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Non-technical Summary

In the European Union, transport is the largest consumer of oil products and sec-

ond largest emitter of carbon dioxide (CO2); within the sector, road transport

dominates in both regards. Consumer shift to ultra-low-emission vehicles has been

regarded as a way to promote sustainable personal transportation. Whereas new

low-emission technologies – including battery electric vehicles – have clear benefits

such as efficiency gains and emission reductions, there are several barriers prevent-

ing broad adoption. On the one hand, electric vehicles are much more expensive

than standard gas vehicles with a similar build. On the other hand, consumers face

reliability issues, namely limited and variable driving range, and lack of refueling

stations.

Using stated-preference data on vehicle choice from a Germany-wide survey of

potential light-duty-vehicle buyers using computer-assisted personal interviewing,

in this paper we analyze market shares of different automotive technologies pro-

duced by a discrete choice model with flexible substitution among different fuel

types. Effectively, we propose a methodology to use the estimates of a probit model

to produce both market-share forecasts as well as Bayesian confidence intervals for

the forecasted shares. These forecasts are simulated from the posterior distribution

of a Bayesian model and account for uncertainty. Having better tools to address

uncertainty is particularly relevant in the context of modeling consumer response

to emerging energy-efficient technologies.

We define a base scenario of vehicle attributes that aims at representing an

average of the current vehicle choice situation in Germany. Consumer response to

qualitative changes in the base scenario is subsequently studied. Because limited

fuel availability is a major obstacle to consumer adoption of low-emission vehicles,

we analyze the specific effect of increasing the density of the network of service sta-

tions for charging electric vehicles as well as for refueling hydrogen-fueled vehicles.

Our results indicate that if availability of charging is increased to its maximum,

electric vehicles would experience a greater than three-fold increase in market pen-

etration.



Das Wichtigste in Kürze

Der Transportsektor ist innerhalb der Europäischen Union der größte Konsument

von Ölprodukten und der zweitgrößte Emittent von Kohlenstoffdioxid (CO2), wo-

bei der Straßenverkehr in beiderlei Hinsicht dominierend ist. Die Verlagerung der

Nachfrage hin zu besonders emissionsarmen oder -freien Fahrzeugen wird im All-

gemeinen als Möglichkeit angesehen, einen nachhaltigen Personenverkehr voranzu-

treiben. Auch wenn neue Niedrigemissions-Technologien, wie beispielsweise batte-

riebetriebene Elektrofahrzeuge, herkömmlichen Technologien in punkto Energieef-

fizienz und Abgasemissionen deutlich überlegen sind, so verhindern doch verschie-

dene Probleme deren umfassende Einführung. Zum einen sind Elektrofahrzeuge

in der Anschaffung viel teurer als vergleichbare Benziner. Zum anderen werfen

beschränkte und schwankende Reichweiten sowie fehlende Tankstellen für Konsu-

menten Fragen nach der Zuverlässigkeit solcher Fahrzeuge auf.

Unter Verwendung von Daten einer deutschlandweiten Befragung von poten-

tiellen Pkw-Käufern, analysieren wir in diesem Papier die Marktanteile unter-

schiedlicher Fahrzeugtechnologien auf Basis hypothetischer Kaufentscheidungen.

Wir schlagen hierbei eine Methodik vor, aus der Posterior-Verteilung der Bayes-

geschätzten Parameter eines flexiblen Probitmodells sowohl Prognosen über Markt-

anteile als auch die zugehörigen Bayes’schen Konfidenzintervalle zu generieren, und

damit deren Unsicherheit auf geeignete Art und Weise zu erfassen. Diese Vorge-

hensweise ist insbesondere bei der Modellierung der Nachfrage nach neuen, noch

nicht am Markt etablierten Technologien von großer Bedeutung.

In einem Basisszenario versuchen wir die gegenwärtige Marktsituation für deut-

sche Autokäufer darzustellen. Dazu nutzen wir, je nach Art des Kraftstoffs, un-

terschiedliche Durchschnittswerte für bestimmte Fahrzeugattribute wie Kaufpreis

oder CO2-Ausstoß. Anschließend untersuchen wir, wie sich die Nachfrage nach

strom- und wasserstoffbetriebenen Fahrzeugen im Vergleich zum Basisszenario

verändert, wenn das jeweils zugehörige Ladestationen- oder Tankstellennetz aus-

gebaut wird. Der Marktanteil von Elektrofahrzeugen würde sich laut unseren Er-

gebnissen zum Beispiel mehr als verdreifachen, wenn diese an jeder Tankstelle

aufgeladen werden könnten.
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Abstract

In this paper we use Bayes estimates of a multinomial probit model with fully

flexible substitution patterns to forecast consumer response to ultra-low-emission

vehicles. In this empirical application of the probit Gibbs sampler, we use stated-

preference data on vehicle choice from a Germany-wide survey of potential light-

duty-vehicle buyers using computer-assisted personal interviewing. We show that

Bayesian estimation of a multinomial probit model with a full covariance matrix

is feasible for this medium-scale problem. Using the posterior distribution of the

parameters of the vehicle choice model as well as the GHK simulator we derive

the choice probabilities of the different alternatives. We first show that the Bayes

point estimates of the market shares reproduce the observed values. Then, we

define a base scenario of vehicle attributes that aims at representing an average of

the current vehicle choice situation in Germany. Consumer response to qualitative

changes in the base scenario is subsequently studied. In particular, we analyze the

effect of increasing the network of service stations for charging electric vehicles as

well as for refueling hydrogen. The result is the posterior distribution of the choice

probabilities that represent adoption of the energy-efficient technologies.
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1 Introduction

Consumer shift to ultra-low-emission vehicles has been regarded as a way to pro-

mote sustainable personal transportation. Whereas new low-emission technologies

– including battery electric vehicles – have clear benefits such as efficiency gains

and emission reductions, there are several barriers preventing broad adoption. On

the one hand, electric vehicles are much more expensive than standard gas vehicles

with a similar build. On the other hand, consumers face reliability issues, namely

limited and variable driving range, and lack of refueling stations. Discrete choice

models are a powerful tool to understand how consumers evaluate these tradeoffs

and decide which vehicle to purchase (Bunch et al., 1993; Brownstone et al., 1996;

Brownstone and Train, 1999; Brownstone et al., 2000; Horne et al., 2005; Daziano

and Bolduc, 2011; Hensher et al., 2011; Achtnicht et al., 2012). Additionally, since

the automotive market presents highly differentiated products with several qual-

itative attributes that are hard to measure, it is desirable to work with flexible

discrete choice models that allow for both consumer and error heterogeneity. For

instance, unobservable qualitative attributes that may be shared – completely or

partially – among differentiated products, such as light duty vehicles, may create

correlation patterns that can be fairly complex (see Train, 2009).

