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Non-technical Summary

The inability of the capital asset pricing model (CAPM) to explain the cross-

sectional variation of average stock returns is well documented in the empirical

asset pricing literature. Given the dismal performance of the static CAPM, nu-

merous studies have investigated potential reasons for the empirical weakness. A

prominent explanation for the empirical failure of the static CAPM is that the

implications of conditioning information have been neglected. Most studies on

conditional versions of the CAPM, allowing either for time-variation of the betas

or the parameters of the stochastic discount factor, have found that by incorpo-

rating conditioning information, the empirical performance is clearly improved.

The main motivation of this paper is to study the performance of the model class

of the conditional CAPM in explaining the variation of average stock returns of

the German stock market. Since previous empirical evidence is mainly based on

studies for the U.S. stock market, we provide an additional robustness check for

conditional asset pricing models. The unconditional CAPM and the Fama-French

three-factor model serve as benchmarks in our analysis. 16 portfolios sorted by

size and book-to-market are used as test assets.

Our empirical results can be summarized as follows. We present further evidence

regarding the empirical shortcomings of the unconditional CAPM in explaining

German stock returns. Most importantly, our results suggest that incorporating

conditioning information has the potential to substantially improve the model’s

performance. The choice of the conditioning variable, however, is crucial for the

results. According to our empirical findings, a specification of the conditional

CAPM with the term spread as the conditioning variable is able to explain the

cross-section of returns about as well as the Fama-French model. Also the perfor-

mance of the conditional CAPM using a January-dummy variable is encouraging,

given the fact that it is only a slight modification of the standard model. There

is no evidence that the use of conditioning variables necessarily leads to increased

parameter instability. By contrast, the null hypothesis of stable parameters is re-

jected in the case of the three-factor model of Fama and French. Additional test

results reveal however, that unconditional model specifications perform quite well

in capturing the time-series predictability of the test asset returns.

i



Evaluating Conditional Asset Pricing Models for
the German Stock Market∗

Andreas Schrimpf, ZEW Mannheim†
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1 Introduction

It is widely known that the Capital Asset Pricing Model (CAPM) has severe

problems in explaining empirical patterns of the cross-section of U.S. stock returns

in the post-1963 period [e.g. Banz (1981), Basu (1983), Rosenberg, Reid and

Lanstein (1985)].1 The most serious blow to the CAPM has been the work by

Fama and French (1992) who demonstrated the inability of the CAPM’s beta to

explain the cross-section of stock returns. Instead, two variables (size and the book-

to-market ratio) are found to bear a strong relation to the cross-sectional variation

of average stock returns. In the light of this empirical evidence, numerous attempts

have been made to extend the CAPM in order to achieve empirical success.

Several authors have argued that the empirical failure of the CAPM can be at-

tributed to the fact that the conditional implications of the model have been ne-

glected previously.2 These papers are based on the literature on time series pre-

dictability of excess stock returns at long-horizons, which suggests that risk premia

are time-varying [e.g. Campbell and Shiller (1988), Fama and French (1989) and

Lettau and Ludvigson (2001a)].3 The implication for the econometric testing of

asset pricing models is that the parameters of the stochastic discount factor (SDF)

are potentially time-varying.

As yet, the research on conditional asset pricing models has focused primarily on

the U.S. stock market. However, an important out-of sample check for an asset

pricing model is the question whether the results for the U.S. also hold for other

developed capital markets. The purpose of this paper is therefore to evaluate

several specifications of the conditional CAPM for a major European market, the

1Ang and Chen (2005) argue that the CAPM works much better during the longer period
from 1927 to 2001. They attribute their findings to two effects: on the one hand betas of book-
to-market portfolios vary substantially over time and additionally the post-1963 period is rather
short for the conventional test procedures.

2Prominent contributions include for instance Harvey (1989), Ferson and Harvey (1991),
Jagannathan and Wang (1996), Lettau and Ludvigson (2001b), Hodrick and Zhang (2001). For
a critical view of conditional asset pricing models see Lewellen and Nagel (2005). Ang and Chen
(2005), however, show that the rolling time-series OLS methodology applied by Lewellen and
Nagel leads to biased estimates of the parameters of the conditional CAPM.

3Cochrane (2001, ch.20) provides an excellent survey on the predictability of stock returns.
For critical views regarding the time-series predictability of returns, see for instance Goyal and
Welch (2004) and Ang and Bekaert (2005).
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German stock market. In this way, our study provides an additional robustness

check for conditional asset pricing models. As our test assets, we use 16 portfolios

of German stocks sorted by size and book-to-market which are constructed in the

same way as in the seminal paper by Fama and French (1993). For the empirical

tests we use the excess returns of these portfolios over the German short-term

interest rate. We also include the short-term interest rate as an additional test

asset, in order to identify the mean of the stochastic discount factor, i.e. we have

17 moment conditions in total. Our estimations are based on monthly data for the

time period ranging from 1969:12 to 2002:12.

There are certain criteria for the choice of conditioning variables. It has been sug-

gested in the literature that these variables should capture investors’ expectations

about future market returns or business cycle conditions. Our set of conditioning

variables largely follows the previous literature, in particular Ferson and Harvey

(1999). We use the spread between the return on corporate bonds and government

bonds (DEF ), the term spread (TERM), short term interest rates (TB) as well

as dividend yields (DIV ). In order to see whether a “January-effect” plays a role

on the German stock market, we follow Hodrick and Zhang (2001) in consider-

ing a January-Dummy JAN as a conditioning variable, which allows for different

parameters of the SDF in January and other months.4 Following Hodrick and

Zhang (2001) we also use a variable intended to capture the cyclical component of

industrial production (CY ).

It is fair to say that up to now the most prominent model to explain cross-sectional

variation in stock returns has been the model by Fama and French (1993). Moti-

vated by the empirical evidence against the CAPM, Fama and French proposed a

factor model including two additional risk factors designed to capture risks regard-

ing size (SMB) and book-to-market (HML). In contrast to the theory-derived

conditional CAPM, the Fama-French model is mainly motivated from an empirical

perspective, which has been the source of a lot of controversy. There has been an

4As evinced by Daniel and Titman (1997) for the U.S. stock market, the empirical phenomenon
that small stocks earn a higher return on average than big stocks (“size premium”) and that high
book-to-market stocks earn a higher return than growth stocks (“value premium”) occurs to a
large extent in January months.
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ongoing debate on what the true macroeconomic risks behind the Fama-French

factors actually are. Fama and French (1993, 1995, 1996) interpret their model as

a version of Ross’s (1976) APT or Merton’s (1973) ICAPM. Thus, they provide a

risk-based interpretation of the SMB and HML factors. This view has been cor-

roborated recently by the work of Liew and Vassalou (2000) who provided evidence

that SMB and HML contain news regarding future economic growth suggesting

that SMB and HML are indeed proxies for more fundamental macroeconomic

risks. Petkova (2006) finds evidence that SMB and HML are correlated with

innovations in predictive variables such as the default spread and the term spread.

Nevertheless, the model remains controversial. However, owing to its empirical

success in explaining the cross-section of portfolio returns, it constitutes a natural

benchmark model for our model comparison tests.

Since the purpose of our paper is to run a horse race among different linear factor

models, we estimate various model specifications by the Generalized Method of

Moments (GMM) using the second moment matrix of returns as the weighting

matrix, as proposed by Hansen and Jagannathan (1997). The authors have shown

that by doing so, the solution to the GMM problem amounts to minimizing the

distance between the set of true stochastic discount factors and the proxy for the

SDF implied by the respective asset pricing model. Following Jagannathan and

Wang (1996) and Hodrick and Zhang (2001), we test whether this distance is

zero. There is another reason for choosing the second moment matrix of returns

as our weighting matrix. The conventional GMM introduced by Hansen (1982)

uses the inverse of covariance matrix of sample moments as a weighting matrix.

This weighting matrix usually differs from model to model. Since the purpose

of our paper is to analyze different specifications of asset pricing models and to

compare their performance to each other on a common data set, it is essential to

use the same weighting matrix for all model specifications. Hence, we prefer the

Hansen-Jagannathan (HJ) weighting matrix over two-stage GMM in our empirical

setup.

