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Non-technical Summary 

How does social interaction influence an academic’s decision to become entrepreneurial and 

to collaborate with industry? Does the academic’s age attenuate or amplify its effects? Since 

links between science and industry have become a widespread phenomenon over the last 

decades, a growing body of literature has investigated the role of peers in shaping an 

academic’s engagement in commercial activities. In this paper, we seek to shed more light on 

the boundary conditions for the effects of social interaction on a scientist’s engagement with 

industry. Specifically, we examine the impact of localized and personal peer effects on 

academics’ involvement with industry and how these effects are moderated by the career age 

of the scientist. We suggest that both localized and personal peer effects drive industry 

involvement but that the effects from such imprinting are more pronounced for younger 

researchers, suggesting that professional imprinting takes place in the early stages of a 

scientist’s academic career. 

Our empirical analysis rests upon a sample of 330 academic scientists working in the 

field of biotechnology in Germany who were surveyed in 2010. The results indicate that 

Social interaction plays a major role in shaping scientists’ propensity to engage with industry. 

Both localized and personal peer effects turn out to be relevant which confirms and extends 

prior literature. Moreover, the scientist’s career age turns out to be an important boundary 

condition, but only for one type of peer effects. While localized peer effects, i.e. the scientist 

department’s co-publications with industry, lead to imprinting particularly in the early years 

of a scientist’s career, the personal peer effect remains unaffected by the career age. 

Moreover, for younger researchers the localized peer effect is larger than the personal peer 

effect. Our results hold important implications for science, technology and innovation policy 

on how to stimulate academics’ engagement with industry. 



 

 
 

Das Wichtigste in Kürze (Summary in German) 

Wie beeinflussen soziale Interaktionen die Entscheidungen von Wissenschaftlern, mit der 

Industrie zusammen zu arbeiten? Welche Rolle spielt dabei das Alter des Wissenschaftlers 

für den Entscheidungsprozess? In Zeiten intensiver Zusammenarbeit zwischen Wissenschaft 

und Wirtschaft widmet sich eine wachsende Anzahl von Studien der Frage, welche Rolle die 

Kollegen am Arbeitsplatz eines Wissenschaftlers für den Wissens- und Technologietransfer 

spielen. Die vorliegende Studie will zu diesem Thema einen Beitrag leisten und geht der 

Frage nach, ob der Einfluss sozialer Interaktion vom Alter des Wissenschaftlers abhängig ist. 

So wird zwischen „lokalisierten“ und „persönlichen“ Effekten sozialer Interaktion 

unterschieden. Während erstere den Einfluss der Institution, an der der Wissenschaftler tätig 

ist, widerspiegeln, fokussieren letztere auf den Einfluss von Ko-Autoren des 

Wissenschaftlers. Unsere theoretischen Überlegungen vermuten dabei einen positiven Effekt 

beider Arten sozialer Interaktion auf die Neigung des Wissenschaftlers, mit der Wirtschaft 

zusammen zu arbeiten. Allerdings gehen wir davon aus, dass beide Effekte umso deutlicher 

zu Tage treten, je jünger der betreffende Wissenschaftler ist.  

Unsere empirische Analyse beruht auf einer Stichprobe von 330 Wissenschaftlern in 

der Biotechnologie, die im Jahr 2010 befragt wurden. Die Ergebnisse legen nahe, dass soziale 

Interaktion in der Tat wesentlich für Industriekollaboration verantwortlich ist. Tatsächlich 

spielt auch das Alter eine wesentliche Rolle: Jüngere Wissenschaftler lassen sich sehr viel 

mehr von Kollegen beeinflussen als ältere Wissenschaftler. Es stellt sich außerdem heraus, 

dass für jüngere Wissenschaftler der Effekt der Institution grösser ist als der der Ko-Autoren. 

Unsere Ergebnisse erlauben eine Reihe von Schlussfolgerungen für die Innovationspolitik, 

um die Zusammenarbeit zwischen Wissenschaft und Wirtschaft weiter zu stimulieren. 
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the career age of the scientist. We suggest that both localized and personal peer effects drive 
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1 Introduction 

How does social interaction influence an academic’s decision to become entrepreneurial and 

to collaborate with industry? Does the academic’s age attenuate or amplify its effects? Since 

links between science and industry have become a widespread phenomenon over the last 

decades (Rothaermel et al., 2007), a growing body of literature has investigated the role of 

peers in shaping an academic’s engagement in commercial activities. In this regard, Stuart 

and Ding (2006) find that scientists with co-authors who have become academic 

entrepreneurs are more likely to become commercially active themselves. Bercovitz and 

Feldman (2008) show that scientists are more likely to disclose their inventions if they 

observe technology transfer activities among their local peers. Nanda and Sørensen (2010), 

investigating the effect of workplace peers on entrepreneurial activity, argue that career 

experiences of co-workers not only influence the individual directly, but that such 

experiences actually “spill over” to others and thus indirectly influence the transition to 

entrepreneurial activity.  

One line of argument suggests that such spillover effects are due to better information 

or resources that the scientist’s social environment might provide (e.g., Sorensen and Audia, 

2000). Another line of argument focuses on reference groups and social norms to explain 

individual behavior (e.g., Kenney and Goe, 2004; Bercovitz and Feldman, 2008). In a 

Mertonian view, universities are seen as repositories for the norms of open science, 

characterized as communalism, universalism, disinterestedness, and organized skepticism 

(Merton, 1973). Producing and diffusing scientifically valuable knowledge to realize an 

economic return thus implies a departure from the traditional mission and priority of 

academia (Dasgupta and David, 1994). In this regard, workplace peers influence the 
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informational and normative environment that exerts an effect on the decision to become 

commercially active. 

Despite these insights, less attention has been paid to the contingencies that influence 

these effects. In this paper, we seek to shed more light on the boundary conditions for the 

effects of social interaction on a scientist’s engagement with industry. Specifically, we 

suggest that the age of the scientist plays a decisive role for when “professional imprinting” 

occurs. Professional imprinting refers to a process in which individuals observe the behavior 

of peers in their environment and tend to imitate or adopt the observed practice like, for 

example, the industry involvement of colleagues (DiMaggio and Powell, 1983; Bercovitz and 

Feldman, 2008). In this regard, we draw a distinction between localized and personal peer 

effects on academics’ involvement with industry and how these effects are moderated by the 

career age of the scientist, i.e. the number of years since the scientist earned his or her PhD. 

We suggest that a scientist’s involvement with industry will increase with the orientation of 

the scientist’s department towards industry, measured by the share of publications in the 

scientist’s department co-authored with industry personnel (localized peer effect). Moreover, 

we expect scientists with industry-oriented co-authors, i.e. co-authors who have previously 

co-authored with industry personnel, to be more likely to become involved with industry 

(personal peer effect). We expect both effects to be stronger the more recent the vintage of 

the scientist’s PhD, suggesting that professional imprinting takes place in the early stages of a 

scientist’s academic career. Put differently, we assume that more experienced scientists are 

less susceptible to orientations in their professional environment than younger scientists and 

that the effects of social interaction are consequently lower.  