The multinomial probit model (Thurstone, 1927) is a direct strategy for ad-

dressing heterogeneity of the error term in random utility maximization. In effect,

to avoid the econometric problems of biased and inconsistent parameters related

to specification error, there are two possible strategies for dealing with random

heterogeneity. First, the modeler can include additional additive error terms that

create correlation or heteroskedasticity. This is the modeling strategy of mixed

logit models (McFadden and Train, 2000). A second strategy is to introduce more

general structures that are derived directly from the covariance matrix. In the case

of the multinomial probit model, the general assumption is a direct generalization

of the covariance structure through error terms that have a multivariate normal

distribution. Applications of the multinomial probit model have included both

constrained and unconstrained versions of the covariance matrix of the multivari-

ate normally distributed error term (see Daganzo, 1979; Bolduc and Ben-Akiva,

1991; Munizaga and Daziano, 2005; Ziegler, 2011).

To forecast consumer response to ultra-low-emission vehicles, in this paper we
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adopt a multinomial probit model with a general covariance structure that offers

fully flexible substitution patterns among alternatives.

Fully flexible models do not need to assume a particular covariance structure;

instead, the substitution patterns are revealed from the data. However, using

frequentist econometrics, flexibility comes at a cost. Because the choice proba-

bilities of the probit model do not have a convenient closed form, simulation is

required to evaluate the multi-fold integral that represents the probit choice prob-

abilities. The GHK recursive probability simulator has been proposed and tested

for deriving a frequentist estimator of the parameters of the model (Geweke, 1991;

Hajivassiliou and McFadden, 1998; Keane, 1994). A problem that emerges is that

the maximum simulated likelihood estimator using the GHK simulator is compu-

tationally very expensive and becomes infeasible for both medium and large-scale

problems. Conversely, the Bayes probit estimator is analytically straightforward

(Albert and Chib, 1993) and has proven to perform better in estimation than

maximum simulated likelihood (Geweke et al., 1994, 1997). The basic idea is that

data augmentation allows for treating the model as an ordinary regression. Even

though several authors have analyzed the Bayes estimator of the multinomial pro-

bit model (McCulloch and Rossi, 1994, 2000; Bolduc et al., 1997; McCulloch et

al., 2000; Nobile, 2000), applications in transportation are rather limited. In fact,

Bayesian discrete choice, especially in modeling travel behavior, lags well behind

Bayesian developments in other fields.

In this paper we contribute to the literature of statistical inference in discrete

choice modeling by showing how the Bayes estimates of a multinomial probit model

can be combined with the GHK simulator to compute the posterior distribution of

the probit choice probabilities, and how this posterior provides measures of uncer-

tainty regarding the true choice probabilities. Note that in empirical applications

of discrete choice models, point estimates of the choice probabilities are virtually

never reported with confidence intervals. Finding confidence intervals for nonlin-

ear transformations of the structural parameters – such as the choice probabilities

– is a highly complex problem in frequentist econometrics. A related contribution

of this work is the empirical application of the recursive probability simulator us-

ing the Bayes estimates of the posterior distribution of the parameters of a probit

model of vehicle choice. In effect, we add to the literature on consumer adoption

of energy-intensive durable goods by addressing uncertainty in the forecasts of the
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model via the provision of exact credible intervals of the choice probabilities and

market shares.

The specific empirical case study in this paper is based on stated-preference

data on vehicle choice in Germany. Different analyses have been performed using

the data coming from this Germany-wide survey of potential light-duty-vehicle

buyers using computer-assisted personal interviewing (Achtnicht, 2011; Achtnicht

et al., 2012). For example, Achtnicht et al. (2012) analyze the effect of fuel avail-

ability on demand for alternative-fuel vehicles using the same choice data, focusing

on marginal probability effects as well as on the determination of willingness to pay

for increased fuel availability as derived from a standard conditional logit model.1

However, the present study is the first to use this data for both deriving and an-

alyzing market-share forecasts. Thus, we apply the methodological contribution

that we overview above – the combination of the Bayes probit estimates and the

recursive probability simulator – for constructing a Markov chain of market-shares.

We then find credible intervals of the market shares of differing scenarios of service

stations for the new energy-efficient vehicle technologies.

The rest of the paper is organized as follows. In section 2 we discuss more

details about the frequentist and Bayes estimators of the multinomial probit model,

and introduce a method for combining the GHK simulator and the Bayesian Gibbs

sampler. The vehicle choice data is described in section 3. Results of the estimation

of the parameters of the multinomial probit model are displayed in section 4.

In section 5 we use the estimates to produce forecasts to analyze the effect of

increasing the network of service stations for charging electric vehicles as well as

for refueling hydrogen. Section 6 concludes.

1Note that the conditional logit model imposes proportional substitution patterns, a restric-
tion that we withdraw in this paper.
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2 Review of two approaches for estimation of the

multinomial probit model

2.1 Probit choice probabilities

Consider the following multinomial probit model

Ui
(J×1)

= Xi
(J×K)

β
(K×1)

+ εi
(J×1)

(1)

yi
(1×1)

= j iff Uij = max
j′

Uij′ , (2)

where individual i chooses alternative j ∈ {1, ..., J} if the random utility vector Ui

has a maximal element in the j-th cell; the deterministic component is assumed

linear in the unknown parameters of the model β; Xi is a matrix of exogenous

hedonic attributes with row j equal to x′ij;
2 the error term has a multivariate

normal distribution εi ∼ N (0,Σ),∀i; and yi is a choice indicator that reveals

preferences.

Because of the ordinal nature of the utility function, only parameters of the

model in differences with respect to an arbitrary base alternative can be identified.

Consider the estimable model in differences with respect to alternative j:

∆jUi
(J−1×1)

= ∆jXi
(J−1×K)

β
(K×1)

+ ∆jεi
(J−1×1)

,∆jεi ∼ N (0(J−1),∆jΣ∆′j) (3)

yi =

{
j iff ∆jUij′ < 0, ∀j′ 6= j

j′ iff ∆jUij′ > max{0,∆jUi,−j}, ∀j′ 6= j
, (4)

where ∆j is a matrix difference operator; and ∆jUi,−j represents the set of all

elements of Ui with the exception of Uij.