We conduct a series of additional robustness checks in order to provide a tough

challenge for the different model specifications. Ghysels (1998) has criticized con-
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ditional asset pricing models on the grounds that incorporating conditioning infor-

mation may lead to greater parameter instability. This can be a serious drawback

if the model is to be used out-of-sample in corporate finance applications. There-

fore, we augment our model comparison tests with the supLM-Test for parameter

stability suggested by Andrews (1993). This test has also been applied by Hodrick

and Zhang (2001) and Li, Vassalou and Xing (2001) in empirical frameworks sim-

ilar to ours. We also investigate the capacity of the different model specifications

in capturing the time series predictability of our size and book-to-market portfolio

returns according to the test by Farnsworth, Ferson, Jackson and Todd (2002).

Moreover, we test whether the factors of the conditional asset pricing models are

driven out once the Fama-French factors SMB and HML are included in the

SDF.

Prior research on the German stock market has primarily used time-series and

cross-sectional regression methods in order to evaluate empirical asset pricing mod-

els.5 Earlier studies have investigated for instance the explanatory power of mar-

ket capitalization, book-to-market ratio and other financial ratios.6 In contrast to

Fama and French (1993), the additional variables are included as characteristics

rather than risk factors. Beiker (1993) finds that the negative relationship between

returns and market capitalization which has been found for the U.S. stock market

also exists for German stocks but that the phenomenon depends on the sample

period. The study of Stehle (1997) confirms the results found by Beiker using all

stocks listed at the Frankfurt Stock Exchange during the period from 1954 until

1990. Stocks with a low market capitalization exhibited a significantly higher aver-

age return compared to blue chip stocks but most of this extra-return was realized

in January and February. Sattler (1994) and Gehrke (1994) find a significantly

positive relationship between average stock returns and the book-to-market ratio.

In a more recent study Wallmeier (2000) also considers other financial ratios such

5Two exceptions are the studies by Hafner and Herwartz (1999) and Scheicher (2000) who
analyze asset pricing models for individual German stocks in a multivariate GARCH framework.

6These studies made use of cross-sectional regressions (in most cases the two-step approach of
Fama and MacBeth (1973). See e.g. Beiker (1993); Gehrke (1994); Sattler (1994); Stehle (1997);
Bunke, Sommerfeld and Stehle (1999); Wallmeier (2000); Stock (2002) and Schulz and Stehle
(2002).
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as leverage, price-earnings and price-cash-flow ratio. He finds that book-to-market

ratio and price-cash-flow ratio have a highly significant impact on German stock

returns whereas size is only of minor importance. Ziegler, Schröder, Schulz and

Stehle (2005) estimate different multi-factor models including the CAPM and the

Fama-French model using portfolios sorted by size and book-to-market as test as-

sets. The main result from their time-series regressions is that the Fama-French

multifactor model clearly outperforms the conventional CAPM in terms of ex-

planatory power and pricing errors.

The empirical results of this paper can be briefly summarized as follows. In line

with previous research, we present further evidence regarding the empirical short-

comings of the conventional CAPM in explaining German stock returns. Most

importantly, we find that conditioning information leads to substantial improve-

ments of the model’s performance. According to our empirical results, the CAPM

with TERM as the conditioning variable is able to explain the cross-section of re-

turns about as well as the Fama-French model. Contrary to Ghysels (1998) for the

U.S., we do not find that the use of conditioning variables necessarily leads to in-

creased parameter instability. By contrast, the null hypothesis of stable parameters

is rejected in the case of the three-factor model of Fama and French. Additional

test results reveal however, that unconditional model specifications perform quite

well in capturing the time-series predictability of the test asset returns.

The organization of this paper is as follows. The next section shows briefly how

conditioning information can be incorporated into asset pricing models. In section

3 we provide an overview of our data set. Section 4 gives an overview of the

empirical methods applied in this study with particular focus on HJ-GMM. Section

5 presents the results of model estimation and comparison tests and provides a

discussion of our empirical results. Section 6 concludes.
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2 Conditional Asset Pricing Models

Conditional asset pricing models can be conveniently expressed in their stochastic

discount factor representation. Assuming the absence of arbitrage opportunities,

asset pricing theory states that there is a stochastic discount factor (or pricing

kernel) Mt+1, where

Et[Mt+1R
i
t+1] = 1 (1)

holds for all assets i (i = 1, . . . , N) in the economy. Ri
t+1 denotes the gross return of

asset i and Et(·|Υt) represents the expectation taken conditional on the investor’s

information set (Υt) as of time t. Assuming the existence of a risk-free rate,

equation (1) can also be written as Et[Mt+1R
ei
t+1] = 0, where Rei

t+1 is an excess

return of asset i over the risk-free rate Rf
t .7 In the most basic asset pricing model

– the consumption-based asset pricing model – the pricing kernel Mt+1 is equal

to the investor’s marginal rate of substitution. The focus of this paper, however,

is on linear factor models which express the pricing kernel as a linear function of

factors:

M̃t+1 = b0,t + b′1,tft+1, (2)

where ft+1 is a k-dimensional vector of factors. We denote the SDF of an asset

pricing model as M̃t+1, in order to indicate that it is an approximation of the true

SDF Mt+1. Equation (2) represents a conditional linear factor model since the

parameters b0,t and b1,t are time-varying. It can be shown that the parameters of

the SDF of linear factor models such as the CAPM can be expressed as functions

of expected excess returns [See e.g. Lettau and Ludvigson (2001b) or Cochrane

(2001, ch.8)] Empirical evidence from the literature on time series predictability

therefore suggests that the parameters of the SDF are potentially time-varying as

7The estimation results reported in this paper are based on moment conditions for the excess
returns Rei

t+1 for the 16 test portfolios, E[Mt+1R
ei
t+1] = 0, plus an additional moment condition

for the gross return of our proxy for the risk-free asset, E[Mt+1R
f
t ] = 1. The purpose of the

latter is to identify the mean of the stochastic discount factor.
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in (2).

The moment conditions in (1) are not directly testable since they are based on the

information set of the investor Υt which is not directly observable by an econome-

trician. As a consequence, asset pricing models are usually tested after transform-

ing equation (1) into an unconditional moment condition by the law of iterated

expectations, which leads to E[Mt+1R
i
t+1] = 1. This is feasible only when the

parameters in (2) are assumed to be constant, i.e. M̃t+1 = b0 + b′1ft+1. In this way,

however, the conditional implications of the model are neglected.

A way of incorporating conditioning information into the model is by modelling

the parameters b0,t; b1,t in the SDF in equation (2) as linear functions of lagged

instruments zt [See e.g. Cochrane (1996), Hodrick and Zhang (2001)]. In the case

when zt is a scalar, the SDF of the scaled factor model is given by

M̃t+1 = (b0,1 + b0,2zt) + (b1,1 + b1,2zt)
′ft+1

= b0,1 + b0,2zt + b′1,1ft+1 + b′1,2(ft+1zt). (3)

Apart from the fundamental factors ft+1, the scaled model also contains the lagged

conditioning variable as well as the interaction term between the fundamental

factors and the lagged conditioning variable. Hence, the scaled factor model in (3)

is effectively an unconditional multifactor-model, where the factors f̃t+1 are given

by f̃t+1 = [zt, ft+1, ft+1zt]
′ and the coefficients are now constant. Plugging (3) into

(1) and taking unconditional expectations, the following unconditional moment

restrictions can be obtained by the law of iterated expectations:

E[(b0,1 + b0,2zt + b′1,1ft+1 + b′1,2ft+1zt)R
i
t+1] = 1. (4)

These moment conditions for the assets i (i = 1, . . . , N) can be exploited for the

estimation of the parameters b = [b0,1, b0,2, b
′
1,1, b

′
1,2]

′ by the Generalized Method

of Moments (GMM). When we estimate the scaled factor model by GMM, we

obtain estimates of the parameters b of the stochastic discount factor. Testing the
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hypothesis whether parameter j of the SDF is zero, we can assess whether the jth

factor significantly influences the pricing kernel.

Frequently, it is also of interest to analyze if a particular factor j carries a sig-

nificant risk premium, referred to as λj. Such values of λj can be obtained by

Fama-MacBeth cross-sectional regressions, but can also be delivered in a GMM

framework using b̂ and the sample variance-covariance matrix of the factors f̃t+1.
8

For the purpose of completeness, we therefore also provide estimates of λ based

on our GMM estimates of b̂. The reported standard errors for the estimates of λj

are calculated by the delta method.