Our empirical analysis is based on a sample of 330 academic scientists working in the 

field of biotechnology in Germany who were surveyed in 2010. In fact, one of the industries 

that is particularly knowledge-driven and close to scientific research is the biotechnology 
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industry. Technology for new products, methods and services frequently emerges from 

scientific institutions or in collaboration between firms and such institutions (e.g., Audretsch 

and Stephan, 1996; Zucker et al., 2002). Involving researchers from academia tends to be 

more important in biotechnology than in other sectors (Higgins et al., 2008). Germany has a 

lively and growing biotechnology scene, involving about 540 dedicated biotech companies as 

well as about 200 universities and public research institutions that carry out biotechnological 

research (BIOCOM, 2011).  

The results indicate that professional imprinting plays a major role in shaping 

scientists’ propensity to engage with industry. Both localized and personal peer effects turn 

out to be relevant, which confirms and extends prior literature (Bercovitz and Feldman, 

2008). Moreover, the scientist’s career age turns out to be an important boundary condition, 

but only for one type of peer effects. While localized peer effects, i.e. the scientist’s 

department’s co-publications with industry, lead to imprinting particularly in the early years 

of a scientist’s career, the personal peer effect remains unaffected by career age. Moreover, 

for younger researchers the localized peer effect is larger than the personal peer effect.  

We aim to contribute to existing literature in three ways. First, we extend existing 

studies in the field by disentangling the professional imprinting effect further. We 

differentiate between the effects that stem from localized (department) and personal (co-

authors) peers, allowing us to examine the relative impact of both. Second, the researcher’s 

career age is identified as an important boundary condition for a researcher’s “proneness” to 

imprinting. Third, we do not limit the researcher’s commercial activity to a specific type of 

commercial activity such as the disclosure of an invention. Instead we consider a broader set 

of industry-science interactions by using an industry involvement index that comprises five 

different channels of knowledge and technology exchange. In that respect, our research is 

positioned to further contribute to the body of literature that investigates the factors driving 
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academics to engage with industry (e.g., Meyer-Krahmer and Schmoch, 1998; Link et al., 

2007). 

The remainder of the paper is organized as follows. The next section summarizes the 

current literature on academic involvement with industry and derives hypotheses. The data, 

variables and estimation methods are discussed in section 3. The results and concluding 

remarks appear in sections 4 and 5, respectively.  

2 Academics’ involvement with industry 

2.1 Literature Review 

It has almost become conventional wisdom that knowledge produced in the public sector 

constitutes an important ingredient of economic growth and technological progress (Jaffe, 

1989; Adams, 1990). Close links to academic research have been shown to be beneficial for 

the innovation performance of firms (Cockburn and Henderson, 1998; Belderbos et al., 

2004). Universities and public research organizations are particularly important collaboration 

partners because of the novelty and sophistication of the knowledge they create (Link et al., 

2007). Interacting with public science is attractive from the firm’s point of view because in-

house knowledge production through R&D implies high cost, given the complex and 

dynamic processes that knowledge creation requires. Universities offer access to basic 

research, talented people and complementary resources and allow the firm to explore new 

technological opportunities (Dasgupta and David, 1994). Moreover, firms can hire public 

scientists to facilitate the transfer of tacit knowledge and to sustain their absorptive capacity 

for subsequent knowledge and technology transfer activities (Cohen and Levinthal, 1989; 

Song et al., 2003). Several studies confirm the benefits of interacting with public science for 

firm performance. Industry-science interaction improves a firm’s ability to innovate 
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(Arvanitis et al., 2008) and increases the firm’s share of sales of innovative products 

(Belderbos et al., 2004; Aschhoff and Schmidt, 2008).  

Scientific knowledge does not, however, automatically spill over to industry. 

Knowledge and technology transfer relies on the engagement of the individual academic 

(Bercovitz and Feldman, 2007). Scientists, for example, need to conduct research relevant to 

industrial application and disclose new knowledge or collaborate with industry. Transfer is 

thus dependent on the individual’s decision to actively participate in industry-science 

activities through a variety of channels that can be characterized as either formal or informal. 

Formal involvement is typically based on a patent to be sold or licensed out (Bozeman, 2000; 

Thursby and Thursby, 2002), collaboration in R&D (Laursen et al., 2011) or industrial 

consulting (Jensen et al., 2010), while informal channels of interaction might involve joint 

publication of research results with industry personnel or informal contacts (Link et al., 2007; 

Grimpe and Fier, 2010).  

A key concern of prior literature has been to investigate why individual scientists are 

involved with industry. One of the conceptual lenses adopted in this literature is the scientific 

and technical human capital approach, which recognizes scientific and technical human 

capital as “individual endowments”, tacit and craft knowledge as well as social contacts and 

networks (e.g., Bozeman and Corley, 2004; Ponomariov and Boardman, 2010). Scientists 

accumulate scientific and technical human capital with their career age, scientific 

productivity, hierarchical position and previous successful collaboration with industry 

(Belkhodja and Landry, 2007). Moreover, scientists who are well connected, i.e. who occupy 

a central position in professional networks, build up higher scientific and technical human 

capital as “social capital begets human capital” (Ponomariov and Boardman, 2010: 616). 

Higher scientific and technical human capital is positively related with higher industry 
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involvement because scientists with a high endowment are assumed to possess greater ability 

to carry out research projects together with industry. 

Another conceptual lens focuses on the organizational context, i.e. the characteristics of 

organizations that influence a scientist’s involvement with industry (e.g., Meyer-Krahmer and 

Schmoch, 1998; Siegel et al., 2003; Siegel et al., 2004). Several studies have shown that 

industry involvement depends on the mission and institutional context of public scientists, 

with differences being particularly pronounced between university-affiliated scientists and 

those at mission-oriented public research institutes. Schmoch et al. (2000) and Heinze and 

Kuhlmann (2008) find for Germany that scientists at universities and Max Planck institutes, 

who are by and large more oriented towards basic research, collaborate less actively with 

industry than scientists at Fraunhofer institutes, who typically conduct application-oriented 

research and are dependent on industry funding. Ponomariov (2008) finds a negative 

correlation between the scientific quality of university units and their industry involvement. 

Furthermore, Siegel et al. (2004) argue that scientists require an appropriately designed 

reward and incentive system in order to be more actively involved with industry. The higher 

the royalty payments to the scientist, the higher the scientist’s propensity to collaborate with 

industry (Link and Scott, 2005). Kenney and Goe (2004) find a positive correlation between 

the encouragement and support of entrepreneurial activities by the institution (social 

embeddedness) and the corporate involvement by faculty while comparing the engineering 

and computer science department of two U.S. universities (Berkeley and Stanford). 