The choice probabilities that are derived from the estimable version of the

probit model take the following form:

Pij =

∫ (xiJ−xij)′β

−∞
· · ·
∫ (xi1−xij)′β

−∞
f(∆jεi1, ...,∆jεiJ)d∆jεi1 · · · d∆jεi1, (5)

where Pij is the probability of individual i choosing the alternative j, and where

2Such that Uij = x′ijβ + εij .
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f(∆jεi) is the density of the multivariate normal N (0(J−1),∆jΣ∆′j):

f(∆jεi) =
1

(2π)
J−1

2 |∆jΣ∆′j|
1
2

exp

{
−1

2
ε′j∆

′
j∆jΣ∆′j∆jεj

}
. (6)

Note that the probit choice probability Pij is an integral of dimension J − 1

without a closed form. Numerical integration of the choice probabilities, including

Gaussian quadrature methods, is feasible only for low dimensions.3

2.2 The GHK simulator

The GHK simulator is based on Monte Carlo integration via recursive truncation of

the normal distribution (Geweke, 1991; Hajivassiliou and McFadden, 1998; Keane,

1994). The simulator is continuous and differentiable, produces probabilities that

lie strictly between zero and one, and manages low choice probabilities well. The

recursive truncation of the simulator comes from the model in differences with

transformed error terms using the Cholesky decomposition of ∆jΣ∆′j. Let C be

the Cholesky root of (∆jΣ∆′j)
−1. Then, ∆jUi = ∆jXiβ+Cηi, where η is a vector

of (J − 1) iid standard normal terms.

For the chosen alternative, Pij = Pr(∆jUij′ < 0,∀j′ 6= j). Since C is a lower

triangular matrix, Pij results in an expression that involves the recursive product

of truncated normal distributions. For example, consider a choice situation with

3 alternatives where, without loss of generality, the third alternative was chosen.

In this case, the probit choice probability Pi3 can be rewritten as

Pi3 = Φ

(
−∆3x

′
i1β

c11

)∫ −∆3x
′
i1β

c11

η1n=−∞
Φ

(
−∆3x

′
i2β + c21η1n

c22

)
φ(ηi1)

Φ(−∆3x′i1β

c11
)
dη1n, (7)

where c11, c21, and c22 are the elements of the Cholesky root, and where Φ(·) is

the CDF of a standard normal.

In equation (7), the dimensionality of the choice probability integral of equation

(5) has been reduced. However, there is still an integral to be evaluated. The GHK

3In general, numerical integration is feasible for up to three dimensions.
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simulator proposes an approximation to (7) by means of its empirical expectation:

P̃i3 = Φ

(
−∆3x

′
i1β

c11

) S∑
s=1

Φ

(
−∆3x

′
i2β + c21η

(s)
i1

c22

)
, (8)

where η
(s)
i1 is a random draw from a truncated normal distribution, truncated at

−∆3x
′
i1β/c11. In general, the GHK simulator of Pij takes the form

P̃ij = Φ

(
−∆jx

′
i1β

c11

) S∑
s=1

Φ

(
−

∆jx
′
i2β + c21η

(s)
i1

c22

)
· · ·Φ

(
−

∆jx
′
iJβ + [vechC]′η(s)

cJ−1,J−1

)
.

(9)

2.3 Maximum simulated likelihood estimator

The GHK simulator can be used to derive a maximum simulated likelihood esti-

mator (MSLE) of the parameters of the model. Then, a frequentist solution to

the estimation problem is (β̂, Σ̂)MSLE = arg max
∑

i ln P̃iji , whre ji is the alter-

native actually chosen by individual i. Note that optimization of the simulated

loglikelihood requires differentiation of the simulated choice probabilities. The

GHK simulator is continuous and differentiable, which is an advantage for finding

the optimum. Another advantage of the MSLE with the GHK simulator is that

only the choice probability of the chosen alternative is considered.4 However, the

loglikelihood of a multinomial probit model is not globally concave, making the

search for the optimum a nontrivial task. In addition, the simulator needs to be

run at every iteration of the optimization process. As a result, MSLE still is com-

putationally expensive for medium scale problems even with a restricted covariance

matrix.5 The associated computational cost is high enough to prevent the general

use of the probit model in empirical applications. Additionally, consistency of the

estimator requires not only a large sample, but also S →∞. In fact, even though

the GHK simulator is unbiased for the choice probabilities, for a finite S the MSLE

is biased.

4A simulator based on the method of simulated moments requires evaluation of the choice
probabilities for the whole choice set.

5In fact, nonconvergence is a rather common problem of the maximum simulated likelihood
estimator of the probit parameters.
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2.4 A Bayes estimator using Gibbs sampling

Based on the work of Albert and Chib (1993), McCulloch et al. (2000) proposed

a probit Bayes estimator that is analytically straightforward and avoids the prob-

lems of the MSLE. The Bayes estimator exploits the distribution of the reduced

form of the structural system defined by equations (3) and (4). In effect, the choice

indicator in equation (4) truncates the distribution of the random utility of equa-

tion (3). Thus, conditional on yi, the indirect utility has the following truncated

normal distribution:

π(∆jUi|yi) ∼

{
N (∆jXiβ,∆jΣ∆′j)1(∆jUij′ < 0,∀j′ 6= j)

N (∆jXiβ,∆jΣ∆′j)1(∆jUij′ > max{0,∆jUi,−j},∀j′ 6= j)
.

(10)

This conditional distribution is the core of the Gibbs sampler for the multinomial

probit model (see McCulloch et al., 2000). By augmenting the data, samples

of the utility function are drawn and then used as observations of the dependent

variable of equation (3). Then, parameters of the model can be estimated using the

Gibbs sampler for an ordinary regression.6 In effect, at iteration (g) of the Gibbs

sampler, a draw ∆jU
(g)
i ∼ π(∆jUi|yi) is generated according to the truncated

normal distribution of equation (10). This draw enters equation (3), which becomes

the following ordinary regression problem

∆jU
(g)
i = ∆jXiβ + ∆jεi, (11)

where the dependent variable is no longer latent. Thus, a Bayes estimator of β is

found by generating a draw from the following multivariate normal distribution

β(g) ∼ N
(

(V̌ −1
β β̌ + (C(g)′X)′C(g)′X)−1(V̌ −1

β + X′C(g)C(g)′∆jU
(g)) ,

(V̌ −1
β + C(g)′X′(C(g)′X))−1

)
,

(12)

where β̌ and V̌β are the parameters of the prior distribution p(β) ∼ N (β̌, V̌β). Note

that equation (12) assumes that the Cholesky decomposition of the covariance

6In general, discrete choice models require special econometric tools because the dependent
variable is latent. If the utility function were observable, standard regression techniques could
be applied. Data augmentation in the Bayesian setting provides observations of the utility.
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matrix of the model in differences is known. The Cholesky root C(g) can be

obtained from the draw (g) of the covariance matrix of the model ∆jΣ∆′j. Taking

into consideration the identification restrictions of the probit model (Dansie, 1985;

Bunch, 1991), Nobile (2000) proposed to generate draws of ∆jΣ∆′j by sampling

from an inverted-Wishart distribution

(∆jΣ∆′j)
(g) ∼ IW (ν̌ +N,∆jΣ̌∆′j +

N∑
i=1

∆jεiε
′
i∆
′
j)|c11=1, (13)

where the ν̌ and ∆jΣ̌∆′j are the parameters of the inverted-Whishart prior p(∆jΣ∆′j)

= IW (ν̌,∆jΣ̌∆′j).