It should be pointed out that only in the case of the unconditional models (static

CAPM, and Fama-French model) it is possible to interpret λj as factor risk price.9

This is due to the fact that the unconditional scaled multifactor model is obtained

from a conditional factor model in the first place. Combining (1) and (2), one can

write the model in its conditional expected return beta representation

Et(R
i
t+1) = R0

t + λ′tβi;t (5)

where βi;t = Covt(ft+1, f
′
t+1)

−1Covt(ft+1, R
i
t+1) are the conditional betas of asset

i, the elements of λt = −R0
t Covt(ft+1, f

′
t+1)b1,t are also known as the conditional

factor risk premia and R0
t = 1/Et(M̃t+1) is the conditional zero-beta rate.

Unfortunately, it is not possible to obtain the estimates of the conditional fac-

tor risk premia λt for the fundamental factors ft+1, since the empirically feasible

investigation is based on the unconditional version of the scaled factor model in

(4). The estimates of b̂ and the assumed linear relationship b1,t = b1,1 + b1,2zt can

be used to obtain an estimate b̂1,t. Under the (restrictive) assumption that the

conditional variance-covariance matrix of the factors is constant over time, a time

series of period t risk prices λ̂t for the fundamental factors can be calculated. We

8Rearranging (4) gives the unconditional beta representation of the scaled multifactor model:

E(Ri
t+1) = E(R0

t ) + λ′β, β = Cov(f̃t+1, f̃
′
t+1)

−1Cov(f̃t+1, R
i
t+1),

where E(R0
t ) is the expected zero-beta rate, and λ is given by λ = −E(R0

t )Cov(f̃t+1, f̃
′
t+1)b.

9See Lettau and Ludvigson (2001b) for a discussion.
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conduct this exercise following Lettau and Ludvigson (2001b) in order to check

whether the fundamental factors earn on average a positive risk premium.

3 The Data

This section gives an overview of the data used for the estimation of the different

models. All estimations are based on monthly data ranging from 1969:12 - 2002:12.

We first provide details on the construction of our test assets for the German stock

market, followed by a discussion of the construction of the risk factors as well as

on the conditioning variables for the scaled factor models.

3.1 Portfolio Returns

Ever since the influential work by Fama and French (1993), it has been common

practice in the empirical asset pricing literature to test asset pricing models on

the cross-section of portfolios sorted by size (market value of equity) and the ratio

of book-equity to market-equity. Following this tradition, we construct size and

book-to-market portfolios for the German stock market. Our data basis comprises

all stocks traded on the Frankfurt stock exchange between December 1969 and

December 2002, for which the necessary data on market capitalization and book

value of common equity are available. Companies with a negative book value

are not taken into account. Banks and insurance companies are also not consid-

ered because they are subject to special accounting standards. Our source for the

book-value of common equity is the German Finance Database (Deutsche Finanz-

datenbank, DFDB). The monthly stock returns and the data necessary to compute

the market value of equity are obtained from a database maintained by Richard

Stehle.

We apply a (4 × 4) sorting scheme, which results in 16 size and book-to-market

portfolios for the German stock market. Since fewer companies are listed on the

German stock exchange compared to the U.S., using a (5 × 5) sorting scheme

implies that the 25 portfolios constructed in this way for the German market,
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contain far fewer companies than those in the original paper by Fama and French.

In order to avoid potential biases, we prefer to use only 16 stock market portfolios

instead of the commonly used 25 in similarly designed studies for the U.S. stock

market.

For all stocks, we calculate the quartile breakpoints of market capitalization at

the end of June of year t as well as the quartile breakpoints of the book-to-market

ratio from December of the preceding year t − 1. Based on these breakpoints,

all stocks are allocated into 16 portfolios according to their individual size and

book-to-market ratio. Then value-weighted returns are calculated from July in t

to June t+1, when a realignment of the portfolios takes place taking into account

the new information on size and book-to-market.

Table 1: Summary Statistics: 16 Test Assets
Excess returns of test assets, 16 stock portfolios

Mean (standard deviation)

Size Quartiles Book-to-market Quartiles
B1 (Low) B2 B3 B4 (High)

S1 (Small) -0.329 -0.095 -0.006 0.021
(4.848) (3.743) (4.036) (5.066)

S2 0.046 0.143 0.147 0.304
(4.134) (4.146) (4.432) (4.524)

S3 0.014 0.145 0.106 0.325
(3.956) (4.184) (4.576) (5.276)

S4 (Big) 0.007 0.337 0.417 0.472
(6.209) (5.594) (5.084) (5.291)

Note: The returns are the average excess returns (monthly, in %) on 16
size and book-to-market sorted portfolios of the German stock market. The
corresponding standard deviations are reported in parentheses. The table
is organized as follows: for instance S1B1 contains the average (monthly)
excess return of the portfolio containing the smallest stocks in terms of market
capitalization and the lowest book-to-market ratio. The sample period is
1969:12 - 2002:12.

Table 1 contains descriptive statistics of our test assets. First of all, it is noteworthy

that there is a sizeable spread in the average monthly excess returns of the different

portfolios which is to be explained by the different asset pricing models. The largest

excess return is 0.472% for the stock portfolio containing big value stocks (portfolio
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S4B4), whereas the lowest average excess return is a negative -0.329% (portfolio

S1B1).

As shown by table 1, the “value premium” can also be observed empirically on

the German stock market: moving from growth stocks (low book-to-market for a

given size category) to value stocks (high book-to-market for a given size category),

we can see that average excess returns tend to rise. It is striking however, that

no negative relationship between size and average returns can be found for the

German stock market. This finding has been recently reported by Ziegler et al.

(2005) who analyzed different types of multifactor models for the German stock

market for the period 1968:07-1995:06. Contrary to the sample period studied by

Ziegler et al. (2005), one can even observe a tendency that average returns rise

when size increases in our extended sample period which also covers more recent

data. This finding stands in clear contrast to the pattern documented by numerous

studies on the U.S. stock market.

3.2 Factors

For the construction of our proxy for the market portfolio, we use the value-

weighted return on all stocks listed on the Frankfurt stock exchange, including the

stocks of banks and insurance companies as well as of those companies which have

a negative book value at the end of December of the respective year. We compute

the market excess return Rm by subtracting the return of our risk-free rate proxy.

We choose the money market rate for one-month deposits obtained from the time

series database of Deutsche Bundesbank as our proxy for the risk-free rate.

The Fama-French factors SMB and HML are designed to mimick risk factors

regarding to size and book-to-market. The starting point for the construction of

SMB (Small minus Big) and HML (High minus Low) are six portfolios derived

in a similar way as the 16 size and book-to-market portfolios. At the end of June

of each year t, all stocks are sorted by their market capitalization. Then the size

median is used as a breakpoint in order to split the stocks into small stocks (S)

and big stocks (B). In a similar way, all stocks are sorted into three categories
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according to their book-to-market ratio [low (L), medium (M) and high (H)] at

the end of December in year t−1. From the intersections of the two size and three

book-to-market groups, six portfolios are formed, into which all stocks traded on

the Frankfurt stock market are allocated. This procedure results in six portfolios

(S/L, S/M, S/H, B/L, B/M, B/H) for which monthly value-weighted returns are

calculated. Every year in June, a realignment of the portfolios takes place taking

new information on market capitalization and book-to-market into account.

The portfolio SMB (Small minus Big) is intended to mimick the risk factor related

to size. It is calculated as the average of the returns of the portfolios containing

small stocks (S/L, S/M, S/H) minus the average of the returns of the portfolios

containing big stocks (B/L, B/M, B/H). As noted by Fama and French (1993), this

construction eliminates the influence of book-to-market in SMB. The portfolio

HML (High minus Low) is similarly constructed and designed to capture risk

related to book-to-market. It is calculated as the average of the returns of the

portfolios containing high book-to-market stocks (S/H, B/H) minus the average

of the returns of the portfolios containing low book-to-market stocks (S/L, B/L).

Obviously this aims at eliminating the effect of size in HML.

