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Non–technical Summary

Quantile regression is gradually evolving into a comprehensive approach to the statistical

analysis of linear and nonlinear response models for conditional quantile functions. Just as classical

linear regression methods based on minimizing sums of squared residuals allow one to estimate

a general class of models for conditional mean functions, quantile regression methods offer a

mechanism for estimating models for the conditional median function and the full range of other

conditional quantile functions.

The Box-Cox function is a nonlinear monotonic transformation including the log-linear and

the linear function as special cases. The Box-Cox quantile regression model therefore provides an

attractive extension of linear quantile regression techniques. Chamberlain (1994) and Buchinsky

(1995) introduce a computationally convenient two stage method. However, a major numerical

problem exists when implementing this method which has not been addressed so far in the litera-

ture. We suggest a simple solution modifying the estimator slightly. This modification is easy to

implement. We derive the asymptotic distribution of the modified estimator and show that it has

still standard statistical properties. Simulation studies confirm that the modified estimator works

well in finite samples.
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Abstract

The Box-Cox quantile regression model using the two stage method suggested by Cham-

berlain (1994) and Buchinsky (1995) provides a flexible and numerically attractive extension

of linear quantile regression techniques. However, the objective function in stage two of the

method may not exists. We suggest a simple modification of the estimator which is easy to

implement. The modified estimator is still
√

n–consistent and we derive its asymptotic dis-

tribution. A simulation study confirms that the modified estimator works well in situations,

where the original estimator is not well defined.
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1 Introduction

This note considers a numerical difficulty with the two step estimation approach for Box-Cox

quantile regressions as suggested by Chamberlain (1994) and Buchinsky (1995).1 In the second

step, the objective function may not be defined and this problem arises in typical data situations.

We suggest a simple modification of the objective function in order to ensure that it is well defined.

The approach is motivated by a theoretical result, which we prove for the bivariate regression case.

Simulations show that the modification works well in finite samples both in bivariate and multiple

regression settings. We show that the standard asymptotic properties of the original estimator

carry over after the modification and we derive the limit distribution of the modified estimator.

2 Model

Let us denote Quantθ(y|x) as the θ’s conditional quantile of y given x and g is a strictly mono-

tonically increasing transformation function. We consider

Quantθ(y|x) = g(x′βθ), (1)

where y > 0, the observable regressors x ∈ IRK, the unknown parameters βθ ∈ B ⊂ IRK, and

the quantile θ ∈ (0, 1). We restrict our analysis to the transformation of the dependent variable

introduced by Box and Cox (1964) :

yλ =





(yλ − 1)/λ if λ 6= 0

log(y) if λ = 0,

as the inverse mapping to g(.) where λ ∈ R where we assume R = [λ, λ] to be a finite closed

interval. This transformation is quite attractive since it preserves the ordering of the observations

because of the invariance of quantiles with respect to the monotonically increasing transformation

g, i.e. Quantθ(g(y)|x) = g(Quantθ(y|x)). Thus, we obtain a linear model for

Quantθ(yλ|x) = x′βθ

and equation (1) becomes

Quantθ(y|x) = (λx′βθ + 1)1/λ . (2)

However, equation (2) is in general no longer a valid representation for a conditional quantile of a

nonnegative random variable, if the term λx′βθ + 1 is negative. For λ = 0, there is no problem to

1The Box–Cox quantile regression model was introduced by Powell (1991).
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map an unrestricted linear predictor x′βθ to nonnegative quantiles Q(y|x). But, for λ < 0 or for

λ > 0, there are implicit restrictions on the possible values that x′βθ may take in order to keep

Q(y|x) positive, as required.

The possibility to estimate λ allows for flexibility in estimating the model in (1). Powell (1991),

Chamberlain (1994), Buchinsky (1995), and Machado and Mata (2000) provide further details on

the model.

3 Estimation Problem

A Box–Cox quantile regression amounts to minimize the following objective

minβ∈B,λ∈R
1

n

n∑
i=1

ρθ(yi − (λx′iβ + 1)1/λ),

for observations i = 1, . . . , n where the check function is given by ρθ(t) = θ|t|1It≥0+(1−θ)|t|1It<0 and

1I denotes the indicator function. Powell (1991) shows that this nonlinear estimator is consistent

and asymptotically normal, see also Machado and Mata (2000) for a concise discussion of the

asymptotic distribution. In principle, the estimator could be obtained directly using an algorithm

for nonlinear quantile regressions, e.g. Koenker and Park (1996). However, this is likely to be

computationally demanding and the same numerical problem as dicussed below arises along the

optimization process.