Moreover, there is considerable evidence that scientists from different fields exhibit different 

industry involvement (Meyer-Krahmer and Schmoch, 1998; Heinze and Kuhlmann, 2008). 

Finally, the presence of industry close to the university’s location increases industry 

involvement (Audretsch and Stephan, 1996; Laursen et al., 2011). 
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A third approach stresses the role of the social context, which refers to co-location and 

spatial proximity to other scientists as well as professional relationships among them. In those 

contexts where individuals observe the behavior of other people in their environment, it is 

likely that they imitate or adopt a certain practice, and hence become professionally imprinted 

(DiMaggio and Powell, 1983; Bercovitz and Feldman, 2008). Bercovitz and Feldman (2008) 

find for two medical schools in the U.S. that the individual’s decision to actively engage in 

technology transfer by disclosing an invention is influenced by the disclosing behavior of 

their local peers. Professional imprinting also takes place during the training phase. Scientists 

who observe technology transfer activities during their graduate training have a higher 

probability to be involved in these activities later in their careers (Bercovitz and Feldman, 

2008). Co-authors are also part of a scientist’s social environment since co-authorship ties go 

along with regular interaction (Stuart and Ding, 2006). In the following, we will adopt this 

latter perspective and discuss the role of the social context in shaping a scientist’s likelihood 

to engage with industry. Moreover, we will introduce the scientist’s career age as a boundary 

condition for the effects that the social context will have.  

2.2 Hypotheses  

Professional imprinting effects. 

Prior literature suggests that an individual’s behavior is shaped by the social environment for 

several reasons. Organization theory posits that, on the basis of mimetic and isomorphic 

processes in organizations, one entity adopts another entity’s practice by imitating it in the 

belief that the new practice is beneficial because the other entity succeeds with it (DiMaggio 

and Powell, 1983; Giuliani et al., 2010). In a similar way, social learning theory argues that 

individuals follow the behavior of relevant peers if they face uncertainty about norms 

(Bandura, 1986; Bercovitz and Feldman, 2008). By observing others, individuals draw 

inferences about the value of certain choices (Sorensen, 2002), expecting that peers will yield 
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similar payoffs from the respective activities (Ellison and Fudenberg, 1993). Moreover, 

colleagues’ behavior provides information of accepted and supported practice (Bercovitz and 

Feldman, 2007). If involvement with industry is common in one’s environment, it is 

perceived by the individual to conform with prevailing norms.  

A scientist’s environment prominently refers to the organizational subunit to which 

the individual is attached. University departments, in this regard, are characterized by both 

spatial and social proximity. Proximity increases the chances to interact with and 

consequently to learn from others. Such frequent social interaction will presumably provoke 

knowledge spillovers that in turn shape an individual’s behavior (Stuart and Ding, 2006; 

Bercovitz and Feldman, 2008). We refer to this effect as the localized peer effect. We expect 

that in an environment characterized by social and spatial proximity scientists observe their 

peers’ industry orientation and act correspondingly. Specifically, a scientist’s involvement 

with industry will be higher the more the scientist’s department is oriented towards industry.  

 

Hypothesis 1. There is a positive relationship between a scientist’s involvement with 

industry and the extent to which the scientist’s department is oriented towards industry. 

 

Another type of peer effect stems from social interaction that is not necessarily 

localized. Besides departmental colleagues, a scientist’s co-authors can serve as a reference 

point. Scientists actively choose whom to collaborate with and will select co-authors they 

respect and trust, also across institutional boundaries. Co-authorship ties are characterized by 

frequent interaction (Stuart and Ding, 2006). Indeed, based on the social proximity, 

knowledge spills over easily, although this can be moderated by the fact that co-authors are 

spatially distant. Hence, we refer to this effect as the personal peer effect. Similar to the 

localized peer effect we expect that a scientist’s industry involvement is likely to be 
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influenced by the behavior of co-authors, such that a co-author’s industry orientation will 

increase the likelihood of a scientist engaging with industry. 

 

Hypothesis 2. There is a positive relationship between a scientist’s involvement with 

industry and the extent to which the scientist’s co-authors are oriented towards industry. 

 

The moderating role of age.  

Prior literature indicates that industry involvement is likely to vary with the career age of a 

scientist. Based on the human capital argument, more experienced researchers are likely to 

possess a higher ability to carry out research projects with industry. They typically have a 

larger network of researchers, not only in academia but also in industry, compared to 

researchers at an early stage in their career. Social capital, in this respect, begets human 

capital. Since experienced scientists have been active in a particular field for a longer time 

period, more opportunities have arisen for them to interact with industry researchers. 

Moreover, they have had more chances to learn from other researchers who have successfully 

engaged in industry collaboration or they know researchers who switched from science to 

industry. Time in this regard is necessary to build up relationships. In fact, Haeussler and 

Colyvas (2011) find for life scientists in the UK and Germany a positive effect of a scientist’s 

age on commercialization activities, including consulting, patenting, and founding of a new 

business.  

Industry involvement, however, contradicts traditional academic norms. Bercovitz 

and Feldman (2008), for example, show that the probability of disclosing an invention 

decreases with career age for faculty in medical schools in the U.S. They interpret their 

finding in such a way that younger researchers tend to more readily adopt new technology 

transfer policies set up by the research institution. This finding is confirmed by a study of the 
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wine industry (Giuliani et al., 2010). Other research finds no effect at all. Ponomariov and 

Boardman (2010) cannot detect a significant association between career age and the number 

of publications with industrial collaborators. Overall, prior literature is not unambiguous 

regarding the effect of a researcher’s career age on industry involvement. 

However, there are clear indications of the role age plays as a moderator for the two 

types of peer effects. According to social learning theory, researchers tend to follow the 

behavior of peers when they face uncertainty (Bandura, 1986; Bercovitz and Feldman, 2008). 

Uncertainties are particularly high for younger researchers. Moreover, younger researchers 

are probably more open regarding their research agenda and practice. They still have to find 

and establish “their” place in the research community, and they learn by observing the 

research practice of others. If industry involvement is practiced by others they might more 

readily follow and internalize this practice compared to more experienced researchers. 

Adoption of specific practices is thus more likely in the training and qualification phase of 

younger researchers. Bercovitz and Feldman (2008) find that researchers who were exposed 

to pro-commercialization activities during their training phase (measured by the number of 

patent applications at the individual’s graduate institution during the time of their training) 

are more likely to adopt this practice in their own career. Thus, we expect that researchers in 

an early stage of their career are more likely to adopt the practice they are exposed to. We 

suggest that both the localized and the personal peer effect will have a stronger impact on a 

scientist’s industry involvement the more recent the vintage of the scientist’s PhD, suggesting 

that professional imprinting takes place in the early stages of a scientist’s academic career. 