3.3 Conditioning Variables

In this paper we use six conditioning variables in total. Our first conditioning

variable is the default spread DEF , which was constructed using the data for all

corporate bonds listed at German security exchanges during the period 1967 until

2002.10 The German market for corporate bonds was relatively small in the years

until the end of the 1980s but has grown rapidly in the past 15 years: the number

of listed bonds increased from 14 in 1989 to 43 in 1994 and 171 in 2002. The

default spread variable DEF is constructed as the return on a long position in a

value-weighted portfolio consisting of all corporate bonds and a short position in

German government bonds. Due to the fact that the duration of the corporate

bond portfolio changes over time, the duration of the government bond portfolio

10We thank Wolfgang Bühler, University of Mannheim, for access to the German interest rate
and bond database.
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has to be adjusted accordingly. Otherwise DEF would not only measure changes in

default risk but also changes in duration. Therefore the government bond portfolio

is constructed as a weighted average of REXP sub-indexes with different time to

maturity.11 The weighting scheme changes over time in order to match the duration

of the corporate bond portfolio. The DEF conditioning variable, i.e. the return

difference of the two bond portfolios, thus measures changes in default risk for

the German corporate bond market. The mean of the DEF factor of 0.136% (see

Table 2) shows that on average investors in German corporate bonds have been

rewarded by an additional return of about 1.64% p.a. for bearing default risk.

The term spread TERM is defined as the difference between the return on long-

term government bonds over the short-term interest rate. For the short-term in-

terest rate we use the money market rate for one-month deposits mentioned above.

The monthly return on long-term government bonds was calculated from the REX-

performance index of government bonds with ten years to maturity. Moreover, also

aggregate dividend yields DIV have featured prominently in recent tests of condi-

tional asset pricing models. Our time series of aggregate dividend yields is based

on the MSCI Index Germany and was made available to us by MSCI. This paper

also considers the short-term interest rate TB as a conditioning variable. Follow-

ing Hodrick and Zhang (2001), we explore the effect of using a January-dummy

JAN , which takes the value one in January and zero otherwise.

We also use the cyclical component of industrial production CY as a conditioning

variable as proposed in the paper by Hodrick and Zhang (2001). We construct this

variable for Germany using the filter by Hodrick and Prescott (1997) (HP-filter).

Our time series of (log-)industrial production is available from 1960:01-2002:12.

The period from 1960:01-1969:11 is used to initialize the series. The smoothing

parameter is set to 6,400. Then we apply the HP-filter recursively in order to

extract the cyclical component of the series. The recursive application of the filter

ensures that only information which is truly available to the investor as of time t

appears in the information set.

11The REXP index family consists of 10 sub-indexes each representing a different time to
maturity, ranging from 1 year (first sub-index) until 10 years (last sub-index).
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Table 2: Summary Statistics: Factors and Conditioning Variables
Variable Cross Correlation

Mean Std. Rm SMB HML TERM DEF Rf DIV CY

Rm 0.235 5.265 1.000
SMB -0.189 2.918 -0.657 1.000
HML 0.271 2.598 -0.069 0.071 1.000
DEF 0.136 1.282 -0.002 0.015 -0.004 1.000
TERM 0.115 1.118 0.189 -0.169 0.035 -0.072 1.000
Rf 0.489 1.118 -0.095 0.043 -0.005 0.015 -0.122 1.000
DIV 0.296 0.095 -0.100 0.102 -0.039 0.088 -0.079 0.591 1.000
CY -0.184 2.119 0.054 0.001 0.092 0.068 -0.054 -0.334 -0.237 1.000

Note: The table reports means and standard deviations in (%, per month) of factors and
conditioning variables for the period 1969:12 - 2002:12. Furthermore, correlation coefficients
are reported. The set of factors includes the excess return on the market portfolio Rm as well
as the Fama-French factors SMB and HML. The set of conditioning variables is defined
as zt = (DEFt, TERMt, TBt, DIVt, CYt)′, where DEFt is the default spread, TERMt

represents the term spread, TBt denotes the short term interest rate, DIVt are aggregate
dividend yields, CYt denotes the cyclical component of industrial production.

Table 3 presents test results for the predictive power of our set of conditioning

variables zt = (DEFt, TERMt, TBt, DIVt, CYt)
′. For this purpose we run the

following regression

Ri;t+1 = a + b′zt + εt+1. (6)

The table reports Wald statistics and the corresponding p-values for the test that

the lagged conditioning variables bear no relation with the portfolio excess returns,

i.e. that the coefficients b are jointly zero. For most portfolios, the null hypothesis

can be rejected at the 10% level. Further descriptive statistics for the factors and

the conditioning variables are provided in table 2.

4 Empirical Methods

We estimate the different model specifications using a Generalized Method of Mo-

ments (GMM) approach. The appendix also contains empirical results for the tra-

ditional cross-sectional regression approach by Fama and MacBeth (1973), mainly

for the sake of completeness. Our primary focus, however, is on the variation of the

GMM estimation approach proposed by Hansen and Jagannathan (1997), which

we briefly outline in the following.
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Table 3: Summary Statistics: Conditioning Variables
Size Quartiles Book-to-market Quartiles

B1 (Low) B2 B3 B4 (High)

S1 (Small) χ2
(5) 22.217 5.863 7.380 13.303

(0.001) (0.320) (0.194) (0.021)

S2 χ2
(5) 9.499 21.345 17.072 7.558

(0.091) (0.001) (0.004) (0.182)

S3 χ2
(5) 13.721 8.394 10.528 11.489

(0.018) (0.136) (0.062) (0.043)

S4 (Big) χ2
(5) 14.356 9.233 9.862 9.530

(0.014) (0.100) (0.079) (0.090)

Note: The table reports tests for the predictive power of our set of conditioning variables.
The sample period is 1969:12 - 2002:12. The set of conditioning variables is defined as zt =
(DEFt, TERMt, TBt, DIVt, CYt)′, where DEFt is the default spread, TERMt represents
the term spread, TBt denotes the short term interest rate, DIVt are aggregate dividend
yields, CYt denotes the cyclical component of industrial production. The entries of the
table are based on the predictive regression Ri;t+1 = a + b′zt + εt+1. The table reports the
Wald statistic for testing the null hypothesis that the coefficients on the predictive variables
are jointly equal to zero (H0: b = 0). p-values are reported in parentheses.

Asset pricing models are characterized by different approximations M̃(b) of the

“true” SDF in equation (1). Hansen and Jagannathan (1997) have proposed a

measure to evaluate by how much the pricing kernel proxy of the respective asset

pricing model differs from the set of true pricing kernels M .12 They show that the

minimum value of the distance has the following expression

δ =

√
E[M̃(b)Rt − 1]′E(RtRt

′)−1E[M̃(b)Rt − 1]. (7)

It is straightforward to map the concept of the HJ-distance into the standard

GMM framework. GMM estimation is based on minimizing a quadratic form of

the pricing errors of the model. The N × 1 vector of pricing errors is equal to

g(b) = E[M̃(b)Rt − 1], whereas the sample analogue is given by

gT (b) =
1

T

T∑
t=1

M̃t(b)Rt − 1. (8)

12Rt in this section denotes an N × 1 vector of gross returns of the assets.
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Hansen and Jagannathan propose to use the inverse of the second moment matrix

of returns W = E(RtRt
′)−1 as a weighting matrix for GMM estimation. By doing

so, it is ensured that the parameters are chosen such that the distance between the

pricing kernel proxy and the true pricing kernel is as small as possible. The k × 1

vector of unknown parameters b of the SDF can hence be determined by solving

the GMM criterion:

min δ2
T = min

b
gT (b)′WT gT (b), (9)

where WT is given by the empirical counterpart to the Hansen-Jagannathan weight-

ing matrix, i.e. WT =
(

1
T

∑T
t=1 RtR

′
t

)−1

. Jagannathan and Wang (1996, Appendix

C) have derived a test for the hypothesis that the HJ-distance is equal to zero, as

implied by the candidate asset pricing model. They show that the statistic Tδ2
T is

asymptotically distributed as a weighted sum of χ2
(1)-distributed random variables.

We run the simulation suggested by Jagannathan and Wang (1996) 10,000 times

in order to determine the p-value for testing the null hypothesis δ = 0.