2.5 Combining the Bayes estimates and the GHK simula-

tor

Forecasting with discrete choice models involves analyzing the choice probabilities

after a qualitative change. Thus, once the posterior distributions of the taste

parameters β and the nuisance parameters Σ have been found, forecasting with

the model requires evaluation of the choice probabilities at different levels of the

hedonic attributes. In the case of the multinomial probit model, this evaluation

can be computed using the GHK recursive probability simulator. Note that use

of the GHK simulator for forecasting and estimation is different. Whereas for

forecasting the parameters of the model are given by the estimates, for estimation

the parameters are unknown. It is the combination of the GHK simulator and the

maximization of the loglikelihood function that becomes computationally infeasible

for medium and large-scale problems. However, the GHK simulator remains a

feasible approximation of the choice probabilities when the parameters of the model

are given.7

In this paper, to derive the posterior distribution of the probit choice proba-

bilities we propose to use the GHK simulator to postprocess the Gibbs sampling

estimates (cf. Edwards and Allenby, 2003). Specifically, we propose running the

GHK simulator for every sample of the posterior generated at every iteration of

7In addition, good statistical properties of the GHK simulator are present for the computation
of the choice probabilities. Unlike the MSLE with the GHK simulator, the simulated estimator
of the choice probabilities is unbiased.
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the Gibbs sampler outlined in the previous subsection.

Consider the Markov chain Monte Carlo sample generated by the Bayes esti-

mator at iteration (g) of the probit Gibbs sampler. Suppose in addition that a

qualitative change in the attributes is captured by the vector X(1). The simulated

element (g) of the posterior distribution of the choice probability Pij is then

P̃
(g)
ij =Φ

(
−∆jx

(1)′

i1 β
(g)

c
(g)
11

)
×

S∑
s=1

Φ

(
−∆jx

(1)′

i2 β
(g) + c

(g)
21 η

(s)
i1

c
(g)
22

)
· · ·Φ

(
−∆jx

(1)′

iJ β
(g) + [vechC(g)]′η(s)

c
(g)
J−1,J−1

)
.

(14)

Thus, using the samples β(g) and C(g) of the Gibbs sampler, and repeating this

procedure ∀g, it is possible to build a sequence of iterative random draws that forms

an irreducible and ergodic Markov chain converging at an exponential rate to the

posterior distribution of the choice probabilities. This posterior distribution can be

used to account for uncertainty in the determination of the choice probabilities and

market shares through the derivation of credible intervals, which are the Bayesian

counterpart of confidence intervals.

3 Vehicle Choice Data

The stated preference data used in this paper comes from a Germany-wide survey

of potential car buyers that was administered between August 2007 and March

2008 as a computer-assisted personal interview (CAPI). The survey was designed

to garner insights into consumer preferences for alternative-fuel vehicles (see Acht-

nicht, 2011; Ziegler, 2011; Achtnicht et al., 2012). A total of approximately 600

interviews were conducted at various car dealerships and branch offices of TÜV,

the German agency responsible for certifying vehicle roadworthiness. The respon-

dents were picked randomly, but had to be of legal age and possess a valid driver’s

license. The sample comprises individuals from different regions in Germany (east-

ern and western Germany, urban and rural areas) and various demographic and

socioeconomic groups (in terms of age, gender, education, income, etc.). It thus

provides a broad cross-section of the target population, i.e. potential car buyers
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Table 1: Sample demographics.

Survey question Sample (N=598) Population

Gender
Male 74.6 69.0
Female 25.4 31.0

Age
29 or below 20.7 17.7
30–39 21.1 19.9
40–49 20.2 28.2
50–59 17.7 19.4
60 or above 20.2 14.8

Education
Secondary modern school degree 17.1 24.0
High school degree 31.1 33.2
University of applied sciences entrance qualification 8.0 9.5
Higher education entrance qualification, university or college degree 43.5 31.3
(Yet) without school degree or others 0.3 2.0

Household’s monthly net income
e1,000 or below 3.3
e1,000–2,000 18.4
e2,000–4,000 37.1
e4,000 or above 22.6
Not stated 18.6

Source: KBA (2009); MiD (2010); own calculations
Note: The population shares for gender and age are based on car owner data including all registrations of new
and used cars in Germany in 2008 (KBA, 2009). The population shares for education represent the distribution
among people with a car-driver’s license, based on a representative survey on mobility in Germany (MiD, 2010).
To the authors’ knowledge, there are no data on the income distribution of the target population (i.e. potential
car buyers from Germany) available.

in Germany, although it is not entirely representative. Compared with the official

data available from KBA (2009) and MiD (2010), it seems that more educated

individuals are over-represented, whereas women and individuals aged 40 to 49

years are under-represented in the sample; see Table 1 for more details.

In the survey, respondents participated in a choice experiment involving various

alternative-fuel vehicles. In each choice set, respondents were presented with seven

hypothetical vehicles and asked to select the car they preferred most. The alterna-

tives were characterized by the following six attributes: purchase price; fuel costs

per 100 km; engine power; CO2 emissions per km; fuel availability (given by the

service station network size); and fuel type.8 Respondents were asked to assume

that the presented hypothetical alternatives only differed with regard to these at-

8The 7 × 6 choice set design used in this survey was relatively demanding for respondents.
However, based on the results of a pretest, the survey team at that time concluded that the
experimental design was appropriate and not overly challenging. For a more detailed discussion
of the issue of choice complexity, see Achtnicht (2011), which uses the same data set.
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Table 2: Attributes and attribute levels for the vehicle choice experiment.