Chamberlain (1994) and Buchinsky (1995) suggest the following numerically attractive simpli-

fication in form of a two step procedure which exploits the equivariance property of quantiles:

1. estimate βθ(λ) conditional on λ by

β̂θ(λ) = argminβ∈B
1

n

n∑
i=1

ρθ(yλi − x′iβ) (3)

2. estimate λ by solving

minλ∈R
1

n

n∑
i=1

ρθ(yi − (λx′iβ̂θ(λ) + 1)1/λ). (4)

Note that the objective in (3) cannot be used to estimate both βθ and λ (this would result in the

degenerate estimator β̂θ = 0 and λ̂ = −∞). Chamberlain (1994) sketches the large sample theory

of the two step estimator. Buchinsky (1995) derives large sample properties of this estimator for

discrete regressors when applying the minimum distance method.
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When implementing the two step procedure, we encountered the following general numerical

problem which is due to the implicit restrictions on the feasible values of x′βθ. For every λ, it is not

guaranteed that for all observations i = 1, ..., n the inverse Box-Cox transformation λx′iβ̂θ(λ) + 1

is strictly positive. However, this is necessary to conduct the second step of the above procedure.2

It is natural to omit the observations for which this condition is not satisfied. But this raises

a number of problems. First, the set of observations omitted changes when going through an

iterative procedure to find the optimal λ. Second, it is not a priori clear how such an omission of

observations affects the asymptotic distribution of the resulting estimator. Third, should still the

full set of observations be used in the first step? The purpose of this note is to suggest a structured

way on how to implement the necessary omission of data points and to clarify the consequences

of doing so.

4 Modified Estimation

Stage two can only be solved if

λx′iβ̂θ(λ) + 1 > 0 (5)

for all i = 1, . . . , n. This clearly depends on the first stage estimates and the specific value

of λ. A violation of this condition may occur due to the finite sample bias of the estimates,

by misspecification of the model, or equivalently, when the second step is evaluated during an

iterative procedure to obtain the estimator.3 Therefore, in finite samples the inequality (5) may

not hold for all observations.

Our modification of the estimator consists of using only those observations in the second step

for which the second stage of the estimation is always well defined for all λ ∈ R. The first step

is still implemented based on all observations which allows asymptotically for a more efficient

estimator.

Define the set of admissible observations Nθ,n as those i = 1, ..., n for which λx′iβ̂θ(λ) + 1 > 0

for all λ ∈ R. Note that Nθ,n may change with the number of observations due to variation of β̂θ

and due to additional observation. A method for finding Nθn in applications is suggested below.

2The issue also arises for any other available computation method in the literature when evaluating (λx′iβ̂θ(λ)+

1)1/λ, i.e. the algorithm by Koenker and Park (1996) for nonlinear quantile regression or the minimum–distance

approach of Buchinsky (1995), see equation (10), page 117 of the latter paper.
3For some λ during the iteration process, step 1 results in the generally misspecified linear quantile regression

of yλ on xi (see appendix).
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Instead of problem (4), we now solve in the second step

minλ∈R
1

n

n∑
i=1

1Ii∈Nθ,n
· ρθ(yi − g̃i[λ, β̂θ(λ)]), (6)

where for any c ∈ IR

g̃i[λ, β̂θ(λ)] =





c if λ > 0 and if x′iβ̂θ(λ) ≤ −1/λ

c if λ < 0 and if x′iβ̂θ(λ) ≥ −1/λ

(λx′iβ̂θ(λ) + 1)1/λ otherwise.

Note it does not matter what value of c is chosen because the indicator function in equation (6)

is always zero in these cases. This notation is introduced in order to have an objective function

with a well defined sum from 1 to n. It is shown in the appendix that the modified estimator is

consistent and asymptotically normally distributed. The asymptotic variance matrix for (β̂′θ, λ̂)

just uses the observations in Nθ,n.

How to choose the set of admissible observations Nθ,n?

As a purely theoretical rule, one could simply choose Nθ,n as the set of observations i for which

λx′iβ̂θ(λ) + 1 > 0 for all λ ∈ R = [λ, λ]. However, this is not a rule which can be applied in actual

estimation because one can not determine whether the condition holds for all λ ∈ R. For this

reason, a practical alternative is needed.

