 2.3 32.7 9760 0 43.2 45.4 0
0.346 0.465 2.3 2.3 32.7 10205 0 43.3 45.3 0
0.344 0.466 2.3 2.3 32.4 11019 0 43.2 44.8 0
0.337 0.478 2.3 2.3 32.6 11410 0 43.5 45.1 0

0.388 0.417 2.3 2.4 27.0 5257 0 35.3 51.1 0
0.381 0.421 2.3 2.3 27.6 5902 0 37.3 49.5 0
0.381 0.427 2.3 2.3 29.1 5946 0 39.1 49.0 0
0.376 0.427 2.3 2.3 29.4 6467 0 40.4 48.3 0
0.376 0.431 2.3 2.3 29.7 6658 0 41.1 47.7 0

0.417 0.378 2.3 2.4 26.0 5989 0 30.9 50.1 0
0.418 0.376 2.3 2.4 28.0 6480 0 38.5 48.7 0
0.421 0.376 2.3 2.3 27.7 6732 0 37.9 48.2 0
0.423 0.372 2.3 2.4 27.5 7036 0 38.6 47.7 0
0.426 0.372 2.3 2.3 29.3 7307 0 40.8 47.4 0

0.443 0.350 2.3 2.4 31.0 9724 0 42.3 45.1 0
0.449 0.345 2.3 2.4 31.4 10570 0 42.7 44.9 0
0.452 0.336 2.4 2.4 30.9 11491 0 42.3 44.5 0
0.459 0.330 2.4 2.4 31.4 11983 0 42.4 44.4 0
0.466 0.327 2.3 2.4 31.9 12630 0 42.7 44.5 0

Median values of Monte Carlo simulations with 400 replications.
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Table 5.8: Direction and contributions of directed technical change:
linear capital share γK = 0.015, γN = 0.005

Cap. share True Technology Translog Estimation CES Estimation
Percentiles Percentiles Percentiles

Start End 10th 90th 10th 90th Share γK > γN 10th 90th Share γK > γN

0.008 0.771 33.0 33.3 2.8 3.4 1.0 5.5 8.5 0
0.033 0.805 31.1 31.3 3.0 3.6 1.0 2.8 4.2 0
0.043 0.824 30.3 30.5 3.1 3.7 1.0 1.3 3.0 0
0.035 0.849 29.6 29.7 3.2 3.7 1.0 1.1 2.9 0.005
0.013 0.883 29.2 29.4 3.2 3.8 1.0 3.5 5.3 0

0.265 0.539 31.8 32.0 2.5 4.0 1.0 3.0 7.9 1.0
0.257 0.561 31.7 31.9 2.6 4.0 1.0 4.4 9.6 1.0
0.243 0.578 31.5 31.6 2.6 3.9 1.0 5.2 10.4 1.0
0.232 0.592 31.5 31.7 2.7 3.8 1.0 5.7 10.7 1.0
0.215 0.620 30.9 31.1 2.7 3.9 1.0 6.9 11.2 1.0

0.337 0.467 32.0 32.2 1.5 5.0 0.990 0.3 2.4 0.178
0.328 0.483 31.6 31.8 1.7 4.8 0.993 0.2 2.0 0.382
0.319 0.492 31.5 31.7 2.0 4.5 1.0 0.2 2.2 0.640
0.315 0.496 31.8 32.0 2.1 4.4 1.0 0.2 3.1 0.820
0.305 0.511 31.5 31.7 2.3 4.3 1.0 0.4 4.4 0.930

0.379 0.425 32.0 32.2 0.9 8.4 0.843 0.2 3.2 0.325
0.371 0.431 31.9 32.1 0.8 6.8 0.865 0.3 3.4 0.158
0.370 0.437 31.7 31.9 1.1 6.9 0.873 0.3 3.2 0.090
0.364 0.439 31.8 32.0 0.8 6.4 0.892 0.5 3.3 0.058
0.363 0.444 31.8 32.0 1.0 6.0 0.932 0.8 3.3 0.020

0.426 0.370 32.1 32.3 0.8 7.1 0.832 0.2 3.3 0.313
0.428 0.367 32.0 32.2 0.9 6.3 0.905 0.2 3.5 0.137
0.432 0.365 32.0 32.2 0.6 6.2 0.890 0.4 3.7 0.077
0.435 0.360 32.1 32.3 0.9 5.8 0.885 0.6 3.6 0.027
0.440 0.359 31.8 32.1 1.1 5.9 0.837 0.8 3.3 0.043

0.465 0.328 32.2 32.3 1.7 4.7 0.990 0.2 2.6 0.238
0.474 0.320 32.0 32.2 1.8 4.5 0.987 0.2 2.4 0.495
0.480 0.310 32.2 32.4 1.7 4.3 1.0 0.2 2.7 0.650
0.489 0.302 32.2 32.4 2.0 4.2 1.0 0.3 3.6 0.805
0.500 0.296 31.9 32.1 2.1 4.3 1.0 0.4 4.6 0.915

