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Abstract 

A recent theoretical model by Epstein and Schneider (2008) predicts that a firm’s 
assets will be undervalued by the market if the information surrounding these assets 
is ambiguous. The model further predicts that this effect is amplified if the 
underlying fundamentals are volatile. This paper provides an empirical test. 
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1. Introduction 

Recent advances in asset pricing strategy analyze financial market reactions to new information 

when knowledge about the quality of this information is incomplete (Epstein and Schneider, 

2008; Zhang, 2006). When information quality is difficult to judge, investors treat signals as 

ambiguous. Ambiguous information is defined as information with uncertain implications for a 

firm’s value (Zhang, 2006). Investors are assumed to be ambiguity-averse so that they require 

compensation. The market’s discomfort with difficult-to-interpret information is expected to 

negatively impact firm value. Epstein and Schneider (2008) further predict that the negative 

impact of information ambiguity is larger when the underlying fundamentals are volatile. This 

paper provides empirical evidence for these theoretical predictions by Epstein and Schneider 

(2008). 

2. Sample and variables’ definitions 

We assemble a rich dataset of annual firm-level data from a variety sources. Firm-level accounting 

data is taken from the Compustat database. We link this information to the Institutional Brokers 

Estimates System (I/B/E/S) database, which covers information on analyst forecasts which we 

use to derive a measure for information ambiguity.2 We supplement the firm data by patent data 

in order to account for the fact that intangibles account for a large share of the companies’ 

market value. We use all U.S. utility patents granted between 1975 and 2006 and the citations that 

these patents receive (we have citation data until 2010) from the United States Patent and 

Trademark Office (USPTO). We further retrieve data on daily stock-price data from the Centre 

of Research in Security Prices (CRSP) in order to derive a measure for the idiosyncratic risk. We 

                                                 

2 Following prior research, we use the unadjusted summary dataset (Diether et al., 2002). 
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include all stocks listed on the AMEX, NYSE, and NASDAQ. Lastly, we retrieved daily Fama 

and French (1993) risk factors from Kenneth French’s homepage. 

Our dependent variable capturing firms’ market value is Tobin’s q – the ratio of firms’ market 

value to the replacement costs of assets – as dependent variable. We compute the market value of 

assets as the sum of firm’s market capitalization (shares outstanding multiplied by share price), 

long-term debt, and preferred stock. The replacement costs of assets are defined as the sum of 

property, plant, and equipment, inventories, and net short term assets.  

Our main regressors are proxies for information ambiguity and idiosyncratic risk. Information 

ambiguity is defined based on analyst forecast dispersion, i.e. the standard deviation of all 

outstanding analyst forecasts scaled by the mean consensus forecast for each calendar month, 

following. Forecast dispersion is a widely accepted measure of information uncertainty, parameter 

risk, or estimation risk (Anderson et al., 2005, 2009; Doukas et al., 2006; Dittmar and Thakor, 

2007; Erickson et al., 2012; Güntay and Hackbarth, 2010; Johnson, 2004; Kumar et al., 2008). 

Dispersion is a measure for disagreement among analysts and among market participants in 

general. We aggregate forecast dispersion by computing the mean forecast dispersion over all 

month prior to a firm’s earnings announcement. 

To ensure that the standard deviation of analysts’ earnings forecast is a meaningful proxy for 

information uncertainty, we require all firms to be covered by at least two analysts in each 

calendar month in order to be included in the sample. Following prior literature (Hall et al., 

2005), we restrict our study to firms in manufacturing industries (SIC 20-39).  We exclude all 

firms for which we have less than two consecutive observations with non-missing data. Our final 

sample is an unbalanced panel with 3,670 firm-year observations corresponding to 382 firms in 

the manufacturing sector between 1992 and 2006.  

Our measure for fundamental risk is based on the idiosyncratic volatility of stock prices. We 

compute idiosyncratic volatility from daily stock returns and two Fama and French (1993) risk 
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factors. The advantage of using high-frequency stock market data for measuring risk is that stock 

prices, in principle, include all factors in a firm’s environment that investors perceive to be 

important. Similar to Ang et al. (2009) and Fu (2009), we estimate idiosyncratic volatility as the 

standard deviation of the residual obtained from (1).   
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where i indexes firms, td indexes trading days in year t. ri denotes the firm’s daily stock return, rf  

the one-month treasury bill rate (i.e., the risk-free rate), rM the value-weighted return on the 

market as a whole, SMB the difference between the return on a portfolio of small stocks and the 

return on a portfolio of large stocks, and HML the difference between the return of a portfolio 

of high book-to-market stocks and the return on the portfolio of low book-to-market stocks. 

Measuring uncertainty by stock market data is widely accepted in the economics literature (e.g. 

Baum et al., 2007; Bloom and Van Reenen, 2002; Bloom et al., 2007). We use the logarithm of 

analyst dispersion and fundamental risk in order to take the skewness of the variables’ 

distributions into account. 

We further control for knowledge assets of the company. We define R&D intensity as the ratio 

between a firm’s R&D stock and the book value of assets. R&D stocks are calculated as the 

perpetual inventory of firms’ past and contemporaneous R&D expenditures. We use a constant 

annual depreciation rate () for R&D of 15% and compute R&D stocks as:3 
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 (2) 

where the flow variable is a firm’s current year R&D expenditure as reported by Compustat. We 

construct patent stocks based on the same formula (Hall et al., 2005). We further control for the 

patent citation stock that the firms’ patents receive. Descriptive statistics are presented in Table1. 