We suggest a simple heuristic rule for the choice of Nθ,n during the iteration process in λ ∈ R.

We show that this rule is strictly valid in the bivariate regression case K = 2 involving an intercept.

For the case K > 2, we argue why the rule generally works for practical purposes and we confirm

this by extensive simulation evidence. In the case K = 2, it turns out that it is only necessary

to check for the smallest and the largest values λ and λ in R, respectively, whether g̃i[λ, β̂θ(λ)] is

well defined.

(HR) Our heuristic selection rule defines Nθ,n as the set of observations i

for which the condition λx′iβ̂θ(λ)+1 > 0 holds for both λ = λ and λ = λ.

This rule is based on the following result (the proof can be found in the appendix).4

4Note that proposition 1 does not hold for censored Box-Cox quantile regressions because the result hinges

critically on the interpolation of actual data points for linear quantile regressions. This is not necessarily the case

for censored quantile regressions, see Fitzenberger (1997). Limited simulation evidence (simualtion results are

available upon request) suggests that our selection rule works for censored Box-Cox quantile regressions only up

to an upper and lower bound of λ. These bounds seem to depend on the simulation design. Further research is

necessary on this issue.
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Proposition 1: For the bivariate regression model K = 2 (one regressor plus an intercept) assume

that Fεθ
(u|x) is a continuous distribution function almost surely and that the design matrix has

full rank 2. If, for some observation i, λx′iβ̂θ(λ) + 1 > 0 for λ ∈ {λ, λ}, then λx′iβ̂θ(λ) + 1 > 0 for

all λ ∈ [λ, λ] with probability one.

Proposition 1 can be motivated as follows: If for some λ > 0 and some data point i the linear

quantile regression in step 1 of the estimation procedure yields x′iβ̂θ(λ) = −1/λ. Then, the fitted

value is a weighted average of two interpolated observations with perfect fit, see Theorem 3.1

in Koenker and Bassett (1978). This is due to the linear quantile regression involving a linear

program. Since the predicted values for the latter two interpolated observations lie strictly above

−1/λ the weight on the observation with the higher value of y must be negative. A reduction in

λ reduces the distance between the fitted value and −1/λ more strongly for the latter observation

compared to the observation with positive weight. Therefore, the linear combination of the fitted

values must increase.

Unfortunately, Proposition 1 does not hold for the case with K ≥ 3. In the appendix, we

provide a counter example. However, in our subsequent simulations, we found no case where

applying the selection rule based on proposition 1 did not work perfectly during the search for

estimating λ. In the following, we will argue why this is the case in typical estimation problems.

For the proof of Proposition 1, one has to consider critical observations with regressor values

xc
i resulting in fitted values xc

i
′β̂θ(λ) close to −1/λ for some λ. The fitted values are weighted

averages of the fitted values of the K interpolated observations (Theorem 3.1 in Koenker and

Bassett, 1978). To investigate the change in the set of regressor values satisfying condition (5) in

response to a change in λ, the following condition is critical (see proof of Proposition 1)

∂∆

∂λ
=

K∑

h=1

ghlog(y(h))y
λ
(h) < 0 (7)

for interpolated observations h = 1, ..., K with ∆ =
∑K

h=1 ghy
λ
(h) = 0 and

∑K
h=1 gh = 1. The

weights are given by the regressor vector for the critical observation being a linear combination of

interpolated design points, xc
i =

∑K
h=1 ghx(h) (see appendix for details). If condition (7) is satisfied

for K > 2, then the result in Proposition 1 applies (the proof in the appendix is formulated for

the case with general K and condition (7) is only needed in step 5 of the proof).

Note that condition (7) holds strictly if the minimum of the dependent variable for all obser-

vations with negative weights is not smaller than the maximum of the dependent variable for all

observations with positive weights, i.e. min{y(h), gh < 0} ≥ max{y(h), gh > 0}. This is a useful

benchmark, since −1/λ, which is the fitted value at the critical data points, is strictly below y(h),λ
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Table 1: Finite sample evidence from 1.000 Monte Carlo experiments (θ = 0.5). Means with

standard deviations in parentheses.

