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Non technical summary

Applied researcher often have to handle large data sets, e.g. administrative data has

recently gained popularity in research on unemployment. In order to explore those

data sets and to get a first impression about possible dependencies it is convenient

to impose as few assumptions as possible about the structure of the econometric

model.

In this paper, we present a nonparametric conditional quantile function esti-

mator with mild functional assumption that can be used as a fast and power-

ful tool for data exploration. We apply the estimator to a sample of the ”IAB-

Beschäftigtenstichprobe” (IAB-employment sample) that includes daily employment

trajectories of the socially insured workforce in Germany. The focus of our analysis

is the impact of age and the previous wage level on the length of unemployment for

short-, middle-, and long-term unemployed.

We find that age has a strong extending influence on unemployment of long-term

unemployed, i.e. old long-term unemployed have much longer unemployment spells

than younger unemployed. In the group of the short-term unemployed age doesn’t

matter: it takes a young short-time unemployed as long as an old one to find a job.

This age pattern is much clearer for men than for women, which is likely linked to

maternity leave of women.

As to the wage level before the beginning of unemployment, we find a weak neg-

ative, i.e. shortening, influence for short-term unemployed. This influence strength-

ens for the middle- and long-term unemployed up to a previous wage level of 65 Euro

per day: In this group, persons who earned more before they became unemployed

are shorter unemployed than those with a lower former income. In the group of

long-term unemployed with a previous wage level of more than 80 Euro, we find a

weak extending impact of a higher wage level. Especially the results for the long-

term unemployed at a low previous wage level give an impression about the impact

of the system of social benefits on the length of unemployment, since the financial

incentive to leave unemployment is rather small for this group.

We provide a theoretical motivation for the estimator and show with simulations

that it is fast and reliable in typical data structures.
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associate editor and anonymous referees for useful remarks on the paper. The authors gratefully

acknowledge financial support by the German Research Foundation (DFG) through the research

project Microeconometric modelling of unemployment duration under consideration of the macroe-

conomic situation while they were employed at the ZEW Mannheim, Germany. This work uses

the IAB Employment Subsample (IABS 2001-R01) of the Research Data Centre at the Institute

of Employment Research (IAB). The IAB does not take any responsibility for the use of its data.
†University of Konstanz, Department of Economics, E-mail: laura.wichert@uni-konstanz.de
‡University of Leicester, Department of Economics, E-mail: raw27@le.ac.uk



Abstract

We consider an extension of conventional univariate Kaplan-Meier type

estimators for the hazard rate and the survivor function to multivariate cen-

sored data with a censored random regressor. It is an Akritas (1994) type

estimator which adapts the nonparametric conditional hazard rate estima-

tor of Beran (1981) to more typical data situations in applied analysis. We

show with simulations that the estimator has nice finite sample properties

and our implementation appears to be fast. As an application we estimate

nonparametric conditional quantile functions with German administrative un-

employment duration data.
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1 Motivation

More and more national governments make samples of administrative individual

data available to the research community. As these data sets are large, applied re-

searchers can use flexible statistical models for a detailed data exploration. Existing

estimators, however, are not always applicable because administrative data comes

with important limitations as its data generating process can cause, among other

things, various forms of censoring. The most common example in administrative

data is an individual’s wage, which is not observed below and above a certain limit.

In this paper we suggest simple nonparametric estimators for conditional hazard

rates and conditional quantile functions in presence of censoring. We demonstrate

that they can be directly applied to German administrative unemployment duration

data.

Economic theory is often not fully conclusive for the specification of an econo-

metric model as results are generally limited to partial effects. Being left without

a full parametrization of the problem, empirical economists commonly apply clas-

sical models that are available in the main econometric software packages. In the

case of unemployment duration these are, for example, the accelerated failure time

or the proportional hazard model. These models impose restrictive conditions on

the relationship between the regressors and the response that may not be met by

the underlying empirical distribution (Koenker and Geling, 2001, Portnoy, 2004,

Fitzenberger and Wilke, 2006). For this reason quantile regression is emerging as a

popular alternative in applied economics, see Koenker and Bilias (2001), Machado

and Portugal (2002), and others. In a (censored) quantile regression framework,

however, the response may depend on the regressors in a variety of ways and it is

difficult in an application to determine an appropriate functional form specification.