 

Hypothesis 3. The relationship between the scientist’s involvement with industry and 

the extent to which the scientist’s department is oriented towards industry will be moderated 
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by a scientist’s career age such that the scientist’s industry involvement will increase the 

lower the career age is. 

 

Hypothesis 4. The relationship between the scientist’s involvement with industry and 

the extent to which the scientist’s co-authors are oriented towards industry will be moderated 

by a scientist’s career age such that the scientist’s industry involvement will increase the 

lower the career age is. 

 

Finally, we expect a differential impact of localized versus personal peer effects on an 

academic’s industry involvement depending on his or her career age. Younger researchers 

face greater uncertainty about prospects for promotion and tenure (Bercovitz and Feldman, 

2008). In addition, they are more dependent on their department, for example in terms of 

funding because they lack opportunities and knowledge to acquire extramural research grants. 

As a result, junior faculty members are more eager to conform to the local environment. We 

might expect that this pressure to conform typically does not exist in social interaction with 

the scientist’s co-authors, since co-authors are self-chosen and do not necessarily have a say 

in promotion and tenure decisions. Hence, we suggest that for younger scientists localized 

peer effects will have a higher impact on industry involvement than personal peer effects. 

 

Hypothesis 5. For younger scientists, localized peer effects have a higher impact on 

industry involvement than personal peer effects. 
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3 Data and Methods 

3.1 Data 

To analyze the relationship between professional imprinting, age and industry involvement 

we make use of a unique dataset. In the summer of 2010, the Centre for European Economic 

Research (ZEW) undertook an online survey of academic researchers working in the field of 

biotechnology in Germany. The population targeted comprised researchers who worked at 

either a university or a public research institution and who had published at least one paper in 

a peer-reviewed journal in the field of biotechnology. Researchers were identified using 

journal publications from the Science Citation Index Expanded (SCIE) in the field of 

biotechnology between 2004 and 2008. The comprehensive list of relevant journals was 

compiled based on the subject categories assigned to each journal. Only authors working at 

an institution located in Germany were considered. If provided, the email addresses were 

taken from the publications to contact the researchers. Otherwise, the email addresses were 

collected manually from the internet, which involved a complex search since only the authors 

and affiliations located in Germany were known for each publication but not the link between 

them. In total, we approached 3,360 researchers (gross sample) of whom 458 filled in the 

questionnaire. After observations with missing values in the variables of interest had been 

dropped, a net sample of 330 researchers remained for the empirical investigation. Paper and 

affiliation characteristics of the population as well as the gross and net samples are shown in 

Table 4 in the appendix. No alarming bias with regard to the representativeness of the sample 

was detected. 

The publication data from the SCIE conveys information not only about the publication 

activities of the individual researcher between 2004 and 2008 but also about the departmental 

publication activities through the mentioned affiliations on a publication. After harmonizing 

the affiliations we constructed a measure for each institution with the number of publications 
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from 2004 to 2008 by members of this institution. For universities this measure is on 

department level; for public research institutions it is on the institution level. The 

department’s or institution’s publication record was then linked to the researcher. 

Furthermore, we identified patent applications at the European Patent Office (EPO) in 

which the researcher is named as the inventor. This allows us to construct a patent stock for 

each researcher. Moreover, we determined the region where the scientist’s institution is 

located to control for the regional environment. To allow for a reasonable size, regions are 

defined at the district level (NUTS-3) in which the scientist’s institution resides plus the 

immediate neighboring districts. Regional information on GDP per capita and the number of 

firms was merged using data from the Federal Statistical Office.  

3.2 Variables 

Dependent variable. In order to measure a scientist’s involvement with industry, we follow 

Bozeman and Gaughan (2007), who construct an industry involvement index based on 

faculty responses to the question of whether they engaged in different types of industry 

interaction. In our survey, scientists were asked to indicate interaction with respect to five 

channels: (a) direct collaboration with industry personnel in a joint research project, (b) 

performing a service (measuring, analyzing, consulting) or creating a technical artifact 

(bacteria, cell cultures) on behalf of a company, (c) out-licensing of research results to 

industry, (d) joint publication of research results with industry personnel, and (e) informal 

contacts with industry personnel. The time frame the scientists were asked to refer to was the 

last 12 months, i.e. from about mid-2009 to mid-2010. We then calculated the frequency (in 

%) of each item’s occurrence in the sample and used the inverse as a weight for the 

corresponding item. Subsequently, we multiplied each type of interaction with its weight and 

summed up the factors to create a weighted industrial involvement index. As a robustness 
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check, we used the total number of different interaction channels without considering their 

frequency of occurrence in the sample. 

Focus variables. To measure the industry orientation of the scientist’s peers we use the 

concept of co-authorship, i.e. joint publication of the respective scientist with industry 

personnel. Joint publications can be regarded as a successful outcome of collaboration. Co-

authorship activities usually involve joint research, include the exchange of tacit knowledge 

and provide the opportunity for discussions (Cockburn and Henderson, 1998; Zucker et al., 

2002). Furthermore, they are observable to third parties. Using co-authorships has the 

advantage that the measure is objective and relatively easy to obtain for a large sample 

(Stokes and Hartley, 1989; Katz and Martin, 1997). However, the measure might be 

inaccurate if authors are listed due to other reasons, e.g. for honorary or funding reasons 

(Hagstrom, 1965; Katz and Martin, 1997; Cockburn and Henderson, 1998). Despite this 

limitation, co-authorships have been widely used in the empirical literature, for example to 

identify collaborators (Zucker et al., 1998), social activity (Stokes and Hartley, 1989) or 

connectedness between publicly funded scientists and company scientists (Cockburn and 

Henderson, 1998). 

We use three main explanatory variables. The first explanatory variable focuses on the 

scientist’s localized peers and their orientation towards industry. To construct this measure, 

we identified all publications listed in the SCIE that were affiliated with the scientist’s 

department or institute and published between 2004 and 2008. We then identified those 

publications that were co-authored with industry personnel (identified by affiliation with a 

firm) and calculated the share of those publications in the total number of publications by 

department members.1 The second variable is intended to capture personal peer effects. The 

                                                 
1 One may argue that a co-author affiliated with a firm could have been a colleague of the academic 

scientist at the time the paper was written who later switched to industry. However, this is rather unlikely since 
the period between paper submission and acceptance is relatively short in the field of biotechnology. From the 
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co-authors’ industry orientation is measured by identifying all publications by the scientist’s 

co-authors between 2004 and 2008. If any of the scientist’s co-authors had published a paper 

together with industry personnel, a dummy variable was created that takes the value of one 

and zero otherwise. Since the dependent variable refers to 2009 and 2010, both explanatory 

variables based on publication information are lagged. The third variable refers to the 

scientist’s career age to test the moderating role of age for the two types of peer effects. 