Homoskedastic Heteroskedastic

n = 100 n = 1.000 n = 100 n = 1.000

% of i not in N0.5,n 17.7% (0.02) 18.3% (0.01) 17.6% (0.02) 18.2% (0.01)

β̂1 10.067 (1.21) 9.990 (0.35) 10.0197 (1.03) 10.011 (0.27)

β̂2 1.010 (0.16) 0.999 (0.05) 1.003 (0.13) 1.001 (0.03)

β̂3 2.016 (0.36) 2.001 (0.10) 2.002 (0.26) 2.000 (0.07)

λ̂ 0.999 (0.07) 0.999 (0.02) 0.998 (0.06) 1.000 (0.02)

for all h. For this reason, some of the weights have to be negative because, at the critical point,

the regression predicts a smaller value than at all the interpolating point. Typically the weights

are positive for the interpolating points, which are closer to the critical point in the covariates

space, and the closer interpolating points are typically associated with smaller predicted values,

thus being closer to the predicted value at the critical point. Therefore, it is typically the case that

gh is positive, if y(h) is small, and gh is negative, if y(h) is large. This generally holds in practical

data designs implying condition (7).5 The extensive simulation results in the next section are

consistent with our reasoning here.

In case our rule (HR) is violated, i.e. we find for some observation i ∈ Nθ,n and some λ 6= λ, λ

that λx′iβ̂θ(λ) + 1 < 0, we suggest as a practical modification of (HR) to set

λx′iβ̂θ(λ) + 1 = ε (8)

for some small ε > 0 in order to make the objective function well defined.6 Based on our simulation

results, a violation of (HR) is likely to be a very rare event. The impact of this additional

modification is likely to be negligible.

5This typical setup does not hold in our counter example in the appendix since none of the interpolating data

points is close to the critical point in the covariates space (all interpolating points lie in different quadrants). In

this situation, the observation with the largest value of the dependent variable also has the largest positive weight

resulting in a strong “leverage effect” on the critical data point.
6This modification is based on a suggestion by Blaise Melly. Note that the additional modification (8) for

admissible observations differs from from the modification in (6) involving setting an arbitrary c for the non–

admissible observations which are irrelevant for the optimization.
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Figure 1: Distribution of shares of inadmissible observations not in N0.5,n (left panel) and distribu-

tion of λ̂ (right panel) for 100 (top panel) and 1.000 observations (bottom panel), homoskedastic

design
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5 Simulations

This section assesses the finite sample performance of the modified estimator (6) through Monte

Carlo studies. We use the following model:

yλ = β0 + β1x1 + β2x2 + σ(x′β)ε,

where x1 is uniformly distributed between−10 and 10, x2 ∈ {0, 1} with Prob(x2 = 0) = Prob(x2 =

1) = 0.5 and β = (10, 1, 2)′. The error term ε follows a truncated normal distribution with bounds

[−1, 1]7 and it is independent of x. For the homoskedastic design, the scale function σ(x′β) is

7Note that yλ > −λ−1 if λ > 0 and yλ < −λ−1 if λ < 0 are required for the inverse of the Box-Cox transformation

to be well defined for the true λ. Thus, we use a truncated error term distribution. For further details see Poirier

(1978).
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set to 1, and for the heteroskedastic design the scale function is set to exp(x′β/10)/4. Note that

both for the homoskedastic and the heteroskedastic design the residuals have very similar sample

variances. The ”true” value of λ is set to 1. We base our modified estimator on the admissible

interval R = [−0.5, 2.5] for λ. We draw 1.000 independent random samples from this model.

Estimates for β are obtained using the algorithm implemented in TSP 4.5. We apply a grid search

in λ on the interval [−0.5, 2.5] with step size 0.005 because the objective function may be locally

non-convex.8 Table 1 presents the results for four experiments based on 1.000 replications with

sample sizes n = 100 and n = 1.000.9

Table 1 indicates that the proposed modified estimator performs well at both sample sizes in the

homoskedastic design, and moderately well in the heteroskedastic design. The results show that

the numerical problem addressed in this note may be in an application by no means negligible. On

average, between 16 and 17 percent of all observations are affected for this simple data generating

process. The results also show that our modification of the estimator works well in practice. The

averages of the estimates are close to the true parameter values and the estimator appears to be

unbiased even in small samples.