This estimation approach is different from the conventional two-stage GMM ap-

proach by Hansen (1982) who suggests to use the (inverse) of the estimated

variance-covariance matrix of moment conditions as weighting matrix. He shows

that by doing so, asymptotically efficient estimates are obtained. Despite this

theoretical statistical advantage, we prefer HJ-GMM over two-stage GMM for a

number of reasons. Firstly, the GMM objective evaluated at the estimated param-

eters has an intuitively appealing interpretation as the (squared) distance between

the pricing kernel proxy and the set of true discount factors. Most importantly

however, the HJ-weighting matrix remains constant from one model to the other.

Two-stage GMM on the contrary weights the different moment conditions accord-

ing to statistical considerations and changes from model to model. Since our

paper aims at comparing different models on a common data set, the HJ-approach

is more suitable in our empirical setup. For completeness, however, we report

the JT -statistic by Hansen (1982) as an additional statistic of model fit. Another

possibility to have a “level” playing field for model comparisons is by the use of
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the identity matrix as the weighting matrix for GMM. In this way all assets are

treated symmetrically in the GMM optimization. Since this approach leads to very

similar results as the Fama-Macbeth procedure (Cochrane 2001), we only report

the results of the Fama-MacBeth regressions in the appendix.

The finite sample properties of the test whether the HJ-distance is equal to zero

have recently been investigated by Ahn and Gadarowski (2004) using simulation

techniques. They find that tests of the null H0 : δ = 0 can exhibit size distortions

in finite samples in the sense that a true model is rejected too often. According to

their Monte-Carlo experiments, Hansen’s (1982) test of overidentifying restrictions

has a slightly better empirical performance with this respect. Table 1 of Ahn and

Gadarowski (2004) reveals that this over-rejection problem is particularly severe

when the number of observations is small and/or the number of test assets is

large.13 Since none of the model specifications investigated in this paper is rejected

neither by the test based on the HJ-distance nor Hansen’s JT -test, we do not

consider this issue further in this paper.

An important robustness check for an asset pricing model is whether the model

is subject to structural shifts in the parameters. Apart from the tests mentioned

above, we therefore also report results from the test for parameter stability derived

by Andrews (1993). The null hypothesis states that there is parameter stability,

whereas the alternative is that there is a single structural break at an unknown

date. We compute the LM-statistic for π1 = 15% to π2 = 85% of the sample, which

corresponds to the interval recommended by Andrews (1993). Critical values of

the maximum of the calculated values (supLM-statistic) are tabulated by Andrews

(1993, Table 1).

13With 25 test assets and 330 observations, which comes closest to our empirical setup (16 test
assets and 397 observations), the true model is rejected at the 5% level in 8.8% of the cases by
the test H0 : δ = 0 and in 6.9% of the cases by the JT -test.
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5 Results and Discussion

In the following, we discuss the results of our cross-sectional tests of the different

asset pricing models. First, we report empirical results for the unconditional mod-

els, i.e. the conventional CAPM as well as the Fama-French three-factor model.

Then, empirical results are reported for different specifications of conditional fac-

tor models. Moreover, the results of additional robustness tests are also presented

in this section.

5.1 Unconditional Factor Models

We first discuss the empirical results for the conventional CAPM specification. Ta-

ble 4 contains the GMM estimation results using the Hansen-Jagannathan weight-

ing matrix and table 8 in the appendix provides the results from the Fama-Macbeth

two-pass regression approach. Panel A in table 4 demonstrates that the market

excess return does not influence the pricing kernel significantly. It also does not

earn a risk price which is significantly different from zero. In line with previous

results in the empirical asset pricing literature, we find that the pricing errors of

the CAPM are large when the model is confronted by size and book-to-market

sorted portfolios. Particularly big pricing errors occur for small growth stocks and

big value stocks. The static CAPM has clearly the worst empirical performance in

explaining the cross-section of German stock returns, which is illustrated by the

plots of realized excess returns against the fitted excess returns in figure 1 and 3.

This is corroborated by the (adjusted) R2 of 17.4% in the cross-sectional Fama-

MacBeth regressions, which is the smallest of all models investigated in this paper.

The estimated Hansen-Jagannathan distance amounts to 0.209. The correspond-

ing p-value of 28.7% indicates that the model cannot be rejected statistically. The

same conclusion is obtained by Hansen’s test of overidentifying restrictions which

we calculate on the basis of two-stage GMM. In general, we find that both model

diagnostics lead to the same conclusions in our study. It should be also pointed out

that none of the model specifications investigated in our study can be rejected by

the two tests. This result differs from the one obtained for the U.S. where usually
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even the Fama-French model is rejected by formal tests such as the JT -Test or the

test H0 : δ = 0 when the 25 Fama-French portfolios are used as test assets [See

e.g. Hodrick and Zhang (2001)].

Figure 1: HJ-GMM: CAPM and Fama-French Model, Fitted versus Actual Mean
Excess Returns, in % per month, 16 Fama-French portfolios.
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Note: The pricing error plots were generated using the results from HJ-GMM estimation. Mean
realized excess returns (horizontal axis) are plotted against the mean realized excess returns
implied by the respective asset pricing model (vertical axis). The first digit refers to the size
quartile (1=Small, 4=Big) and the second digit refers to the book-to-market quartile (1=Low,
4=High). The test asset are 16 excess returns of size and book-to-market portfolios as well as
the gross return of the proxy for the risk-free asset. The sample period is 1969:12 - 2002:12. The
two graphs show results for the CAPM and the Fama-French-Model.

Estimation results for the Fama-French three-factor model that uses SMB and

HML as additional factors are reported in panel B of tables 4 and 8. The only

factor which is statistically relevant for the pricing kernel is HML. It is also the

only factor which earns a significant price of risk as indicated by the t-statistic of

2.202 for the estimated factor risk premium λHML. It is striking that SMB earns a

negative factor risk premium, which is in contrast to the general findings obtained

for the U.S. stock market. When looking at the pricing error plots in figures

1 and 3, it becomes apparent that the Fama-French three-factor model clearly

outperforms the CAPM. This is also reflected by the higher adjusted R2 of 47.8%

in the Fama-MacBeth cross-sectional regressions. Thus, our estimations confirm

the earlier results for the German stock market by Ziegler et al. (2005) who found

a superior performance of the Fama-French model over the unconditional CAPM

using a time-series OLS approach. The Fama-French model does a clearly better

job than the CAPM in capturing the value premium, however does a similarly bad
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Table 4: Estimation results HJ-GMM : CAPM and Fama-French Model.
Panel A: Non-scaled CAPM

Parameter of the SDF: const. bm

Estimate 0.997 -0.858
t-statistic -0.843
Factor risk price: λm

Estimate 0.002
t-statistic 0.843
Model tests: JT -Stat. HJ-Dist. supLM
Statistic 17.511 0.209 1.226
p-value 0.289 0.287
Panel B: Fama-French Model

Parameter of the SDF: const. bm bSMB bHML

Estimate 1.014 -0.021 2.555 -5.153
t-statistic -0.015 1.019 -2.290
Factor risk price: λm λSMB λHML

Estimate 0.002 -0.002 0.003
t-statistic 0.753 -1.238 2.202
Model tests: JT -Stat. HJ-Dist. supLM
Statistic 10.477 0.166 29.248***
p-value 0.655 0.667

Note: The table reports the results of GMM estimation for the unconditional
CAPM and the Fama-French model. The sample period is 1969:12 - 2002:12. We
report both estimates of the parameters of the SDF bj and factor risk premia λj

calculated from these estimates. The standard errors of the latter were calculated
using the delta method. *,** and *** means that Andrew’s supLM-statistic is
significant at the 10, 5 or 1 % level.

job in pricing the small growth portfolio. Nevertheless, we find that the model has

a serious drawback: our structural break tests reveal that the model suffers from

unstable parameters as indicated by a significant supLM-statistic.

5.2 Main Empirical Results: Conditional CAPM

We now turn to the main results for the different versions of the conditional CAPM.

The results from HJ-GMM are provided in table 5 and the estimation results from

the Fama-MacBeth regressions are given in table 9 in the appendix. Pricing error

plots are shown in figures 2 and 4 respectively. We consider six model specifications

in total. We incorporate each conditioning variable separately into the SDF in

order to avoid overfitting.
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The first specification of the conditional CAPM uses the default spread DEF as

scaling variable. According to our empirical findings, this conditioning variable

does not help much to improve the performance of the CAPM in explaining cross-

sectional returns. None of the factors significantly influences the pricing kernel.