Median values of Monte Carlo simulations with 400 replications.
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6 Conclusion

Factor-augmenting technical change at the macroeconomic level has attracted much interest
in theoretical and empirical research. Encompassing measures of technical change that can be
directly observed seem out of reach. Identifying technical progress as a function of time in
estimations of CES production functions has been a widely used method.
Building on previous methodological research by Klump et al. (2007) and León-Ledesma,

McAdam and Willman (2010 and forthcoming), I have investigated the properties of systems
CES estimations under the assumption of a production function that is in reality not CES. I
have conducted Monte Carlo simulation analysis for both CES and translog systems estimation
and looked at the results from the angle of a growth accounting decomposition. The first
data generating process used is of the generalized Box-Cox form, which incorporates both
the CES and the translog production function as special cases. The second data generating
process builds on linear capital shares by using them as varying exponents of a Cobb-Douglas
production function with factor-augmenting technical change. Sample averages are chosen as
the point of normalization.
The contributions to growth obtained from estimating CES and translog functions on various

versions of the Box-Cox data show little systematic effect of misspecification. By contrast, the
data generated from time-linear capital shares lead to strong differences between the true and
the estimated contribution of directed technical change. Interestingly, technical change that
is neutral in the true specification always leads to high estimated contributions of directed
technical change. Conversely, including a non-neutral component in technical progress in the
true specification leads to estimated contributions that are close to neutral. This result may
depend on the particular functional form chosen, but it remains a result that questions the
current practice of estimating directed technical change. More research is clearly needed to
better understand the conditions under which the identification of directed technical change at
the aggregate level is plausible and reasonably robust.
Besides in the results, I take an interest in the question what would be useful data generating

processes for analyzing misspecification in the estimation of directed technical change at
the macroeconomic level. One conclusion from the results obtained in this paper is that a
generalized Box-Cox function normalized at averages seems too close to CES and translog
functions. Meanwhile the Cobb-Douglas function with factor shares as time-varying exponents
may introduce two misspecifications at the same time: misspecification in the functional form
and deviation of the expected factor prices from marginal products. The paper presents first
insights about the kind of estimation biases that may arise from this.
The research undertaken in this paper should be extended in several directions.

Misspecification of the system of equations arising from the deviation of factor prices from
marginal products should be investigated more in detail. Also more analysis is needed to elicit
which misspecification is relevant and which can be ruled out at a theoretical or empirical level.

28



References

Abramovitz, M. (1956), ‘Resource and Output Trends in the U.S. Since 1870’, American
Economic Review 46(2), 5–23.

Acemoglu, D. (2002), ‘Directed Technical Change’, Review of Economic Studies 69, 781–809.

Acemoglu, D. (2007), ‘Equilibrium Bias in Technology’, Econometrica 175, 1371–1410.

Acemoglu, D. and Guerrieri, V. (2008), ‘Capital Deepening and Nonbalanced Economic
Growth’, American Economic Review 116(3), 467–498.

Appelbaum, E. (1979), ‘On the Choice of Functional Forms’, International Economic Review
20(2), 449–458.

Arrow, K., Chenery, H., Minhas, B. and Solow, R. (1961), ‘Capital-Labor Substitution and
Economic Efficiency’, Review of Economics and Statistics 43(3), 225–250.

Baccianti, C. (2013), Estimating Sectoral Elasticities of Substitution Along the International
Technology Frontier, ZEW Discussion Paper 13-092.

David, P. A. and van de Klundert, T. (1965), ‘Biased Efficiency Growth and Substitution
between Capital and Labor in the US Economy, 1899-1960’, American Economic Review
57, 357–94.

de La Grandville, O. (1989), ‘In Quest of the Slutsky Diamond’, American Economic Review
79(3), 468–81.

Diamond, P., McFadden, D. and Rodriguez, M. (1978), Measurement of the Elasticity of
Substitution and Bias of Technical Change, in M. Fuss and D. McFadden, eds, ‘Production
Economics: A Dual Approach to Theory and Applications vol. 2’, Amsterdam: North-
Holland, pp. 125–146.

Diewert, W. (1976), ‘Exact and Superlative Index Numbers’, Journal of Econometrics 4, 115–
145.

Herrendorf, B., Herrington, C. and Valentinyi, A. (forthcoming), ‘Sectoral Technology and
Structural Transformatiion’, American Economic Journal: Macroeconomics .

Hulten, C. R. (2001), Total Factor Productivity. A Short Biography, University of Chicago
Press, pp. 1–54.
URL: http://www.nber.org/chapters/c10122

Klump, R. and de La Grandville, O. (2000), ‘Economic Growth and the Elasticity of
Substitution: Two Theorems and Some Suggestions’, American Economic Review 90(1), 282–
291.

29



Klump, R., McAdam, P. and Willman, A. (2007), ‘Factor Substitution and Factor-Augmenting
Technical Progress in the United States: A Normalized Supply-Side System Approach’,
Review of Economics and Statistics 89(1), 183–192.