                                                 
3 See also Hall (2005) for a discussion on the appropriate depreciation rate for R&D. 
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It is also worth noting that the correlation between the measures for forecast dispersion and 

idiosyncratic risk is low with a correlation coefficient of 0.233. See Figure1 for a graphical 

illustration. 

Table 1: Summary statistics 

Variable Mean S.D. Min. Median Max. 

Idiosyncratic volatility 2.096 0.928 0.602 1.866 6.196 

Forecast dispersion 0.058 0.080 0.002 0.032 0.868 

Tobin’s q 2.480 1.780 0.491 1.909 19.413 

Presample mean of Tobin’s q 2.402 2.07 0.551 1.788 23.209 

R&D stock/Assets 0.241 0.233 0.000 0.166 1.985 

Patent stock/R&D stock 3.670 23.304 0.000 0.312 495.647 

Citation stock/Patent stock 14.330 9.684 0.000 11.929 65.791 

Notes: N = 3,670 firm-year observations. Year and industry dummies are omitted for space reasons. 

 

Figure 1 
Log (Idiosyncratic volatility) vs. Log (Forecast dispersion) 
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3. Empirical model and results 

Our empirical analysis is based on the market value approach (e.g. Hall et al., 2005). The market 

value approach draws from the hedonic price model viewing firms as bundles of assets and 

capabilities, from plants and equipment to intangible assets such as brand names, good will and 

knowledge. We start with the standard market value equation with  denoting Tobin’s Q, A 

representing the physical assets and K the knowledge assets of firm i at time t.: 

(3) 

We add volatility of the firms’ fundamentals and information ambiguity : 

   (4) 

We take the logarithms of equation (4) and estimate the following model: 

 

In order to test whether information ambiguity has a stronger effect if fundamentals are volatile 

we incorporate an interaction term of  and  in a second specification. 

The results from non-linear least squares (NLLS) regressions and OLS regressions are presented 

in Table 2. We control for unobserved heterogeneity across firms by including the pre-sample 

mean of log Tobin’s q from a five-year pre-sample period (e.g. Lach and Schankerman, 2008). The 

results clearly support the theoretical predictions by Epstein and Schneider (2008). First, we find 

that information ambiguity has a significant negative impact on the firm’s market value. Second, 

we confirm the theoretical prediction that information ambiguity has a stronger negative effect if 

the underlying fundamentals are volatile which is shown by the significant negative interaction 

effect of information ambiguity and idiosyncratic volatility. The estimated effects for the 

innovation parameters are in line with prior literature (e.g. Hall et al., 2005). 
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Table 2 
Uncertainty and the market value of R&D 

Dependent variable: Log (Tobin’s q) 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Variable NLLS NLLS NLLS NLLS NLLS Pooled OLS Pooled OLS Pooled OLS Pooled OLS Pooled OLS 
R&D stock/Assets 0.737*** 0.727*** 0.902*** 0.896*** 0.923*** 0.386*** 0.388*** 0.479*** 0.477*** 0.489*** 
 (0.195) (0.191) (0.194) (0.194) (0.198) (0.106) (0.105) (0.102) (0.102) (0.102) 
Patent stock/R&D stock 0.002* 0.002* 0.002** 0.002** 0.002*   0.001** 0.001** 0.001** 0.001** 0.001**  
 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 
Citation stock/Patent stock 0.015*** 0.015*** 0.014*** 0.014*** 0.015*** 0.008*** 0.009*** 0.008*** 0.008*** 0.008*** 
 (0.005) (0.005) (0.005) (0.005) (0.005) (0.003) (0.003) (0.003) (0.003) (0.003) 
Log (Idiosyncratic volatility)  -0.190***  -0.031 -0.229**   -0.195***  -0.037 -0.231**  
  (0.043)  (0.042) (0.091)  (0.043)  (0.042) (0.093) 
Log (Forecast dispersion)   -0.152*** -0.148*** -0.104***   -0.152*** -0.148*** -0.105*** 
   (0.012) (0.013) (0.019)   (0.013) (0.013) (0.019) 
Log (Idiosyncratic volatility)     -0.058**      -0.057**  
       × Log (Forecast dispersion)     (0.024)     (0.025) 
Presample-mean of Tobin's q 0.219*** 0.236*** 0.230*** 0.233*** 0.237*** 0.228*** 0.245*** 0.237*** 0.240*** 0.244*** 
 (0.040) (0.037) (0.035) (0.034) (0.034) (0.041) (0.038) (0.035) (0.035) (0.035) 
Constant 0.368** 0.464*** -0.072 -0.045 0.103 0.417** 0.513*** -0.028 0.005 0.150 
 (0.182) (0.166) (0.141) (0.143) (0.151) (0.188) (0.171) (0.146) (0.148) (0.157) 
Year fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Industry fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
# of observations 3,670 3,670 3,670 3,670 3,670 3,670 3,670 3,670 3,670 3,670 
R-Squared 0.434 0.445 0.492 0.493 0.495 0.413 0.425 0.473 0.474 0.475 

Notes: ***,**,* indicate statistical significance at the 1%, 5% and 10% level.  
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7. Conclusions 

We provide an empirical test for the predictions made by Epstein and Schneider (2008). Our 

results confirm that 1. information ambiguity has a negative impact on the firm’s market value, 2. 

that the effect of information ambiguity is stronger if the underlying fundamentals are volatile. 
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