For this reason this paper considers nonparametric estimators as they can provide

beneficial information with in respect. In particular, we focus on conditional haz-

ard rates and conditional quantile functions without imposing shape restrictions on

the conditional density of the response. The resulting estimates provide insights

into whether the shape of the functional is invariant across quantiles or they may

detect important nonlinearities. We follow the nonparametric conditional hazard
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rate estimator of Beran (1981) with the main difference that we use a nearest neigh-

bour estimator (Yang, 1981) design. Akritas (1994) considers a similar estimation

strategy and he derives asymptotic properties for this class of estimators.

We aim to convince applied researchers that our estimation strategy is an applica-

ble solution to common empirical problems and take unemployment duration analy-

sis as an example. A small application to German administrative data demonstrates

the applicability of the estimator and it highlights the need for flexible functional

form specifications. We perform simulations to study finite sample performance and

computing time.

2 The Estimator

We consider a model with an unknown joint distribution (Y, X). Y is a discrete

response or duration and X is a continuous regressor. Let C denote a censoring

variable. Y and C are mutually independent given x. Suppose there are i = 1, . . . , n

independent realisations Yi, Xi and Ci. In our data, however, we have i = 1, . . . , n

observations (τi, νi, di), where di is an indicator for censoring of Yi with di = 0 if Yi

is censored and τi = min(Yi, Ci). The censoring of X can be from below and from

above. If a realization of X falls below (or above) a threshold cl (or cu), it is set to

any number xl < cl (or xu > cu):

νi =





xl if Xi < cl

Xi if cl ≤ Xi ≤ cu

xu if Xi > cu.

Let F (y|x) be the distribution of Y given x and S(y|x) = 1−F (y|x) is the conditional

survivor function. Let h(y|x) = f(y|x)/S(y|x) be the conditional hazard rate with

f(y|x) as the conditional density. Our aim is to estimate the unknown conditional

hazard rate and the conditional α quantile function qα(x) = inf{y|S(y|x) ≥ α}.
The well-known classical Kaplan-Meier type estimator for the unconditional haz-

ard rate of the distribution of Y , h(y), is

hn(y) =

∑n
i=1 1τi=y1di=1∑n

i=1 1τi≥y

, (1)
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where 1θ is the indicator function for the event θ. The numerator divided by n

estimates the conditional probability P (Y = y|d = 1) and the denominator divided

by n estimates the survivor function of the response P (Y ≥ y). If in an application

Y is continuous, it may be useful for finite sample reasons to use an evaluation grid

on the support of Y and uniform weights in the neighborhood of each grid point yj.

The ordered grid points yj satisfy yj − yj−1− 2∆ = 0+ with ∆ > 0. The numerator

in equation (1) is then
∑n

i=1 1τi∈[y−∆,y+∆]1di=1 and the denominator is
∑n

i=1 1τi≥y−∆.

This is in fact rounding of τi towards the closest grid point. Alternatively, one may

use kernel smoothing in the dimension of Y as done by e.g., McKeague and Utikal

(1990) and Van Keilegom and Veraverbeke (2001).

In order to study regression problems with censored data, Beran (1981) suggests

the so-called conditional Kaplan-Meier estimator (see also Van Keilegom, 1998).

Beran assumes for simplicity ordered design points x on [0, 1]. In case of no censoring

his estimator is equivalent to Stone’s (1977) estimator. In the case of uniform weights

1/n it is the univariate Kaplan-Meier estimator.

Our estimation strategy additionally accounts for possible censoring of the re-

gressor. For this reason we adopt the nearest neighbour design of Yang’s (1981)

SNN estimator. The SNN estimator for the density of the marginal distribution of

X, g(x), is defined as:

gn(x) =
1

nbn

n∑
i=1

K

(
Gn(x)−Gn(νi)

bn

)
,

where Gn(x) = (1/n)
∑n

i=1 1νi≤x is the empirical distribution function and bn is a

bandwidth. In our model Gn(x) is a uniformly consistent estimator for the marginal

distribution of x for x ∈ [cl, cu]. The estimator gn has also nice properties for

other censoring schemes of X than considered in this paper if there is a consistent

estimator for the marginal distribution. For example in case of random censoring

of X, one can use the univariate Kaplan-Meier estimator. Yang (1981) shows mean

squared and uniform convergence of gn under several conditions on K and the choice

of bn. For this reason we assume that K is a continuous density function and the

bandwidth goes to zero as the sample size tends to infinity. We suggest the following
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estimator for h(y|x):

hn(y|x) =

∑n
i=1 1τi=y1di=1K

(
Gn(x)−Gn(νi)

bn

)