Klump, R., McAdam, P. and Willman, A. (2008), ‘Unwrapping Some Euro Area Growth
Puzzles: Factor Substitution, Productivity and Unemployment’, Journal of Macroeconomics
30, 645–666.

Klump, R. and Saam, M. (2008), ‘Calibration of normalised ces production functions in dynamic
models’, Economics Letters 99(2), 256–259.

Kmenta, J. (1967), ‘On Estimation of the CES Production Function’, International Economic
Review 8(2), 180–189.

León-Ledesma, M. A., McAdam, P. and Willman, A. (2010), ‘Identifying the Elasticity of
Substitution with Biased Technical Change’, American Economic Review pp. 1330–1357.

León-Ledesma, M. A., McAdam, P. and Willman, A. (forthcoming), ‘Production Technology
Estimates and Balanced Growth’, Oxford Bulletin of Economics and Statistics .

May, J. D. and Denny, M. (1979), ‘Factor-Augmenting Technical Progress and Productivity in
US manufacturing’, International Economic Review 20(3), 759–774.

Ostbye, S. (2010), ‘The Translog Growth Model’, Journal of Macroeconomics 32(2), 635–640.

Oulton, N. (2012), ‘Long Term Implications of the ICT Revolution: Applying the Lessons of
Growth Theory and Growth Accounting’, Economic Modelling 29(5), 1722–1736.

Saltari, E. and Federici, D. (2013), Elasticity of substitution and technical progress: Is there a
misspecification problem?, MPRA Paper 52195.
URL: http://mpra.ub.uni-muenchen.de/52194/

30



Appendix

7 Translog Function with Time-Varying
Technical Progress

One way to extend this work might be to consider production functions with time-varying
rates of technical progress as, e.g., in the work on CES functions by Klump et al. (2007). To
my knowledge, the identification of time-varying technical progress with the standard translog
function has never been discussed. This can be done approximating the following function:

Y = F (K,L, et). (49)

In order to obtain the previous translog specification (6), technical progress both in the original
function (1) and the second-order approximation was restricted to a the multiplicative factor-
augmenting form. Function (49) depends on K, L and et in an unrestricted way. But when
taking the translog approximation and imposing constant returns to scales, any parts of the
function that are not represented by linear of quadratic functions of logarithmic capital intensity
and time will vanish. The resulting translog function will differ only slightly from (6). The
translog approximation to (49) is

ln y = ln y0 + ak ln
(
k

k0

)
+ at(t− t0)

+ akk
2 ln

(
k

k0

)2

+ akt ln
(
k

k0

)
(t− t0) + att

2 (t− t0)2. (50)

Introducing the notation from (6) and defining additionally at = γ, akt = κ and att = θ, this
yields:

ln y = ln y0 + π0 ln
(
k

k0

)
+ γ(t− t0) + β

2 ln
(
k

k0

)2

+ κ ln
(
k

k0

)
(t− t0) + θ

2 (t− t0)2 . (51)

I now consider which restrictions have to be placed on (51) in order to obtain constant factor-
augmenting rates of technical change as in (9). In a next step, I ask which kind of more
general multiplicative technical change can be derived if the restrictions are not imposed. The
translog function with constant factor-augmenting technical change (9) corresponds to the
general translog form with technical progress (51) under the following restrictions:

γ = γN + π0γk (52)

κ = βγk (53)

θ = βγ2
k. (54)
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In order to identify the function with constant factor-augmenting progress empirically, one has
to place a nonlinear restriction on the coefficients κ, θ and β:

κ2 = βθ. (55)

If the restriction is not imposed, the translog function could allow the estimation of both a
constant and a time-varying component of technical progress. One could either compute the
constant rates γN and γk from γ and θ and the varying part from κ − βγk or compute the
constant rates from γ and κ and the varying part from θ − βγ2

k. From (55) we see that a real
solution for θ is unique given κ, but the converse is not true. So we assume that for the general
translog function (51), equations (52) and (53) identify constant rates of factor-augmenting
changes γN and γk (or equivalently γK and γN). The last term of the following decomposition
then represents an additional neutral, but time-varying technology component:

ln y = ln y0 + π0 ln
(
k

k0

)
+ γ(t− t0) + β

2 ln
(
k

k0

)2

+ κ ln
(
k

k0

)
(t− t0) + βγ2

k

2 (t− t0)2 + θ − βγ2
k

2 (t− t0)2 . (56)

One can note that the time-varying progress rate is non-monotonous. The factor-augmenting
progress functions introduced in (49) now correspond to:

ΓK(t) = exp

{
θ − βγ2

k

2 (t− t0)2 + γK(t− t0)
}

ΓN(t) = exp

{
θ − βγ2

k

2 (t− t0)2 + γN(t− t0)
}

(57)

with

γk = κ

β
(58)

γN = γ − π0
κ

β
(59)

γK = γk + γN . (60)

The last three equations also apply to the case in which θ is restricted not to contain any
time-varying component of technical progress.
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