Career age is defined as the number of years since the scientist received her PhD. This 

information is available from the survey. As the variable is skewed, we take the natural 

logarithm of it. 

Control variables. We control for several factors that have been shown to be relevant in 

studies explaining scientists’ involvement with industry (e.g., Link et al., 2007). In this 

respect, we control for the scientist’s research productivity in terms of the number of papers 

published in SCIE journals from 2004 and 2008. Moreover, we add data on the scientist’s 

patent application stock. Due to the skewed distribution we generate a dummy variable 

indicating whether the scientist had applied for a patent until 2008.2 Another indicator of 

faculty quality is whether a scientist is tenured or not, and we include a respective dummy 

variable. In order to capture both the size and the overall research productivity of the 

department, we include the number of publications in SCIE journals from 2004 to 2008 that 

were achieved by scientists affiliated with the department. Scientific field effects within 

biotechnology are controlled for by including dummy variables for a research orientation 

towards life sciences, natural sciences, engineering, and other sciences. Moreover, we use a 

dummy variable to indicate whether the scientist’s research is applied (in contrast to basic 

research), which is taken from the questionnaire to control for the technological opportunity 

                                                                                                                                                        
list of all relevant journals 13 journals were randomly chosen. For 130 papers published in 2006 and 2007 in the 
13 journals, the average time lag was 4.3 months.  

2 We count patent families in order to avoid double-counting of applications made at different patent 
offices. The year assigned to a patent refers to its priority year. 
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of the research. The regressions also control for the scientist’s institutional affiliation. We 

create a dummy variable that takes a value of one if the scientist works at a research-oriented 

public research institution such as an institute of the Max Planck Society or the Helmholtz 

Association. Another dummy takes the value of one if the scientist works at an application-

oriented public research institution like an institute of the Fraunhofer Society or the Leibniz 

Association. University scientists are the largest group in the sample and thus serve as the 

base category. A few scientists in the sample are affiliated with both a university and a public 

research institute though. Besides controlling for the scientist’s gender by using a dummy 

variable that takes a value of one for female scientists, we include two measures that are 

intended to capture the “supply side” of industry-science interaction opportunities. In this 

regard, we include the GDP per capita (in EUR) in the region where the scientist’s institution 

is located as well as the number of firms in the region in natural logarithm. The idea behind 

these two control variables is that industry-science interaction tends to be localized (Laursen 

et al., 2011) and that more opportunities for interaction arise the higher the regional level of 

economic development. In this context, the region is defined as the district (NUTS-3) in 

which the scientist’s institution resides plus the immediate neighboring districts. 

Finally, our research needs to consider the challenges that arise from identification 

problems in the analysis of social interaction. Prior research has referred to this challenge as 

the reflection problem (Manski, 1993, 2000; Bercovitz and Feldman, 2008). If the results are 

not due to endogenous interaction, i.e. the scientist’s behavior varies with the behavior of her 

peers, but due to correlated effects, i.e. scientists behave in the same way simply because they 

face similar conditions, then the validity of the results becomes questionable. To mitigate the 

problem that peer effects are in fact driven by unobserved characteristics of the department or 

the institutional environment and are hence the result of correlated effects, we include a 

dummy variable indicating whether technology transfer activities in general have a high 
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importance in the scientist’s area of research. Moreover, the identification problem is 

alleviated by using the lagged values of peer behavior (Manski, 2000).  

Correlations between the explanatory variables are fairly low (see Table 5 in the 

appendix). In addition, the average variance inflation factor (VIF) equals 1.27. Thus, there is 

no indication of a multicollinearity problem in the data.  

3.3 Methods 

Our dependent variable is the industry involvement index, which is the weighted sum of the 

different channels a researcher uses to interact with industry. Thus the variable is a 

continuous variable subject to left-censoring. It takes a value of 0, which represents the lower 

limit, if the researcher is not involved in any of the five channels of industry interaction. The 

largest value of the variable in the sample is 2.6. Consequently, industry involvement is 

estimated by applying a tobit model (for details on the model see, e.g., Wooldridge, 2007).  

As an alternative dependent variable we use the number of industry interaction 

channels. The variable takes integer values from 0, in case of no industry involvement, to 5, if 

the researcher is involved in all five types of interaction. Since the variable has an upper 

limit, a count data model would not be an appropriate estimation method. Instead we use the 

ordered probit model to take into account the ordinal structure of the variable (Wooldridge, 

2007). Moreover, we perform several robustness checks to tackle potential endogeneity and 

selection issues. 

4 Results 

4.1 Descriptive results  

Table 1 presents descriptive statistics for the variables used in the analysis for the full sample 

and a split sample, depending on a researcher’s above or below median industry involvement 
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index. On average eight percent of the publications within a department are co-authored with 

personnel from industry. Departments of scientists with below-median industry involvement 

exhibit lower shares than departments of scientists with above-median industry involvement 

activities. However, based on a one-tailed t-test for this hypothesized variable the difference 

is only significant on the ten percent level. A positive relationship between scientists’ 

industry involvement and joint publications of their co-authors with industry personnel 

becomes evident on the basis of the mean comparison between the two groups. Scientists 

with higher industry involvement activities have statistically more often co-authors who have 

published jointly with industry personnel than scientists with lower industry involvement 

activities. Moreover, the descriptive results also indicate that a scientist’s industry 

involvement varies with academic age. We find that the mean of the academic age of 

scientists with higher industry involvement is statistically larger than the mean for scientists 

with less industry involvement. While the descriptive results already indicate some support 

for our theoretical reasoning, a multivariate analysis is required to test the hypotheses. 
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Table 1: Sample averages, total and by industry involvement 

 
All observations 

(N=330)  

Below median industry 
involvement index 

(N=163)  