∑n
i=1 1τi≥yK

(
Gn(x)−Gn(νi)

bn

) (2)

for x ∈ [cl, cu]. The numerator and the denominator estimate the conditional prob-

abilities P (Y = y|d = 1, X = x) and P (Y ≥ y|X = x) which are smoothed in the

dimension of x. While Beran’s (1981) estimator and our estimator can be used for the

same purpose, our implementation is very intuitive and it does not require distinct

values τi. The advantages and disadvantages of Yang’s estimator carry over to the

estimation of conditional hazard rates: it is sufficient to have a consistent estimate

of the rank of the Xi. The SNN smoothing works like a variable bandwidth which

extenuates the boundary problems of the locally constant smoothing approach. We

do not present a rule for the bandwidth choice here, since in exploratory data anal-

ysis an eye ball based bandwidth choice is justifiable. Note that in case of arbitrary

uniform weights K the estimator becomes the conventional Kaplan-Meier estimator.

According to Kaplan and Meier (1958), one can estimate the univariate survivor

function with the product limit estimator:

Sn(y) =
∏
yj≤y

(
1− hn(yj)

)
,

with hn(yj) as defined in equation (1), where yj are the j = 1, . . . , m points of

support of Y . In our framework the S(y|x) can then be estimated by

Sn(y|x) =
∏
yj≤y

(
1− hn(yj|x)

)
, (3)

for x ∈ [cl, cu] and qα(x) can be estimated by

qnα(x) = inf{y|Sn(y|x) ≥ α}. (4)

Akritas (1994) derives asymptotic properties for the estimator of the conditional

survivor function (3). Weak convergence can be established by an appropriate choice

of the bandwidth and under some technical assumptions. The numerator and the
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denominator of our estimator then converge to the conditional probabilities P (Y =

y|d = 1, X = x) and P (Y ≥ y|X = x), respectively. Akritas (1994) also derives

an expression for the covariance function, but it is alternatively possible to use the

bootstrap (Akritas, 1992). We follow the second approach because it appears to be

more simple.

3 Simulation

We analyse the behaviour of estimator (4) for different functional relationships be-

tween X and Y and different distributions of error terms. We draw k = 500 random

samples of size 500 or 5,000 for the models given in table 1. The specification of

model 2 is adapted from Fan (1992) who investigates the behavior of kernel estima-

tors in the mean regression model. In the following we focus mainly on the 0.3, 0.5

and 0.7 quantile function. As the kernel function we use the Epanechnikov kernel

K(x) = max{0.75(1 − x2); 0}. As Y and C are continuous we round the τi’s to

the first decimal point. We use three different bandwidths to analyze the sensitiv-

ity of the estimates with respect to the bandwidth choice. The mean runtime for

one simulation is about 0.5 seconds for 500 observations and 2.5 seconds for 5,000

observations (AMD64 1.4 GHz, 64 Bit Linux, 64BIT Matlab v7.01) where we have

50 grid points on the support of x and 50 grid points on the support of y. This is

evidently fast enough for real world applications.

In order to investigate the properties of our estimator in presence of a censored

regressor, we censor the distribution of X on both sides. νi = 0 if Xi < 3 and νi = 10

if Xi > 7. Figure 1 illustrates the distribution of X and ν. 5% of the observations

are on average affected by this data manipulation. Figure 2 presents the mean 0.3,

0.5 and 0.7 quantile functions as well as the 2.5%- and the 97.5%-quantile of the

simulation distribution with bn = 0.1 and the true quantile functions. The estimator

generally recovers the true shape of the conditional quantile functions. The bias at

both sides of the support of ν is due to two reasons: first, our estimator fits locally

a constant. Therefore we have a boundary bias that starts at a distance of the

bandwidth apart of the edge of observations. Second, Gn is inconsistent below cl
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Model Description

1 Y = X + ε, X ∼N(5,1), C ∼N(6.5,0.5)

a) ε ∼N(0,0.5), 10% right censoring of Yi

b) ε ∼exp(0.5), 20% right censoring of Yi

c) ε ∼N(0,0.2X), 10% right censoring of Yi

2) Y = sin(0.75X) + 0.3 · ε, X ∼N(5,1), C ∼N(6.5,0.5)

ε ∼N(0,0.5), 10% right censoring of Yi

Table 1: Models for simulation study.

and above cu. This aggravates the boundary bias but it does not affect interior

estimates. Since we use the SNN smoothing we have a variable bandwidth given ν.