Attribute Levels

Fuel type Gasoline, Diesel, Hybrid, LPG/CNG, Biofuel, Hydrogen, Electric

Purchase price 75%, 100%, 125% of referencea (in e)

Engine power 75%, 100%, 125% of referencea (in hp)

Fuel costs per 100 km e5, e10, e20

CO2 emissions per km no emissionsb, 90 g, 130 g, 170 g, 250 g

Fuel availability 20%c, 60%, 100% of service station network
a average of the lower and upper bounds for the next car indicated by the respondent
b only applied to non-fossil fuel types (i.e. biofuel, hydrogen, and electric)
c not applied to conventional fuel types (i.e. gasoline and diesel)

tributes, but were otherwise identical. Table 2 gives details on the attribute levels.

To examine potential alternative-specific effects related to fuel type, each fuel was

included once in each choice set (thus “labeling” the choice experiment). The at-

tributes “purchase price” and “engine power” were customized. Respondents were

asked beforehand to describe the vehicle they intended to buy, indicating upper

and lower bounds for price and horsepower, which were then averaged and used as

an individual reference or pivot. This pivot or customization approach is common

in the transportation literature and it increases the relevancy of attribute levels

and choice scenarios (e.g., Hensher, 2010; Hensher et al., 2005).

In the choice experiment, the attribute levels varied independently between

alternatives and choice sets. This ensured that each attribute’s impact on choice

selection could be isolated. However, in order to avoid the inclusion of unrealistic

scenarios, only positive emissions were allowed for fossil fuels (i.e. gasoline, diesel,

CNG/LPG), and the lowest fuel availability level (i.e. 20%) was excluded for

conventional-fuel alternatives.9 The final fractional factorial design of the choice

experiment, which was generated using Sawtooth software, required respondents

to evaluate six choice sets.

9According to Moore and Holbrook (1990), the degree to which attribute-level combinations
are realistic is of less practical importance than is sometimes feared. Moore and Holbrook
analyzed the effect of unrealistic stimuli on consumer judgements in terms of perceived realism
and predictive power in three experiments in a car choice context. Their results provide evidence
that the choice likelihoods are not affected by differences in scenario realism.
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Table 3: Point estimates of the multinomial probit model of vehicle choice.

Bayesian probit

Variable Estimate Standard error

Purchase price [e1000] −0.0150∗∗∗ 0.0020
Fuel costs [e/100 km] −0.0316∗∗∗ 0.0029
Fuel availability [%] 0.0053∗∗∗ 0.0005
Engine power [HP] 0.0026∗∗∗ 0.0004
CO2 emissions [g/km] −0.0016∗∗∗ 0.0002
Gasoline 0.0049 0.0787
Hybrid −0.0685 0.0832
LPG/CNG −0.2208∗∗ 0.1172
Biofuels −0.2261∗∗∗ 0.1021
Hydrogen −0.0714 0.0820
Electric −0.2737∗∗∗ 0.1020

Observed choices 4186
Individuals 598
Simulated loglikelihood -6113.707
Pseudo ρ2 0.125

Note: Asterisks denote statistical significance at the *** p< 0.01, ** p< 0.05, * p< 0.1 level.

4 Model specification and estimation

The result of Bayesian estimation of a discrete model is the posterior distribution

of the parameters. However, the Bayesian framework also offers an answer to

the point estimation problem. In the following table we present the Bayes point

estimates of the probit model, which correspond to the mean of the posterior

distribution. Since the Bayes estimator of a probit model is a Gibbs sampler, the

point estimates are the empirical mean of the draws of the Markov chain.

We used a chain of 50,000 iterations which took roughly 200 minutes. Note that

we attempted to solve the frequentist maximum simulated likelihood estimator

with a full covariance matrix, but the estimator failed to converge.10

Because we assumed a linear specification of the indirect utility, the parameters

of the model represent marginal utilities that can be described as fixed taste pa-

rameters. Buyers of new vehicles obtain less satisfaction when a car comes with an

elevated price tag. More expensive variable costs – which are related to fuel costs –

also reduce utility. An interesting result is the negative marginal utility of carbon

dioxide emissions. This result shows that prospective buyers care about the en-

vironmental externalities of personal transportation, and they prefer vehicles that

10When imposing an independent and homoskedastic covariance matrix, both the Bayes esti-
mator and the frequentist estimator produced undistinguishable point estimates.
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Table 4: Posterior quantile estimates.

Bayesian probit

Variable 2.5% 5% 50% 95% 97.5%

Purchase price −0.0191 −0.0184 −0.0149 −0.0117 −0.0111
Fuel costs −0.0374 −0.0365 −0.0316 −0.0268 −0.0259
Fuel availability 0.0043 0.0044 0.0053 0.0062 0.0064
Engine power 0.0019 0.0020 0.0026 0.0032 0.0033
CO2 emissions −0.0021 −0.0020 −0.0016 −0.0013 −0.0013
Gasoline −0.1493 −0.1256 0.0039 0.1344 0.1608
Hybrid −0.2412 −0.2112 −0.0642 0.0615 0.0828
LPG/CNG −0.4776 −0.4232 −0.2142 −0.0432 −0.0143
Biofuels −0.4421 −0.4036 −0.2190 −0.0735 −0.0443
Hydrogen −0.2374 −0.2119 −0.0696 −0.0598 0.0861
Electric −0.4825 −0.4498 −0.2680 −0.1137 −0.0842

produce less pollution. More power is a desired feature, as can be seen from the

associated positive marginal utility. Another appreciated attribute is availability

of fuel. If the specific fuel is readily available, then some of the reliability issues

of low-emission vehicles are resolved and consumers are more satisfied. In discrete

choice modeling, these levels of satisfaction or dissatisfaction translate into higher

or lower choice probabilities. For example, consumers are more likely to choose

a car that is relatively cheap, with inexpensive fuel or an energy-efficient engine

that reduce operating costs, with a dense station network, good horsepower, and

reduced CO2 emissions.

If all of the considered attributes were the same among all of the alternatives,

then gasoline and diesel vehicles would be preferred. Electric vehicles turn out

to be the least preferred. Note that the alternative specific constant captures the

effect of the omitted variables. The experimental design omitted variables such as

driving range, which is negatively perceived in the case of electric vehicles due to

the limitations of current electric vehicle batteries. Thus, driving range anxiety

is one explanation for the low alternative specific constant of electric vehicles (cf.

Achtnicht et al., 2012).

In the following table we present the quantile estimates of each marginal utility.

These quantiles are a summary of the joint posterior distribution. Note that the

values that concentrate 95% of the mass can be used to determine the credible

intervals for each taste parameter, i.e. the 2.5% quantile represents the lower

bound and the 97.5% quantile the upper bound of the 95% credible interval.