The HJ-distance only falls slightly in comparison to the unconditional CAPM.

This rather weak empirical performance may also be due to the fact that we only

have a rather noisy measure for the German Default Spread at our disposal, as

discussed in section 3.3. As indicated by the pricing error plots, scaling by DEF

only induces a small reduction in pricing errors. The null hypothesis of parameter

stability, however, cannot be rejected according to Andrew’s supLM-test for this

model.

We also checked whether the risk price for the fundamental factor (excess return

of the market portfolio) is positive on average, i.e. E(λm
t ) ≥ 0 [See discussion in

section 2]. This turned out to be the case for all specifications of the conditional

CAPM except the model scaled by the default spread.

We next consider the term spread TERM as a conditioning variable for the con-

ditional CAPM. Panel B of table 5 shows that bTERM is significant at the 10%

level, thus indicating that it is an important component of the pricing kernel. The

market excess return and the interaction term between the market excess return

and the lagged term spread are not significant. We find that the CAPM scaled

by TERM exhibits the best empirical performance of all scaled and non-scaled

models in explaining the cross-sectional variation of German stock returns. It has

the smallest HJ-distance (0.139) among all models investigated in this study and

the p-value for the test H0 : δ = 0 is equal to 99.1%. This result is also reflected

by the small pricing errors (figures 2 and 4), which are smaller than those of the

Fama-French three-factor model. As reported in table 9, the adjusted R2 is about

57%, which is the highest of all models estimated in this paper. Note also that the

model passes the test for parameter stability by Andrews (1993) in contrast to the

Fama-French three-factor model.
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Figure 2: HJ-GMM: conditional CAPM, Fitted versus Actual Mean Excess Returns,

in % per month, 16 Fama-French portfolios.
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Note: The pricing error plots were generated using the results from HJ-GMM estimation. Mean

realized excess returns (horizontal axis) are plotted against the mean realized excess returns

implied by the respective asset pricing model (vertical axis). The first digit refers to the size

quartile (1=Small, 4=Big) and the second digit refers to the book-to-market quartile (1=Low,

4=High). The sample period is 1969:12 - 2002:12. The upper two graphs show results for the

CAPM scaled by the default spread DEF and the term spread TERM . In the middle the pricing

error plots of the CAPM scaled by the short-term interest rate TB and by dividend yields DIV

are illustrated. At the bottom plots for the CAPM scaled by the January dummy JAN and the

cyclical component of industrial production CY are presented.
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Table 5: Estimation results HJ-GMM: conditional CAPM

Panel A: CAPM scaled by DEF

Parameter of the SDF (bj): const. bm bDEF bDEF ·m
Estimate 0.998 -0.107 -0.353 -4.680
t-statistic -0.074 -1.102 -1.038
Lambda (λj): λm λDEF λDEF ·m
Estimate 0.003 0.333 0.014
t-statistic 0.710 1.051 0.973
Model tests: JT -Stat. HJ-Dist. supLM
Statistic 13.658 0.198 10.087
p-value 0.398 0.444
Panel B: CAPM scaled by TERM

Parameter of the SDF (bj): const. bm bTERM bTERM ·m
Estimate 0.966 -2.776 0.708 8.170
t-statistic -1.494 1.665 1.286
Lambda (λj): λm λTERM λTERM ·m
Estimate 0.002 -0.763 -0.026
t-statistic 0.461 -1.781 -1.547
Model tests: JT -Stat. HJ-Dist. supLM
Statistic 4.498 0.139 6.411
p-value 0.985 0.991
Panel C: CAPM scaled by TB

Parameter of the SDF (bj): const. bm bTB bTB·m
Estimate 0.985 -1.668 -0.143 -3.204
t-statistic -1.264 -0.417 -1.172
Lambda (λj): λm λTB λTB·m
Estimate 0.002 0.123 0.007
t-statistic 0.659 0.358 0.914
Model tests: JT -Stat. HJ-Dist. supLM
Statistic 15.898 0.200 45.266***
p-value 0.255 0.317

Note: The table reports the results of GMM estimation for the different specifications of the
conditional CAPM. DEF is the default spread, TERM is the term spread, DIV denotes dividend
yields and TB is the short-term interest rate. JAN is a January-Dummy which takes 1 in
January and zero otherwise. CY is the cyclical component of log-industrial production. The
sample period is 1969:12 - 2002:12. We report both estimates of the parameters of the SDF (bj)
and Lambdas (λj) calculated from these estimates. The standard errors of the λjs are calculated
using the delta method. *,** and *** means that the supLM-statistic is significant at the 10, 5
or 1 % level.
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Table 5: cont.

Panel D: CAPM scaled by DIV

Parameter of the SDF (bj): const. bm bDIV bDIV ·m
Estimate 1.020 -3.073 0.348 -6.433
t-statistic -2.073 1.088 -2.176
Lambda (λj): λm λDIV λDIV ·m
Estimate 0.001 -0.339 0.013
t-statistic 0.176 -1.058 2.013
Model tests: JT -Stat. HJ-Dist. supLM
Statistic 12.210 0.178 79.933***
p-value 0.511 0.548
Panel E: CAPM scaled by JAN

Parameter of the SDF (bj): const. bm bJAN bJAN ·m
Estimate 1.040 2.298 0.072 -52.003
t-statistic 1.355 0.085 -1.807
Lambda (λj): λm λJAN λJAN ·m
Estimate 0.003 0.044 0.009
t-statistic 0.709 0.770 1.911
Model tests: JT -Stat. HJ-Dist. supLM
Statistic 6.623 0.160 16.274*
p-value 0.921 0.897
Panel F: CAPM scaled by CY

Parameter of the SDF (bj): const. bm bCY bCY ·m
Estimate 0.989 0.131 -1.082 3.062
t-statistic 0.454 -1.036 0.464
Lambda (λj): λm λCY λCY ·m
Estimate 0.003 -0.150 -0.007
t-statistic 0.855 -0.539 -0.551
Model tests: JT -Stat. HJ-Dist. sup-LM
Statistic 16.794 0.208 24.749***
p-value 0.209 0.234

Note: The table reports the results of GMM estimation for the different specifications of the
conditional CAPM. DEF is the default spread, TERM is the term spread, DIV denotes dividend
yields and TB is the short-term interest rate. JAN is a January-Dummy which takes 1 in
January and zero otherwise. CY is the cyclical component of log-industrial production. The
sample period is 1969:12 - 2002:12. We report both estimates of the parameters of the SDF (bj)
and Lambdas (λj) calculated from these estimates. The standard errors of the λjs are calculated
using the delta method. *,** and *** means that the supLM-statistic is significant at the 10, 5
or 1 % level.

24



We also estimate a specification of the scaled CAPM, using the lagged short-

term interest rate as a conditioning variable. Our results suggest that in contrast

to the slope of the yield curve, the short term interest rate does not play a big

role in explaining the variation in cross-sectional returns. None of the (scaled)

factors affects the pricing kernel significantly and the estimate of the HJ-distance

is approximately of the same size as the one of the unconditional CAPM. What

is more, the model also suffers from parameter instability as suggested by the

significant supLM-statistic by Andrews (1993).

The fourth variable considered as conditioning variable for the CAPM are aggre-

gate dividend-yields (DIV ). According to the estimation results reported in Panel

D of table 5, both the market excess return and the interaction term between the

market excess return and DIV are significant components of the pricing kernel and

consequently important determinants of the cross-section of returns. The model

scaled by DIV is superior to the standard CAPM in terms of pricing errors (smaller

HJ-distance). This is also visualized by the pricing error plots in figures 2 and 4.

However, the null hypothesis of stable parameters is rejected by the supLM-Test

according to Andrews (1993).