Above median industry 
involvement index 

(N=167) 
 Mean Std. Dev. Min Max  Mean Std. Dev.  Mean Std. Dev. 
Dependent variable           
Industry involvement index 0.933 0.711 0 2.617  0.321 0.274  1.529 0.452 
No. of industry involvement channels 2.339 1.418 0 5  1.098 0.747  3.551 0.674 
Focus variable           
Joint publications w/ industry by dept. (share) 0.080 0.071 0 0.571  0.075 0.060  0.084 0.080 
Co-authors published w/ industry (d) 0.561 0.497 0 1  0.442 0.498  0.677 0.469 
Years since PhD (ln) 2.199 1.127 0 3.932  2.073 1.130  2.321 1.113 
Control variable           
No. of publications by dept. 63.797 61.651 0 266  65.740 62.9571  61.901 60.479 
No. of publications by individual 3.667 4.185 1 26  2.822 3.014  4.491 4.947 
Patent application (d) 0.421 0.495 0 1  0.350 0.478  0.491 0.501 
Applied research orientation (d) 0.703 0.458 0 1  0.552 0.499  0.850 0.358 
Field: Biosciences (biology, medicine) (d) 0.742 0.438 0 1  0.804 0.398  0.683 0.467 
Field: Natural Sciences (d) 0.124 0.330 0 1  0.092 0.290  0.156 0.364 
Field: Engineering (d) 0.067 0.250 0 1  0.031 0.173  0.102 0.303 
Field: Other (d) 0.067 0.250 0 1  0.074 0.262  0.060 0.238 
Universities (d) 0.655 0.476 0 1  0.626 0.485  0.683 0.467 
Research-oriented public research institution (d) 0.303 0.460 0 1  0.362 0.482  0.246 0.432 
Application-oriented public research institution (d) 0.079 0.270 0 1  0.037 0.189  0.120 0.326 
Tenured position (d) 0.551 0.498 0 1 0.509 0.501 0.593 0.493
Female (d) 0.285 0.452 0 1  0.337 0.474  0.234 0.424 
GDP per capita in region (EUR) 31.334 8.940 19.638 54.763  32.162 9.218  30.525 8.610 
No. of plants in region (ln) 9.816 0.965 7.231 11.234  9.853 1.034  9.780 0.895 
High importance of tech. transfer activities (d) 0.088 0.284 0 1  0.031 0.173  0.144 0.352 
Note: (d): dummy variable.  
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4.2 Regression results 

Table 2 shows our main model results. Models 1 and 2 report findings from the tobit regressions, 

in which the industry involvement index is used as the dependent variable. In the baseline model 

1 we find that co-author publications with industry exhibit a positive effect on industry 

involvement (personal peer effect) while the effect of the share of publications with industry in 

the scientist’s department is not significant (localized peer effect). Model 1 thus finds initial 

support for hypothesis 2. Looking at the results in model 2, which incorporates the interaction 

effects, we again find a positive and significant effect of the co-author’s publications with 

industry on industry involvement. Additionally, we find a positive and significant effect of the 

share of publications with industry in the scientist’s department, which also lends support to 

hypothesis 1. Regarding the interaction with the career age of the scientist we find a negative and 

significant interaction for the share of joint publications with industry in the scientist’s 

department but no significant effect of the interaction for co-authors’ publications with industry. 

The results of the interaction effects hold if the marginal effects of age as a moderating variable 

on the relationship between the peers and the industry involvement index are considered.3 This 

result supports hypothesis 3 but rejects hypothesis 4. Models 3 and 4 use the number of different 

interaction channels with industry as the dependent variable and are consequently estimated by 

ordered probit regressions. All results turn out to be consistent with models 1 and 2. 

To test hypothesis 5 we split the sample at the median career age (14 years) and re-estimate 

the regressions for the split sample (see Table 3). For young scientists both peer effects are 

                                                 
3 Marginal effects are calculated based on the approach suggested by Wiersema and Bowen (2009) and 

Bowen (2010). There is no change in the sign of the moderating effects over its range of variation. The moderating 
effect for the localized peers calculated at the variable means is -0.880 with a z-statistic value of -1.83 (p=0.068). 
The moderating effect for the personal peers varies around zero and is mostly insignificant as it is the case for the 
moderating effect for personal peers at the variable means.  
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positive and significant (models 5). This also applies to the corresponding marginal effects.4 

Moreover, when the marginal effects are compared, it turns out that the localized peer effect is in 

fact larger than the personal peer effect. The results hold when the number of industry 

involvement channels is used as dependent variable instead of the industry involvement index. 

These findings provide support for hypothesis 5. 

The regression results for the split sample also back up the results for the role of a 

scientist’s career age since for the younger scientists both professional imprinting effects are 

present while for the older researchers only the personal peer effect becomes apparent.  

                                                 
4 The average marginal effects of localized peers (joint publication w/ industry by dept.) and personal peers 

(co-authors published w/ industry) on the expected value of the industry involvement index are 1.261 and 0.317, 
respectively. The corresponding marginal effects at the sample mean are similar (1.294 and 0.325). The marginal 
effects are calculated following the method presented by Wiersema and Bowen, 2009.   
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Table 2: Estimation results (coefficients)  
 Model 1 Model 2 Model 3 Model 4 

 

Industry 
involvement 

index 

Industry 
involvement 

index 

No. of 
industry 

involvement 
channels 

No. of 
industry 

involvement 
channels 

Joint publications w/ industry by dept. (share) 0.384 2.570** 0.656 4.401** 
 (0.541) (1.285) (0.876) (2.085) 
Int.: joint publ. w/ ind. by dept. * years since PhD  -0.978*  -1.679** 
  (0.526)  (0.851) 
Co-authors published w/ industry (d)  0.305*** 0.341** 0.525*** 0.544** 
 (0.083) (0.171) (0.134) (0.273) 
Int.: co-authors publ. w/ ind. * years since PhD  -0.012  -0.000 
  (0.070)  (0.111) 
Years since PhD (ln)  0.127*** 0.215*** 0.220*** 0.360*** 
 (0.042) (0.071) (0.067) (0.113) 
No. of publications by dept.  -0.001 -0.001 -0.001 -0.001 
 (0.001) (0.001) (0.001) (0.001) 
No. of publications by individual  0.018* 0.018* 0.027* 0.029* 
 (0.010) (0.010) (0.016) (0.016) 
Patent application (d)  0.041 0.059 0.043 0.070 
 (0.078) (0.078) (0.124) (0.125) 
Applied research orientation (d)  0.498*** 0.494*** 0.798*** 0.798*** 
 (0.085) (0.085) (0.138) (0.139) 
Field: Natural Sciences (d)  0.172 0.160 0.249 0.230 
 (0.115) (0.114) (0.183) (0.184) 
Field: Engineering (d)  0.355** 0.361** 0.626** 0.636** 
 (0.159) (0.159) (0.259) (0.261) 
Field: Other (d)  0.048 0.070 0.104 0.141 
 (0.151) (0.151) (0.240) (0.241) 
Research-oriented public research institution (d) -0.078 -0.066 -0.121 -0.103 
 (0.089) (0.089) (0.141) (0.142) 
Application-oriented public research institution (d) 0.272* 0.273* 0.457* 0.460* 
 (0.151) (0.151) (0.244) (0.244) 
Tenured position (d)  -0.004 -0.019 -0.035 -0.058 
 (0.092) (0.092) (0.146) (0.147) 
Female (d)  -0.084 -0.062 -0.147 -0.111 
 (0.083) (0.084) (0.133) (0.134) 
GDP per capita in region  -0.004 -0.004 -0.006 -0.006 
 (0.005) (0.005) (0.007) (0.007) 
No. of plants in region (ln)  -0.017 -0.022 -0.023 -0.031 
 (0.044) (0.044) (0.071) (0.071) 
High importance of tech. transfer activities (d) 0.390*** 0.377*** 0.608*** 0.594** 
 (0.142) (0.142) (0.231) (0.231) 
Constant 0.258 0.095   
 (0.415) (0.429)   
Pseudo R2  0.16 0.17 0.12 0.12 
N 330 330 330 330 
LR/Wald chi2  125.426 129.092 130.158 134.171 
P-value  0.000 0.000 0.000 0.000 
Log likelihood -324.071 -322.238 -492.460 -490.454 