For a multinomial probit model, the parameter space is completed with the

13



Table 5: Point estimates of the covariance matrix in differences.

Variable ∆DGas ∆DHybrid ∆DLPG/CNG ∆DBiofuels ∆DHydrogen ∆DElectric

∆DieselGasoline 1.00
-

∆DieselHybrid 0.36∗∗ 1.19∗∗∗

(0.19) (0.35)
∆DieselLPG/CNG 0.78∗∗∗ 0.86∗∗∗ 1.58∗∗∗

(0.16) (0.29) (0.38)
∆DieselBiofuels 0.47∗∗∗ 0.49∗∗∗ 0.93∗∗∗ 1.05∗∗∗

(0.14) (0.23) (0.27) (0.28)
∆DieselHydrogen 0.60∗∗∗ 0.42∗ 0.87∗∗∗ 0.82∗∗∗ 1.14∗∗∗

(0.13) (0.25) (0.25) (0.23) (0.29)
∆DieselElectric 0.55∗∗∗ 0.57∗∗∗ 0.91∗∗∗ 0.66∗∗∗ 0.60∗∗∗ 1.08∗∗∗

(0.13) (0.23) (0.26) (0.20) (0.20) (0.27)

Note: Model in difference with respect to Diesel. Standard errors in parentheses. Asterisks denote statistical
significance at the *** p< 0.01, ** p< 0.05, * p< 0.1 level.

nuisance parameters associated with the elements of the covariance matrix of the

model in differences. We allowed flexible substitution patterns through a fully

flexible covariance structure, and from the point estimates it is possible to see the

presence of heteroskedasticity and different correlation levels.

5 Forecasting

5.1 Experimental market shares

It is well known that parameters of a simple logit model are such that the ob-

served and predicted attribute average are the same. Thus, in a logit model with

alternative-specific constants the predicted market shares reproduce by construc-

tion the observed market shares. Because this property of the logit model does not

extend to the probit model, we are interested in determining whether the probit is

able to reproduce the market shares. In the following table the observed and pre-

dicted market shares are displayed. Note that in the case of the stated-preference

data, the observed or experimental market shares are the percentages that are

directly derived from the stated choices.

As discussed in section 2, a clear advantage of the Bayes estimator is that

the sample of the posterior distribution, simulated via Markov chain Monte Carlo

methods, can be used to generate the posterior distribution of any function of the

original parameters of the model. Since the choice probabilities are a function of

14



Table 6: Experimental and predicted market shares

Observed Point estimates Bayes quantile estimates of the market shares [%]

Vehicle type shares [%] 2.5% 25% 50% 75% 97.5%

Gasoline 19.5 19.5 18.2 19.1 19.5 19.9 20.8
LPG/CNG 12.2 12.2 11.2 11.9 12.2 12.6 13.3
Hybrid 12.7 12.7 11.6 12.3 12.7 13.0 13.7
Electric 8.7 8.6 7.8 8.3 8.6 8.9 9.5
Biofuels 11.0 10.9 9.9 10.6 10.9 11.2 11.9
Hydrogen 15.1 15.1 14.0 14.7 15.1 15.5 16.2
Diesel 20.9 21.0 19.7 20.5 21.0 21.5 22.5

the marginal utilities, we determined first the posterior distribution of the choice

probabilities and then the posterior distribution of the aggregate choices in the

form of market shares. More specifically, for every observation in the sample and

for every MCMC draw of the Bayes estimator, we ran 200 repetitions of the GHK

simulator. Not only are the experimental market shares within the 95% credible

interval, but the point estimates also replicate the observed values almost perfectly.

Note that credible intervals for the market shares are tight, although the coefficient

of variation of the credible intervals of some of the alternative-specific constants is

relatively high.

5.2 Adoption scenarios

A problem with experimental market shares of stated-preference studies, as op-

posed to observed shares in real markets of revealed-preference data, is that stated

choices are a response to the experimental attribute variation. Thus, little can be

said about the competitiveness of the different alternatives. Because of these limi-

tations, we decided to examine the behavior of an individual faced with a scenario

of vehicle attributes intended to represent an average of the current vehicle choice

situation in Germany. This base scenario is summarized in table 7. Both sources

and assumptions are discussed below.

Assumed values for purchase price and in-use CO2 emissions11 are taken from

the 2015 scenario of the research project “Trends in Energy Markets until 2030

– Energy Forecast 2009”.12 Fuel consumption data, also taken from this project,

11Emissions occurring during fuel production were not taken into account here.
12This project aimed to establish a consistent set of realistic scenarios for the long-term

evolution of energy-resource supply and demand in Germany, using of the TIMES PanEU energy
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Table 7: Base scenario: average vehicle choice in Germany

Attributes

Vehicle type Purchase price Fuel costs Fuel availability Engine power CO2 emissions
[e] [e/100km] [%] [HP] [g/km]

Gasoline 19558 7.86 100 100 143
LPG/CNG 21240 4.69 42 100 116
Hybrid 22739 5.90 100 100 107
Electric 34897 4.00 3.5 100 0
Biofuels 19895 7.34 2.3 100 20
Hydrogen 27474 5.00 0.1 100 0
Diesel 20735 6.38 100 100 146

was used to derive average fuel costs. Here we assume a gasoline price of e1.31 per

liter, a diesel price of e1.16 per liter, and that one liter of LPG costs about half

as much, and biofuel about two thirds as much as gasoline, as is currently the case

in Germany. Because the vehicle-choice survey was conducted mainly in 2007, all

monetary values of table 7 are adjusted to 2007 euros using the German consumer

price index provided by the German Federal Statistical Office. Note further that

our assumptions regarding biofuel are based on E85, which consists of 85% ethanol

and 15% gasoline. The assumed fuel costs for hydrogen and electric cars are

based on results from the “GermanHy” study (BMVBS, 2009), financed by the

German Federal Ministry of Transport, and a recent McKinsey study (McKinsey,

2010). The fuel availability data reflects the German status quo. Today, there

are approximately 15,000 service stations (including freeway service stations) in

Germany. Based on an online search, we found that LPG/CNG can be refueled at

6,280/892 service stations, biofuel (E85) at 345, hydrogen at 8, while for electric

cars there are 512 charging stations available. However, we could not find any

reliable average data for current or expected engine power. Therefore, we decided

to ignore possible differences in engine power and use 100 HP for each fuel type.

Of course, all assumed figures are tentative and should be treated with caution.