The low density of ν at the boundaries implies a larger bandwidth given ν than in

the interior of the support of ν.

Table 2 presents the mean squared error (MSE), the squared bias and variance

of the estimator for the different models. We only present the result for the median

as the results for other quantiles (α = 0.3 and α = 0.7) do not differ remarkably.

The MSE is calculated by using

MSE =
1

km

k∑
i=1

m∑
j=1

(q̂j(Xi)− q(Xi))
2.

It is apparent from the table that the estimator has the typical behaviour with

respect to the bandwidth choice. In particular, there is a bandwidth which minimises

the MSE. In our small numerical exercise it takes on the smallest value for bn = 0.1

in all models, but this would certainly not be the case for other simulation designs.

4 Empirical Results

We estimate conditional quantile functions with a sample of German administrative

individual unemployment duration data. It is extracted from the IAB-Employment

Sample 1975-2001 (IABS-R01) which contains daily employment trajectories of
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Model n Bandwidth MSE Bias2 Variance

1a) 500 0.02 0.0307 0.0049 0.0258

0.1 0.0133 0.0038 0.0095

0.2 0.0436 0.0365 0.0071

5,000 0.02 0.0056 0.0019 0.0038

0.1 0.0047 0.0028 0.0019

0.2 0.0404 0.0389 0.0014

1b) 500 0.02 0.0485 0.0289 0.0197

0.1 0.0229 0.0169 0.0060

0.2 0.0541 0.0487 0.0054

5,000 0.02 0.0204 0.0175 0.0029

0.1 0.0153 0.0143 0.0010

0.2 0.0484 0.0473 0.0011

1c) 500 0.02 0.1248 0.0209 0.1041

0.1 0.0394 0.0087 0.0307

0.2 0.0395 0.0221 0.0174

5,000 0.02 0.0339 0.0211 0.0129

0.1 0.0116 0.0076 0.0041

0.2 0.0218 0.0194 0.0024

2) 500 0.02 0.0210 0.0011 0.0199

0.1 0.0039 0.0009 0.0030

0.2 0.0570 0.0034 0.0023

5,000 0.02 0.0028 0.0010 0.0018

0.1 0.0020 0.0013 0.0008

0.2 0.0046 0.0040 0.0006

Table 2: Simulation results for α = 0.5.
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Figure 1: Distribution of X (left) and observed distribution of ν (right).

about 1.1 Mio indivduals from West-Germany and about 200K individuals from

East-Germany. It is a 2% random sample of the socially insured workforce. See

Hamann et al. (2004) for further details on this data. For our estimations we

use the same sample of unemployment spells that is also used by Fitzenberger and

Wilke (2007). However, we restrict attention to the age, the gender and the last daily

wage before unemployment for all ”nonemployment” spells starting in 1996 or 1997

in West-Germany. Our sample comprises 21, 685 observations. We use the estimator

defined in (4) to estimate smooth nonparametric conditional quantile functions of

the distribution of unemployment duration conditional to age or previous wage level.

According to our simulations, the bandwidth should not be too large or too small.

After checking that the quality of our results does not change with small variations

in the bandwidth, we decided to use bn = 0.1. For the estimation of the standard

errors we use the bootstrap method by drawing 500 resamples with replacement and

plot the 5%− and the 95%- quantiles of the bootstrap distribution.