We now turn to the January-Dummy as scaling variable. According to our HJ-

GMM estimation results provided in Panel E of table 5, the interaction between the

January-Dummy and the market excess return is significant at the 10% level. This

can be interpreted as evidence that the market price of risk is different in January

than in other periods of the year. The January term taken by itself, however,

is not a significant component of the stochastic discount factor. As revealed by

the pricing error plots in 2 and 4, the model is clearly better than the CAPM

in explaining the cross-section of average returns of our size and book-to-market

portfolios. Especially the pricing errors for value stocks are greatly reduced. This is

a rather interesting result given the fact that the model is only a slight modification

of the standard CAPM. The estimate of the HJ-Distance is the second smallest

among the scaled factor models. Unfortunately, the model suffers from parameter

instability, as indicated by the supLM-Test statistic which is significant at the 10%

level.
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Finally, we consider a conditional version CAPM scaled by the cyclical component

of industrial production. The model’s empirical performance is rather unattractive.

Incorporating the conditioning information into the SDF does not lead to a great

reduction of pricing errors as visualized by figures 1 and 4. None of the parameters

of the SDF are significantly different from zero. Additionally, the CAPM scaled

by CY suffers from parameter instability.

5.3 Further Investigations

In the following we report the results of additional robustness checks. We con-

sider two further investigations to assess the empirical performance of the different

model specifications. First we report the results of the evaluation of dynamic

model performance according to Farnsworth et al. (2002). Then, we investigate

the empirical performance of the conditional models when the Fama-French factors

are added to the SDF. In particular we want to see, whether the factors of the

conditional models survive in the presence of the Fama-French factors.

Dynamic Model performance The main focus of the two previous subsec-

tions has been to investigate whether the different specifications of the conditional

CAPM are able to explain the cross-sectional variation of average stock returns on

the German stock-market. We now turn to an analysis of how well the different

models explain the time variation of the test portfolio returns. The central idea

of this testing approach, which has been put forth in the paper by Farnsworth

et al. (2002), is the following. Assuming that the model does a good job in captur-

ing the time variation of the test portfolios, the model’s time series pricing errors

ξ̂t+1 = Mt+1(b̂)R
ei
t+1 should not be predictable using any information available as

of t. Note that Rei
t+1 in this context denotes the return of portfolio i in excess

of the short term interest rate. Farnsworth et al. (2002) propose to use a linear

projection of the time series of pricing errors {ξ̂t+1} onto the set of conditioning

variables zt. The standard deviation of the fitted values of this regression then

serves as an indicator of how well the model captures the time variation of the
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respective portfolio return.

We conduct this exercise for our 16 test portfolios. Table 6 reports the average of

the standard deviations of the fitted values across the test portfolios. In addition,

the minimum and maximum standard deviation are provided. A low average

standard deviation indicates that the specific model is good at capturing time-

series predictability of the excess returns of test portfolios.

Table 6: Dynamic Model performance
Mean Minimum Maximum

Panel A: Unconditional Models
CAPM 0.805 0.580 1.205
Fama-French 0.810 0.586 1.193

Panel B: Conditional Models
CAPM scaled by DEF 1.070 0.643 1.630
CAPM scaled by TERM 1.591 1.014 1.877
CAPM scaled by TB 1.071 0.775 1.422
CAPM scaled by DIV 1.068 0.671 1.681
CAPM scaled by JAN 0.839 0.486 1.184
CAPM scaled by CY 0.895 0.643 1.334

Note: The table reports the results of the test for dynamic model performance proposed
by Farnsworth et al. (2002). The procedure is based on a regression of the models’
time series pricing errors for the 16 portfolios on the set of conditioning variables zt =
(DEFt, TERMt, TBt, DIVt, CYt)′. The table reports the mean of the standard deviations of
the regressions’ fitted values across the 16 portfolios. Moreover the minimum and the maximum
standard deviation across the 16 test portfolios are reported. A low standard deviation indicates
that the particular model specification performs well in capturing the time-series predictability
of the test asset excess returns. Panel A provides results for the unconditional factor models
whereas panel B gives the results of the different versions of the conditional CAPM. The sample
period is 1969:12 - 2002:12.

The table shows that unconditional models apparently perform pretty well in cap-

turing the time-series predicability of the portfolio excess returns. The uncondi-

tional CAPM has the lowest average standard deviation of all investigated models.

We do not find that conditional models tend to outperform unconditional ones in

this test. It is striking that the different specifications of the conditional CAPM,

especially those with a good cross-sectional performance, have a clearly worse

performance with regard to time series predictability relative to unconditional

specifications such as the unconditional CAPM and the Fama-French model. An
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exception is the CAPM scaled by JAN which has both low cross-sectional pricing

errors and does a relatively good job in terms of dynamic model performance. Our

findings are similar to those reported by Farnsworth et al. (2002). The authors

find that conditional versions of the CAPM and the Fama-French model perform

worse than their unconditional counterparts, whereas other conditional models

they consider in their paper tend to do better than unconditional specifications.

Factor Combinations An additional robustness check for the conditional spec-

ifications of the CAPM is to see whether the factors are sufficient for pricing the

cross-section of returns or whether they are driven out once other factors are in-

cluded in the specification of the pricing kernel. For this purpose, we add the

Fama-French factors SMB and HML to the SDF

Mt+1 = b0,1 + b0,2zt + b′1,1ft+1 + b′1,2(ft+1zt) + c1SMBt+1 + c2HMLt+1. (10)

To assess whether the Fama-French factors provide explanatory power in addition

to the original set of factors we use a likelihood-ratio test.14 We first estimate the

unrestricted model in (10). Then we rerun the estimation imposing c1 = c2 = 0

as implied by the respective specification of the conditional CAPM. The test-

statistic based on the difference between the JT -statistics of the restricted and the

unrestricted model is asymptotically distributed χ2 with two degrees of freedom.

Table 7 contains the results of the likelihood-ratio tests. Adding the Fama-French

factors can influence the results considerably for some conditioning variables. As

shown in table 7, the test statistic is significant in the case of the CAPM scaled by

DEF and TB (10% level) and in particular for the CAPM scaled by CY (1% level).

The model scaled by the term spread TERM and the CAPM scaled by the Jan-

uary Dummy JAN remain largely unaffected by the inclusion of the Fama-French

factors, which provides further evidence on their good empirical performance.

14This test is described for instance in Cochrane (2001, p.258).
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Table 7: Combining Factors: Likelihood-ratio Tests
Model χ2

(2) p-value

CAPM scaled by DEF 5.191 0.075
CAPM scaled by TERM 1.176 0.555
CAPM scaled by TB 5.839 0.054
CAPM scaled by DIV 3.348 0.188
CAPM scaled by JAN 0.540 0.763
CAPM scaled by CY 12.347 0.002

Note: The table reports the results of the χ2-difference test in order to assess
the additional explanatory power of the Fama-French factors. First, we es-
timate an unrestricted model including the factors of the conditional CAPM
plus the Fama-French factors SMB and HML using two-stage GMM. Second,
we estimate a restricted model which only includes the factors of the condi-
tional CAPM. The test statistic based on the difference of the JT -statistics of
the restricted and unrestricted models is distributed χ2

(2). The sample period
is 1969:12 - 2002:12.

6 Conclusion

This paper investigated whether conditional versions of the CAPM, allowing for

time-variation of the parameters in the stochastic discount factor, are able to ex-

plain the cross-section of German stock returns better than unconditional factor

models such as the conventional CAPM or the three-factor model by Fama and

French (1993). Previous research suggests that scaling the factors with condition-

ing variables improves the empirical performance of unconditional asset pricing

models. Since prior research focused primarily on the U.S. stock market, the aim

of this paper was to investigate whether this also holds empirically for the German

stock market.

Using a cross-section of 16 portfolios sorted by size and book-to-market, our find-

ings suggest that, the empirical performance of the CAPM can be enhanced con-

siderably by allowing the parameters of the stochastic discount factor to vary over

time through the incorporation of conditioning information. We focus on several

variables, which (according to previous research) are associated with market expec-

tations on future market excess returns or business cycle conditions. The selection

of the term spread, default spread, short-term interest rate and aggregate divi-

dend yields as conditioning variables largely followed Ferson and Harvey (1999).
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In addition, we also considered a January-Dummy and the cyclical component of

industrial production as proposed by Hodrick and Zhang (2001).

The different conditioning variables do not all lead to the same degree of improve-

ment. In particular, we find that the CAPM scaled by the term spread TERM

has a large explanatory power for the German cross-section of stock returns with

pricing errors smaller than those of the Fama-French three-factor model. Further-

more, the model has the lowest HJ-distance of all models evaluated in this study.