Consumer adoption of ultra-low emission vehicles depends on adequate pro-

vision of refueling or recharging infrastructure.13 Thus, combining both the base

system model.
13It has been argued that the lack of an appropriate service station infrastructure is a major

barrier for the adoption of ultra-low emission vehicles (Bunch et al., 1993; Daziano and Bolduc,
2011; Achtnicht et al., 2012). Understanding how consumers react to qualitative improvements
in the service station network is necessary for planning the corresponding infrastructure invest-
ments.
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scenario of table 7 and the probit Bayes point estimates of tables 3 and 5 we pro-

duce forecasts to analyze the effect of increasing the density of the service station

network. In particular, we study the effects on market shares of increases in the

density of service stations required for charging electric vehicles as well as of those

for refueling hydrogen-powered vehicles.14

Table 8 summarizes the posterior distribution of the aggregate choice probabil-

ities of the different vehicle types. We start with the base scenario, i.e. we produce

market shares that represent choices of representative consumers when faced to the

attribute levels of table 7. To obtain these market shares, for each MCMC draw of

the joint posterior of the probit parameters and given the average attribute levels

we calculate the choice probabilities of each alternative. For this, 200 repetitions

of the GHK simulator are performed. Once this procedure has been repeated for

every sample, we obtain the joint posterior distribution of the market shares. In

the table the posterior distribution is summarized presenting its mean, which is

equivalent to the point estimate, and its standard deviation, which can be used as

an analog to frequentist standard error.

As a second step, we vary the density of the charging network for electric

vehicles. In table 8 results for densities equal to 10%, 30%, 50%, 70%, and 100%

are reported, holding everything else constant (and equal to the base scenario).

For example, the market shares of the upper 10%-column are given by the choice

probabilities of a representative consumer facing the same attribute levels as in the

base scenario, except that the density of electric charging infrastructure has gone

up from 3.5% to 10%. The joint posterior of the market shares for this situation

is obtained following the same procedure used for the base scenario. Then, we

perform the same exercise for the density of the hydrogen fueling network. In

Appendix A the information of table 8 is supplemented with a summary of the

posterior distribution of the market shares of more extensive scenarios varying

service station density for both electric and hydrogen vehicles.

As expected, a more dense service station network clearly increases consumer

adoption of the low-emission technologies. For instance, a charging infrastruc-

14When analyzing differing scenarios of fuel availability, Achtnicht et al. (2012) focus on
marginal probability effects rather than on forecasting market shares, and thus use the same
price, fuel costs, engine power, and CO2 emissions for all vehicles in their scenarios. Additionally,
whereas we assume flexible substitution patterns via a multinomial probit model, the marginal
probability effects in Achtnicht et al. (2012) are based on a conditional logit model.
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ture that matches the density of standard gasoline stations produces a remarkable

331% increase in the market share of electric vehicles as compared with the base

scenario.15 In this ideal situation, and for the hypothesized adoption scenario, the

market share of electric vehicles is forecasted to reach almost 12% of the mar-

ket, with the upper bound of the 95% credible interval at 14.38% and the lower

bound at 9.75%. Due to an expected lower purchase price for hydrogen vehicles as

well as to the difference in alternative-specific constants, the base market share is

larger for hydrogen vehicles than for electric vehicles. From a base level of 7.28%,

even with an extremely low fuel availability density of 0.1%, the market share of

hydrogen vehicles goes up to 22.44% with a fully competitive refueling network,

with upper and lower bounds of the 95% credible interval of the market shares at

19.88% and 25.13%, respectively.

As a general characteristic of discrete models, the elasticity of demand with

respect to changes in fuel availability is not constant.16 This can be seen in the

curves shown in figure 1, which depict the point estimate and 95% credible interval

of the market shares under increased fuel availability.17

15The base situation assumes a density of 3.5%.
16In fact, using a linear specification, initial infrastructure investments have a low impact on

the penetration of the energy efficient vehicles.
17Note that in discrete choice models point estimates of the market shares are usually re-

ported without confidence intervals, whereas our suggested method for postprocessing the Bayes
estimators has proven to facilitate the derivation of credible intervals.
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Table 8: Forecasted market shares

Base shares [%] Density of the Electric Vehicle charging network

Vehicle type 10% 30% 50% 70% 100%

Gasoline 21.98 21.94 21.79 21.57 21.29 20.75

(1.22) (1.22) (1.22) (1.19) (1.18) (1.15)

LPG/CNG 11.43 11.41 11.40 11.33 11.16 10.71

(0.97) (0.97) (0.93) (0.91) (0.89) (0.88)

Hybrid 23.97 23.86 23.42 22.96 22.39 21.23

(1.46) (1.45) (1.36) (1.32) (1.28) (1.26)

Electric 2.78 3.12 4.40 6.00 8.00 11.97

(0.55) (0.58) (0.66) (0.77) (0.89) (1.19)

Biofuels 6.01 5.95 5.62 5.37 5.08 4.55

(0.74) (0.72) (0.68) (0.65) (0.63) (0.64)

Hydrogen 7.28 7.24 7.17 7.00 6.79 6.37

(0.88) (0.87) (0.82) (0.80) (0.78) (0.77)

Diesel 26.55 26.48 26.15 25.77 25.29 24.42

(1.65) (1.63) (1.63) (1.60) (1.59) (1.60)

Base shares [%] Density of the Hydrogen refueling network

Vehicle type 10% 30% 50% 70% 100%

Gasoline 21.98 21.79 21.29 20.70 20.00 18.77

(1.22) (1.22) (1.18) (1.15) (1.13) (1.14)

LPG/CNG 11.43 11.46 11.18 10.85 10.47 9.78

(0.97) (0.93) (0.90) (0.86) (0.85) (0.86)

Hybrid 23.97 23.57 22.85 22.01 21.03 19.37

(1.46) (1.37) (1.32) (1.28) (1.25) (1.23)

Electric 2.78 2.76 2.64 2.50 2.35 2.10

(0.55) (0.53) (0.50) (0.48) (0.46) (0.44)

Biofuels 6.01 5.81 5.65 5.46 5.25 4.86

(0.74) (0.70) (0.68) (0.67) (0.65) (0.65)

Hydrogen 7.28 8.35 10.70 13.50 16.74 22.44

(0.88) (0.89) (0.94) (1.00) (1.10) (1.33)

Diesel 26.55 26.26 25.70 24.99 24.16 22.68

(1.65) (1.64) (1.64) (1.62) (1.67) (1.74)

Note: Standard errors in parentheses. All estimates stastically significant at the p< 0.01 level.
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Figure 1: Point estimates and 95% credible interval bounds of the market shares of electric
(left) and hydrogen (right) vehicles.