Note: Standard errors in parentheses. *** (**,*) indicate a significance level of 1% (5%, 10%). (d): dummy 
variable. Reference categories: biosciences (biology, medicine); university affiliation. 
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Table 3: Estimation results for sub-samples (coefficients) 
 Model 5 Model 6 Model 7 Model 8 

 
Industry involvement index No. of industry involvement 

channels 

 
Below median 

career age 
Above median 

career age 
Below median 

career age 
Above median 

career age 
Joint publications w/ industry by dept. (share) 1.696** -0.921 3.000** -1.514 
 (0.790) (0.801) (1.310) (1.396) 
Co-authors published w/ industry (d)  0.426*** 0.253** 0.681*** 0.547*** 
 (0.122) (0.113) (0.197) (0.200) 
Years since PhD (ln)  0.086 0.432** 0.172* 0.787** 
 (0.061) (0.174) (0.097) (0.308) 
No. of publications by dept.  0.000 -0.001 0.000 -0.003** 
 (0.001) (0.001) (0.002) (0.002) 
No. of publications by individual  -0.006 0.026** 0.000 0.038** 
 (0.021) (0.011) (0.034) (0.019) 
Patent application (d)  0.033 0.126 0.023 0.203 
 (0.120) (0.099) (0.192) (0.174) 
Applied research orientation (d)  0.331*** 0.614*** 0.528*** 1.109*** 
 (0.122) (0.113) (0.196) (0.208) 
Field: Natural Sciences (d)  0.013 0.320** -0.007 0.542* 
 (0.163) (0.159) (0.262) (0.281) 
Field: Engineering (d)  0.298 0.538** 0.535 1.022** 
 (0.212) (0.236) (0.341) (0.433) 
Field: Other (d)  0.114 0.169 0.124 0.431 
 (0.207) (0.214) (0.330) (0.380) 
Research-oriented public research institution (d) 0.041 -0.192 0.044 -0.318 
 (0.128) (0.118) (0.205) (0.206) 
Application-oriented public research institution (d) 0.162 0.218 0.173 0.456 
 (0.265) (0.185) (0.425) (0.327) 
Tenured position (d)  -0.083 -0.189 -0.194 -0.239 
 (0.135) (0.143) (0.215) (0.249) 
Female (d)  -0.076 0.011 -0.128 -0.043 
 (0.116) (0.119) (0.186) (0.208) 
GDP per capita in region  -0.007 -0.001 -0.010 -0.003 
 (0.007) (0.006) (0.011) (0.011) 
No. of plants in region (ln)  -0.105 0.023 -0.162 0.059 
 (0.066) (0.057) (0.106) (0.100) 
High importance of tech. transfer activities (d) 0.405** 0.233 0.648** 0.371 
 (0.200) (0.203) (0.325) (0.364) 
Constant 1.171* -0.936   
 (0.597) (0.733)   
Pseudo R2  0.14 0.22 0.10 0.16 
N 162 168 162 168 
LR/Wald chi2  52.155 84.551 53.574 90.574 
P-value  0.000 0.000 0.000 0.000 
Log likelihood -156.847 -152.265 -240.166 -235.582 
Note: Standard errors in parentheses. *** (**,*) indicate a significance level of 1% (5%, 10%). (d): dummy 
variable. Reference categories: biosciences (biology, medicine); university affiliation. 
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Our results indicate that professional imprinting plays a major role in shaping scientists’ 

propensity to engage with industry. Both the localized and the personal peer effect turn out to be 

relevant, which confirms and extends prior literature (Bercovitz and Feldman, 2008). We find 

evidence that the localized imprinting effect is dependent on the scientist’s career age, in that 

imprinting through the department is particularly effective in the early years of the scientist’s 

career. In contrast to this, the personal peer effect seems unaffected by career age. This suggests 

that personal peer effects are less sensitive towards the scientist’s professional “lifecycle” and 

that the scientist’s department acts as a major reference point for the scientist’s activities in the 

early years of her or his career. Comparing the two imprinting effects for younger scientists, it 

turns out that the behavior of the department plays a larger role than the behavior of the 

scientist’s co-authors, i.e. the localized peer effect is larger than the personal peer effect. This is 

likely due to the greater dependence of younger scientists on the department than on co-authors.  

Regarding the control variables, we find consistent effects across all models. The more 

recent the vintage of the scientist’s PhD degree, the less likely becomes industry involvement. It 

appears that the number of publications in the department has no significant effect on industry 

involvement, i.e. a department’s focus on academic research (as opposed to technology 

development), as evidenced by a high publication output, does not contradict industry 

involvement. In fact, a focus of the scientist on academic research, measured by the total number 

of publications, has a slightly positive effect on industry involvement. Thus, our results 

substantiate to a certain extent the findings of Zucker et al. (2002) on the importance of “star 

scientists” for commercialization. Moreover, we find that scientists whose research is 

application-oriented exhibit higher industry involvement. We also find that engineering scientists 

are significantly more engaged with industry while there are no other significant discipline 
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effects. Existing literature that documents disciplinary effects is thus confirmed (e.g., Grimpe 

and Fier, 2010). Prior patent applications of the scientist turn out to have no effect on industry 

involvement. If the scientist’s area of research is characterized by a high importance of 

technology transfer activities, industry involvement of the scientist is found to be higher. 

Interestingly, all other control variables seem to be irrelevant for explaining a scientist’s 

involvement with industry. In this respect, we find no effect of tenure or gender. Moreover, our 

regional control variables, which are intended to capture the local “pool” of collaboration 

opportunities, turn out to be insignificant, although prior literature had shown that collaboration 

patterns tend to be localized (e.g., Czarnitzki and Hottenrott, 2009). 

4.3 Robustness tests 

A potential selection bias might arise if staff hiring relies on the applicant’s former 

industry involvement so that resulting departmental effects are not driven by the department’s 

influence but are due to the department’s hiring strategy. A selection problem might also arise on 

the part of a researcher if application-oriented researchers switch to departments with a higher 

degree of industry involvement. We address this issue by comparing previous patenting activities 

by researchers who were newly hired in the period from 2006 to 2008 between more and less 

industry-oriented departments. Previous patenting activities are measured as a dummy variable 

that takes the value of one if a researcher is listed at least once as an inventor on a patent 

application that was filed before the year in which the researcher took up employment at the 

current department. More and less industry-oriented departments are distinguished by a sample 

split at the median share of the department’s joint publications with industry personnel. The 

share of newly hired researchers with previous patenting activities is around 65 percent for both 
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groups of departments. A t-test confirms that there is no significant difference between the two 

groups of departments. Thus, we can conclude that the results are not driven by a selection.  