Additional robustness checks demonstrate that the model is robust to an inclusion

of the Fama-French factors into the SDF. However, the model’s performance in

capturing the time-series predictability of the test asset returns is quite unsat-

isfactory. Moreover, we find that a simple extension of the CAPM allowing for

time-variation of the parameters of the SDF in January and non-January months

does a clearly better job than the static CAPM in capturing the “value premium”.

We also used the test procedure suggested by Andrews (1993), in order to assess

whether structural shifts in the parameters may affect the asset pricing model

specification. Our estimations show that parameter instability is present when the

CAPM is scaled by the short-term interest rate TB, dividend yields DIV , the

January dummy JAN and the cyclical component of industrial production CY .

However, we do not find parameter instability to be important for the CAPM

scaled by the term spread TERM or the default spread DEF . Moreover, we find

evidence for structural breaks in the case of the Fama-French model which calls

for caution when using the model in corporate finance applications on the German

stock market.

In the light of the evidence for structural shifts in the parameters of the Fama-

French model, it would be interesting in further research to analyze potential

economic reasons. Given the prominence of the Fama-French model in academic

research (not only in empirical asset pricing but also corporate finance applica-

tions), taking a closer look at the stability of the Fama-French model over time

may prove beneficial. Furthermore, more research is needed on what macroeco-

nomic risks the Fama-French factors SMB and HML are proxies for. The debate
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is still not fully resolved yet as mentioned above. We suppose that further evidence

from non U.S. markets may shed further light on this issue.

In this paper, we investigate parsimonious model specifications where different con-

ditioning variables are analyzed separately. Stability issues are addressed using the

test by Andrews (1993). It may also be useful to consider optimal combinations

of conditioning variables. Wang (2004) has proposed a procedure for optimally

choosing combinations of instruments. He shows that by doing so, the out-of sam-

ple performance of conditional asset pricing models can be enhanced substantially.

Selecting conditioning variables optimally as in Wang (2004) may prove beneficial

in obtaining model specifications which performs well both in pricing the cross-

section and are stable over time.
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A The Fama-MacBeth Procedure

Beside HJ-GMM we also report results from the two-step cross-sectional regression

by Fama and MacBeth (1973) (FMB) which has a long tradition in empirical asset

pricing. First, a time series regression is carried out by regressing excess returns

Ri,t on the factors for all assets i.

Ri,t = ai + β′ift + εi,t; i = 1, . . . , N, t = 1, . . . , T. (11)

The next step is to use the estimated β̂i as explanatory variables in the cross-

sectional regression in order to estimate the factor risk premia λj. Instead of

estimating one cross-sectional regression of average portfolio returns on the betas,

the following regression is estimated at every point of time t = 1, . . . , T .

Ri;t = β̂′iλt + ξi,t. (12)

The estimated factor risk premia are calculated as the time series averages of the

estimates of each point in time:

λ̂ =
1

T

T∑
t=1

λ̂t. (13)

Fama and MacBeth (1973) suggest to interpret {λ̂t} as a random sample. Standard

errors of λj are then calculated based on the time series of the estimated λ̂t:

s.e.(λ̂) =
1√
T

[
1

T

T∑
t=1

(λ̂t − λ̂)2

]1/2

. (14)

A well known problem of the FMB approach is the errors-in-variables problem

since only estimated betas enter the cross-sectional regression and not the true

betas. Shanken (1992) has derived a correction term to alleviate this problem. We

report the Shanken-adjusted along with conventional t-statistics. Furthermore, we

report the cross-sectional R2 as an intuitive measure of model fit.
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B Additional Figures and Tables

Table 8: FMB estimation: CAPM and Fama-French Model.
Panel A: CAPM

Factor risk price: λm R2 (adj.)
Estimate 0.002 0.174
t-statistic 0.748
t-statistic (adj.) 0.748
Panel A: Fama-French Model

Factor risk price: λm λSMB λHML R2 (adj.)
Estimate 0.002 -0.003 0.003 0.478
t-statistic 0.806 -1.853 2.258
t-statistic (adj.) 0.795 -1.827 2.227

Note: The table reports the results of Fama-Macbeth cross-sectional
regressions for the unconditional CAPM and Fama-French model. The
sample period is 1969:12 - 2002:12. Both conventional t-Statistics and
Shanken-adjusted t-Statistics are reported.
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Table 9: FMB estimation: scaled CAPM.
Panel A: CAPM scaled by DEF

Lambda (λj): λm λDEF λDEF ·m R2 (adj.)
Estimate 0.003 0.567 0.015 0.320
t-statistic 1.042 1.641 1.094
t-statistic (adj.) 0.876 1.380 0.920
Panel B: CAPM scaled by TERM

Lambda (λj): λm λTERM λTERM ·m R2 (adj.)
Estimate 0.003 -0.851 -0.029 0.571
t-statistic 0.939 -2.572 -2.289
t-statistic (adj.) 0.674 -1.846 -1.643
Panel C: CAPM scaled by TB

Lambda (λj): λm λTB λTB·m R2 (adj.)
Estimate 0.002 0.336 0.003 0.217
t-statistic 0.749 0.913 0.392
t-statistic (adj.) 0.706 0.860 0.369
Panel D: CAPM scaled by DIV

Lambda (λj): λm λDIV λDIV ·m R2 (adj.)
Estimate -0.001 -0.704 0.013 0.419
t-statistic -0.304 -1.972 2.023
t-statistic (adj.) -0.241 -1.564 1.604
Panel E: CAPM scaled by JAN

Lambda (λj): λm λJAN λJAN ·m R2 (adj.)
Estimate 0.002 0.021 0.012 0.486
t-statistic 0.818 0.343 3.245
t-statistic (adj.) 0.609 0.255 2.415
Panel F: CAPM scaled by CY

Lambda (λj): λm λCY λCY ·m R2 (adj.)
Estimate 0.002 -0.334 -0.016 0.236
t-statistic 0.744 -1.039 -1.168
t-statistic (adj.) 0.676 -0.944 -1.062

Note: The table reports the results of Fama-Macbeth cross-sectional regres-
sions for different specifications of the scaled CAPM. DEF is the default
spread, TERM is the term spread, DIV denotes dividend yields and TB
is the short-term interest rate. JAN is a January-Dummy which takes 1
in January and zero otherwise. CY denotes the cyclical component of (log-
)industrial production. The sample period is 1969:12 - 2002:12. Both con-
ventional t-Statistics and Shanken-adjusted t-Statistics are reported.
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Figure 3: FMB cross-sectional regression: CAPM and Fama-French Model, Fitted

versus Actual Mean Excess Returns, in % per month, 16 Fama-French portfolios.
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Note: The graphs were generated using the results from the Fama-Macbeth estimation. Mean
realized excess returns (horizontal axis) are plotted against the mean realized excess returns
implied by the respective asset pricing model (vertical axis). The first digit refers to the size
quartile (1=Small, 4=Big) and the second digit refers to the book-to-market quartile (1=Low,
4=High). The test asset are 16 excess returns of size and book-to-market portfolios as well as
the gross return of our proxy for the risk-free asset. The sample period is 1969:12 - 2002:12. The
two graphs show results for the CAPM and the Fama-French-Model.
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Figure 4: FMB cross-sectional regression: Scaled CAPM, Fitted versus Actual Mean

Excess Returns, in % per month, 16 Fama-French portfolios.
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Note: The graphs were generated using the results from the Fama-Macbeth estimation. Mean
realized excess returns (horizontal axis) are plotted against the mean realized excess returns
implied by the respective asset pricing model (vertical axis). The first digit refers to the size
quartile (1=Small, 4=Big) and the second digit refers to the book-to-market quartile (1=Low,
4=High). The test asset are 16 excess returns of size and book-to-market portfolios as well as
the gross return of our proxy for the risk-free asset. The sample period is 1969:12 - 2002:12. The
upper two graphs show results for the CAPM scaled by the default spread DEF and the term
spread TERM . In the middle the pricing error plots of the CAPM scaled by the short-term
interest rate TB and by dividend yields DIV are illustrated. At the bottom plots for the CAPM
scaled by the January dummy JAN and the cyclical component of industrial production CY are
presented.
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