The average elasticity of the market share of electric vehicles is 0.07 in the 0-

10% density interval, 0.65 in the 40-50% interval, and 1.30 in the 90-100% interval.

In the case of hydrogen vehicles, the average elasticity is 0.07 in the 0-10% density

interval, 0.48 in the 40-50% interval, and 0.89 in the 90-100% interval. These

measures are relevant for planning both public and private investments in the

infrastructure necessary to promote and ensure adequate consumer adoption of

energy-efficient vehicle technologies.

Another relevant outcome of the modeling strategy adopted in this paper is

the different degree of competition among vehicle types, which is a result of our

assumption of a multinomial probit model with full covariance matrix. For exam-

ple, the increase of the market share of electric vehicles from the base 2.78% with

a charging network density of 3.5% to 6.00% when the density achieves 50% is

explained by a decrease of 1.87% in the market share of gasoline vehicles, 0.90% of

LPG/CNG, 4.21% of hybrids, 10.58% of biofuels, 3.79% of hydrogen, and 2.95%

of diesel. If we repeat the same exercise for hydrogen vehicles, the deeper pene-

tration of hydrogen when the refueling density achieves 50% is accompanied by a

decrease of 5.85% in the market share of gasoline vehicles, 5.12% of LPG/CNG,

8.17% of hybrids, 10.07% of electric, 9.19% of biofuels, and 5.86% of diesel. It is

noteworthy that when electric vehicles become more competitive, the largest rela-

tive changes occur in the consumer switch from hybrids and biofuel to electricity
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propelled vehicles.18

Although our results suggest a potentially large penetration of hydrogen ve-

hicles, in practice hydrogen vehicles are not yet commercially available and the

required infrastructure investments are larger than those needed for charging elec-

tric vehicles. Not only will new, dedicated fueling stations be needed for fuel-cell

vehicles, but also substantial investments in production, distribution, and storage

of hydrogen fuel. At the other extreme, however, electric batteries can, if necessary,

be charged using regular outlets.19

6 Summary and conclusion

In this paper we have shown how Bayesian econometrics allows modelers to revisit

estimation of the multinomial probit model. There are several advantages of using

a Bayes estimator instead of the maximum simulated likelihood estimator. Not

only is the Bayes estimator feasible for higher dimensions, but it also permits the

modeler to consider a full covariance matrix. In contrast, due to the computational

cost of the frequentist estimator, practical applications of the GHK recursive prob-

ability simulator within the maximum simulated likelihood estimator have on the

other hand typically used restricted covariance structures. We have shown that

the full flexibility of the probit model can be exploited in practice through the

Bayes estimator, and that once the model has been estimated the GHK simulator

can be used for evaluating the choice probabilities. Additionally, because the re-

sult of the Bayesian estimation process is not merely a point but rather the whole

posterior distribution of the parameters, we show that the Bayes estimates can

be used to obtain the posterior distribution of the choice probabilities as well. In

the procedure proposed here the GHK recursive probability simulator is run for

every draw of the posterior distribution of both the parameters of interest and the

nuisance parameters of the multinomial probit model, i.e. to construct a Markov

chain of samples of the posterior of the choice probabilities we propose to postpro-

cess the parameter posterior via Monte Carlo simulation. The resulting posterior

distribution of the probit choice probabilities and market shares can then be used

18Hybrid vehicles exhibit the largest absolute decrease.
19However, the provision of fast charging stations is necessary for ensuring reasonable charging

times.
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to obtain credible intervals that account for uncertainty regarding the true value

of the random data generating process. Having better tools to address uncertainty

is particularly relevant in the context of modeling consumer response to emerging

energy-efficient technologies.

In our case study of consumer adoption of ultra-low-emission vehicles in Ger-

many, we first showed that the Bayes point estimates of the market shares repro-

duce the shares given by the stated choices. Then, we produced forecasts for a

representative individual based on a scenario of vehicle attributes that aims at rep-

resenting an average of the current vehicle choice situation in Germany. Because

limited fuel availability is a major obstacle to consumer adoption of low-emission

vehicles, we have also analyzed the effect of increasing the density of the network

of service stations for charging electric vehicles as well as for refueling hydrogen-

fueled vehicles. The result is the posterior distribution of the choice probabilities

that represent adoption of energy-efficient technologies in the context of a more

competitive infrastructure. For example, our results indicate that if availability of

charging is increased to its maximum, electric vehicles would experience a greater

than three-fold increase in market penetration.
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A Forecasts

Table 9: Summary of the posterior distribution of the Electric Vehicle share

Mean [%] Bayes quantile estimates of the market shares [%]

Charging network density 2.5% 25% 50% 75% 97.5%

3.5% 2.78 1.80 2.40 2.75 3.13 3.95
10% 3.12 2.07 2.72 3.09 3.49 4.36
20% 3.73 2.64 3.30 3.70 4.13 5.04
30% 4.40 3.19 3.94 4.36 4.82 5.79
40% 5.16 3.86 4.66 5.12 5.61 6.66
50% 6.00 4.57 5.47 5.97 6.50 7.57
60% 6.95 5.40 6.38 6.91 7.49 8.64
70% 8.00 6.32 7.38 7.97 8.58 9.82
80% 9.18 7.37 8.52 9.15 9.83 11.16
90% 10.46 8.46 9.72 10.44 11.15 12.65
100% 11.97 9.75 11.15 11.94 12.76 14.38

Table 10: Summary of the posterior distribution of the Hydrogen Vehicle share

Mean [%] Bayes quantile estimates of the market shares [%]

Refueling network density 2.5% 25% 50% 75% 97.5%

0.1% 7.28 5.64 6.67 7.25 7.85 9.05
5% 7.82 6.20 7.21 7.79 8.39 9.57
10% 8.35 6.68 7.73 8.32 8.94 10.17
20% 9.47 7.77 8.84 9.45 10.07 11.30
30% 10.70 8.95 10.05 10.67 11.32 12.60
40% 12.05 10.23 11.38 12.02 12.69 14.02
50% 13.50 11.59 12.81 13.47 14.17 15.47
60% 15.06 13.09 14.35 15.01 15.75 17.12
70% 16.74 14.65 15.98 16.72 17.47 18.93
80% 18.53 16.34 17.74 18.50 19.30 20.83
90% 20.43 18.03 19.60 20.42 21.25 22.91
100% 22.44 19.88 21.53 22.42 23.32 25.13
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