Figure 3 shows the estimation results conditional to age for the 0.3-, 0.5- and

the 0.7-quantile for males (left) and females (right) with the 5- and 95%-bootstrap

quantiles for each quantile. While age plays a less important role for the shortly

unemployed men and women, there is a strongly positive influence of age in the
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Figure 2: Simulation of model 1a (top left), model 1b (top right), model 1c

(bottom left) and model 2 (bottom right); mean of the estimates of the quantile

functions for (from bottom to top) α=0.3;0.5;0.7, the 2.5%- and the 97.5%-bootstrap

quantile for each estimate (dashed lines) and the true model (lighter lines) for 5,000

observations and a kernel bandwidth b = 0.1.
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group of the long-term unemployed men. The pattern for the longer unemployed

women isn’t as clear as it is for men, especially not for the 0.7-quantile. According

to Lechner (1997) the probability of fertility has its maximum between the age of

26 and 30. This fact could offer a possible explanation for the peak of the curve

at the age of 32: At that age, mothers have passed their maternity leave and claim

remaining entitlements for unemployment benefits. However, some of them may not

actually look for a job. Note that both ends of the estimated curves can have some

boundary bias.

For the estimations conditional to the previous daily wage we only use the males.

This is because of some lack of information about part-time work which is rather

frequent for females. The histogram in figure 4 (left) shows the distribution of the

variable ”previous wage”. The value ”0” means an income below and the value

”200” means an income above the social security contribution ceiling (”Beitragsbe-

messungsgrenze”). For this reason we only plot results for the 10%− 90%-quantile

of former income. The right panel of Figure 4 shows a weakly decreasing conditional

0.3 quantile function. At the 0.5 and 0.7-quantiles, the decrease is much stronger

until a previous wage level of 65 Euro per day. As discussed in detail by Fitzen-

berger and Wilke (2007), the much longer long-term unemployment periods for low

wage individuals are probably related with high and almost time invariant wage

replacement rates. The income transfers for this group generally do not decrease

after expiration of unemployment benefits as they often do not exceed the level of

social benefits. It is unlikely that presented estimates have a boundary bias as we

only report them in the range 20-120 EUR.

Biewen and Wilke (2005) and Fitzenberger and Wilke (2007) apply the semipara-

metric hazard rate model, the accelerated failure time model and Box-Cox quantile

regression to similar or the same data. While there is no evident contradiction

between their and our results, we claim that the estimated conditional quantile

functions of this paper give more detailed insights on the conditional distribution of

unemployment duration.
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Figure 3: Estimated quantile functions conditional on age (for α = 0.3; 0.5; 0.7

from bottom to top); left: males, right: females; dashed lines: 5%- and the 95%-

bootstrap quantile for each estimate.

0 50 100 150 200
0

200

400

600

800

1000

1200

Previous daily wage (in EURO)
20 40 60 80 100 120

0

200

400

600

800

1000

1200

Previous daily wage in EURO

D
a
y
s
 u

n
e
m

p
lo

y
e
d

Figure 4: left: Histogram of the previous wage for males; right: Estimated quantile

functions conditional on the previous wage (for α = 0.3; 0.5; 0.7 from bottom to top)

for males; dashed lines: 5%- and the 95%-bootstrap quantile for each estimate.
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5 Conclusion and Outlook

This paper suggests simple nonparametric estimators for the conditional hazard

rate and the conditional quantile function when the distribution of the response

and of the regressor are both censored. Our simulations and our application show

that it is a meaningful and fast tool for data exploration that works without strong

assumptions. Resulting estimates can be used for the specification of a statistical

model of more structure.

There are several interesting topics for future research that may be beneficial for

applied analysis: one could introduce a partially linear approach or one may establish

a link to the approach of Portnoy (2004). One could allow for discrete regressors

or an additive nonparametric structure. In our application we found some evidence

that the conditional quantile functions possess different shapes across quantiles.

Therefore one may also develop a test for shape invariance of those functions. Such

a test would then provide elaborate information whether a more structural model,

such as censored quantile regression, would require different model specifications

across the quantiles. It would also be straightforward to extend the estimator given

in (2) to multivariate X of dimension k = 1, . . . , D by applying the idea of product

kernels. The estimator for the conditional hazards rates is then

hn(y|x) =

∑n
i=1 1τi=y1di=1

∏
k K

(
Gn(xk)−Gn(νik)

bnk

)

∑n
i=1 1τi≥y

∏
k K

(
Gn(xk)−Gn(νik)

bnk

) .

Note that this estimation strategy, however, suffers from the curse of dimensionality.

For multivariate regressors see also Dabrowska (1995).
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