Figures 1 and 2 depict the empirical distributions of the share of observations not falling in

N0.5,n and of the estimates of λ. It turns out that in some samples more than 20 percent of

the observations are affected by the numerical problem addressed here when the sample size is

100. As to be expected, the share of critical observations is much more concentrated around 17

percent when the sample size is 1.000. The distribution of λ̂ is nicely concentrated around the

true parameter λ = 1 and as to be expected the variance decreases with the sample size.

During our simulation study (using both the grid search and the numerical optimization

method), we do not observe any violation of our heuristic rule (HR), although violations can

in principle exist for our data generating process.10 Therefore, in our simulation study, we did

not have to apply the additional modification suggested at the end of section 4 in any case. If

a violation occurs in applying our modified estimation approach, we recommend to apply the

additional modification.

8We also replicate the simulation study by using the Koenker and Park (1996) algorithm for MATLAB provided

by Hunter (2002) which results in a local optimum. The second stage is solved by using the fminsearch function

of MATLAB which uses the Nelder-Mead simplex method for non-differentiable objective functions. We use a

randomly chosen initial start point. The computation time is much faster than for the grid search and the results

only marginally change. These results are available upon request.
9We also considered simulation designs with more than three regressors and different marginal distributions of

the covariates. In all cases we did not observe any violation of our heuristic rule.
10We are grateful to Blaise Melly for pointing this out.

9



Figure 2: Distribution of shares of inadmissible observations not in N0.5,n (left panel) and distribu-

tion of λ̂ (right panel) for 100 (top panel) and 1.000 observations (bottom panel), heteroskedastic

design
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Appendix

Proof of Proposition 1: Without loss of generality, assume that λ > 0. In the following, we

will show that λx′iβ̂θ(λ) + 1 > 0 implies λx′iβ̂θ(λ) + 1 > 0 for all λ ∈ (0, λ].

Therefore, assume λ > 0 in the following. The proof proceeds in a number of steps.

1. The condition λx′iβ̂θ(λ) + 1 > 0 is equivalent to x′iβ̂θ(λ) > − 1
λ

and our result is implied by
∂x′iβ̂θ(λ)

∂λ
< 1

λ2 for x′iβ̂θ(λ) being close to − 1
λ
, which is to be shown.

2. We omit for this step the index i. Note that

f(y, λ) ≡ ∂yλ

∂λ
=

1

λ2
+

yλ(λln(y)− 1)

λ2
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and

f(y, λ)

(
>

=

)
0 for y

(
6=
=

)
1 and f(y, λ)




<

=

>




1

λ2
for y




<

=

>


 exp

(
1

λ

)
.

Starting at some λ, for y being small, i.e. y < exp(1/λ), reducing λ will result in an increase

and for y being large, i.e. y > exp(1/λ), in a decline of yλ + 1/λ.

3. The interpolation property of linear quantile regression (Koenker and Bassett, 1978, The-

orem 3.1) implies that x′(h)β̂θ(λ) = y(h),λ
11 for h = 1, ..., K individual observations with

linearly independent x(h) and i(h) ∈ {1, ..., n} representing individual distinct observations

(x(h) = xi(h), y(h) = yi(h)). This interpolation property is the consequence of the fact that

estimating a linear quantile regression involves solving a standard linear program. A re-

duction in λ for λ > 0 results in a stronger decline of the interpolated y(h),λ the higher

its value. In particular, for a small y(h),λ it follows that y(h),λ + 1/λ = x′(h)β̂θ(λ) + 1/λ in-

creases. Note, that for an infinitesimally small reduction in λ, the set of interpolated data

points i(h), h = 1, ..., K does not change (only the interpolated values y(h),λ do change), see

Koenker and D’Orey (1987, p. 385) for a similar argument.

4. Suppose for some λ ≤ λ and some observation i with xi =
∑K

h=1 ghx(h) (the weights gh are

given by the fact that every xi can be represented as a linear combination of K linearly

independent vectors x(h)) it is the case that x′iβ̂θ(λ) = −1/λ. Due to the presence of

an intercept, it is clear that
∑K

h=1 gh = 1. By the interpolation property, it follows that∑K
h=1 ghy(h),λ = −1/λ. The latter statement is equivalent to ∆ ≡ ∑K

h=1 ghy
λ
(h) = 0, where

the left–hand–side denotes the difference between the fitted value for observation i and the

critical value −1/λ. We will show that ∂∆/∂λ < 0.