In addition, our survey results show that researchers rank publishing as the most important 

task. About 90 percent of the researchers assess publishing as a very important task of 

researchers; an additional 8 percent rated it as an important task. In contrast to this, commercial 

activities play only a minor role. Technology transfer is rated by 9 percent (20 percent) of the 

respondents as a very important (important) task. Patenting activities reach similar values (9 

percent very important; 16 percent important). Accordingly, hiring decisions can be assumed to 

be based on the publication record of the applicant, not on his or her prior industry involvement 

(see also Bercovitz and Feldman, 2007).  

5 Conclusion 

Our research sheds new light on the factors driving academics to engage with industry. We 

suggest that professional imprinting plays a major role, which we distinguish into localized and 

personal peer effects. Moreover, we explicitly account for the scientist’s career age and how this 

affects professional imprinting. Based on a sample of biotechnology scientists in Germany, our 

results reveal that imprinting in fact depends on the scientist’s career age, with younger scientists 

being more receptive to imprinting that stems from the local environment, i.e. the scientist’s 

department. While imprinting through co-authors, i.e. personal peers, is important to explain 

industry involvement, the effect does not appear to depend on the scientist’s career age. 

Moreover, for younger researchers the localized peer effect is larger than the personal peer 

effect. In this respect, we extend existing literature in the field by disentangling the professional 

imprinting effect into localized (department) and personal (co-authors) peer effects. Moreover, 
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prior literature has all too often treated the scientist’s age as a control variable and neglected its 

moderating impact on imprinting. Finally, previous studies have focused on single areas of 

scientists’ involvement with industry. By employing an industry involvement index that 

integrates different channels of potential collaboration, we provide a more holistic picture of 

academics’ engagement with industry. 

Our research, however, needs to acknowledge several limitations. First, our measure for 

personal peer effects, i.e. an indicator for whether co-authors of the scientist have published 

together with industry personnel, could be related to the measure for localized peer effects in 

case the scientist’s co-authors work at the same department, although we generally find a very 

low correlation between the two measures. Moreover, our survey data just represent a cross-

section. Ideally, it would be desirable to follow scientists throughout their career in order to 

make a better informed analysis of how career age affects professional imprinting. 

Nevertheless, our research offers important insights for science, technology and innovation 

(STI) policy making. Given that the traditional mission of public science has shifted in recent 

years from educating students and conducting (basic) research towards becoming more 

“entrepreneurial” and engaging with industry (Etzkowitz et al., 2000), our research makes it clear 

that it is not only the personal motivation of the scientist or the organizational infrastructure (for 

example, whether or not there is a technology transfer office) that matter for industry 

involvement; it is also the scientist’s immediate environment to which he or she refers when 

deciding to engage with industry. Efforts to promote industry involvement should therefore not 

ignore peer effects, which however can be difficult to influence. Policy measures should hence 

be targeted primarily at groups of researchers and not (only) individual scientists. Moreover, 

industry involvement has been shown to typically occur in later stages of the career. If STI 
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policy aims at extending industry-science linkages, it seems pivotal to facilitate industry-science 

interaction, particularly for scientists in their early stage of career. As imprinting has turned out 

to be more effective in those years, STI policy could target researcher groups with a high share 

of early-stage researchers. Nevertheless, it should be kept in mind that knowledge exchange at an 

early stage might not unfold its full potential because younger scientists might have accumulated 

relatively less knowledge that can be used for commercialization compared to more experienced 

scientists. 
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Appendix 

Table 4: Representativeness of the sample  

 Population 
Gross 

sample 
Net 

sample
Basis: Number of unique papers  6,990 5,635 1,079
Number of different authors affiliated w/ institution located in Germany (total) 18,715a) 3,360 330
Number of authors per paper (mean) 5.4 5.4 6.0
Journal quality: impact factor (mean) 3.6 3.6 3.7
Number of affiliations located in Germany (total) 11,722 9,988 2,181
Number of affiliations located in Germany per paper (mean) 1.7 1.8 2.0
Affiliations: Type of institutions (in %):   
   university 47.7 49.7 48.2
   public research institution 26.9 27.4 33.1
   clinic/hospital 15.3 14.5 12.8
   industry 10.1 8.3 5.8
   private person 0.1 0.1 0.1
   Sum 100.0 100.0 100.0
Note: a) approximated 
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Table 5: Correlation table (330 observations)  
Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

(1)   Joint publications w/ industry by dept. 1  
(2)   Co-authors published w/ industry (d)  0.16 1  
(3)   Years since PhD (ln)  0.02 0.02 1  
(4)   No. of publications by dept.  0.08 0.22 0.05 1  
(5)   No. of publications by individual  0.05 0.37 0.24 0.12 1  
(6)   Patent application (d)  0.08 0.15 0.21 0.10 0.19 1 
(7)   Applied research orientation (d)  0.13 0.15 0.03 0.07 0.12 0.15 1
(8)   Field: Natural Sciences (d)  0.04 0.04 0.01 -0.12 -0.03 -0.06 -0.02 1
(9)   Field: Engineering (d)  -0.06 -0.06 -0.12 -0.12 0.03 -0.06 0.12 -0.10 1
(10) Field: Other (d)  -0.02 0.02 -0.07 -0.07 0.12 -0.01 0.12 -0.10 -0.07 1
(11) Research-oriented public research institution (d) -0.08 -0.01 -0.10 0.35 0.05 0.01 -0.09 -0.03 -0.04 -0.10 1
(12) Application-oriented public research institution (d) 0.08 -0.04 0.08 -0.18 0.02 0.00 0.04 -0.01 -0.03 0.01 -0.17 1
(13) Tenured position (d) -0.04 0.07 0.57 0.00 0.23 0.20 0.00 0.03 -0.08 -0.03 -0.03 0.08 1
(14) Female (d)  -0.07 -0.09 -0.15 -0.02 -0.18 -0.12 0.00 0.05 -0.01 0.02 0.01 -0.08 -0.13 1
(15) GDP per capita in region  0.00 0.03 -0.02 0.03 0.05 -0.02 -0.01 -0.02 0.05 0.05 -0.11 -0.16 0.03 0.03 1
(16) No. of plants in region (ln)  -0.16 0.01 0.00 0.23 0.02 -0.05 -0.03 -0.02 0.05 0.01 0.02 0.07 0.01 0.02 0.39 1
(17) High importance of tech. transfer activities (d) -0.02 0.06 -0.04 0.00 -0.03 0.02 0.13 0.11 0.26 0.05 -0.06 0.27 0.00 -0.01 0.01 0.14
 