5. Assume without loss of generality y1 6= y2 (for the case y1 = y2 there are no critical data point

with fitted values not lying strictly above −1/λ thus requiring not further consideration).

For the critical data point i in the previous step, it follows that g1 = yλ
(2)/(y

λ
(2) − yλ

(1)) and

g2 = 1− g1 = yλ
(1)/(y

λ
(1) − yλ

(2)). Then, after some straightforward manipulations, we obtain

∂∆

∂λ
=

2∑

h=1

ghlog(y(h))y
λ
(h) =

yλ
(2)y

λ
(1)[log(y(1))− log(y(2))]

λ(yλ
(2) − yλ

(1))
< 0 .

The inequality holds because [log(y(1))− log(y(2))] and [λ(yλ
(2) − yλ

(1))] have opposite signs.

11With y(h),λ = (yλ
(h) − 1)/λ for λ 6= 0 and y(h),λ = log(y(h)) for λ = 0.
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6. After more than an infinitesimal change of λ it may occur that the set of interpolating

observations changes. For the specific λ, where this occurs, the linear quantile regression

will interpolate another data point l = 1, ..., n with x′lβ̂θ(λ) = yl,λ in addition to i(h), h =

1, ..., K, again see Koenker and D’Orey (1987, p. 385) for a similar argument. If λ moves

infinitesimally further, then the data point l will replace one of the interpolated i(h) in the

set of interpolated data points. For the new set of interpolated data points, the regressor

vectors will again be linearly independent. Since the quantile regression interpolates all y(h),λ

as well as yl,λ and all except one of the i(h) data points remain interpolated when λ moves

beyond the critical value, the same argument applies as in the previous step. Thus, also for

such critical values of λ, where the set of interpolated data points changes, it is clear that

both one directional derivatives (∂∆/∂λ)dλ<0 and (∂∆/∂λ)dλ>0 are non-positive for critical

observations where the quantile regression interpolates −1/λ.

The proof proceeds in an analogous way for λ < 0 showing that if λx′iβ̂θ(λ) + 1 > 0 holds for

λ = λ, then it holds for all λ ∈ [λ, 0).

¤

Counter example for the result in Proposition 1 for K = 3

Consider the following data set with n = 10 observations and 2 regressors x1i and x2i:

i xi,1 xi,2 yi

1 -2 -2 0.3

2 1 3 0.2

3 1 3 0.2

4 1 3 0.2

5 2 -3 2.0

6 2 -3 2.0

7 2 -3 2.0

8 3 -1 1.9600354921

9 3 -1 1.9600354921

10 3 -1 1.9600354921

Note that three times three observations are the same respectively and that for λ = 2 the Box–

Cox quantile regression at the median (θ = 0.5) interpolates observations 2(=3,4), 5(=6,7), and
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8(=9,10). Observation 1 is a critical observation for our purpose with x′1β̂θ(λ) = −1/λ = −0.5 for

λ = 2. For λ = 1.99, the fitted value is x′1β̂θ(λ) = −0.50310 < −0.50251 = −1/λ and for λ = 2.01,

the fitted value is x′1β̂θ(λ) = −0.49691 > −0.49751 = −1/λ. For λ = 2, one obtains (g1, g2, g3) =

(1.125, 2.75,−2.875) as weights for observation 1 with g1, g2, g3 referring to observations 2, 5, and

8, respectively. Furthermore, ∂∆/∂λ =
∑K

h=1 ghlog(y(h))y
λ
(h) = 0.11932 > 0 for λ = 2. The critical

condition (7) is violated in this case, because of the large positive weight g2 for the observation

with the highest value of the dependent variable y5 = 2.0 resulting in a strong “leverage effect”

on the critical observation 1.

Asymptotic Properties of modified estimator

We establish the asymptotic properties of our modified estimator based on the following four

steps, following the analysis of the asymptotic distribution of Box–Cox quantile regression in

Chamberlain (1994, appendix A.2) and building on the analysis in Powell (1991). For a given

quantile θ, λ0 and β0,θ are the true parameter values.

1. For a possibly misspecified linear quantile regression define the best linear quantile predic-

tor12 in the population (Angrist et al., 2004, section 2.1) under asymmetric loss by

βθ(λ) = argminβ Eρθ(yλ − x′β) .

For a given λ and under standard regularity conditions, the linear quantile regression esti-

mator β̂θ(λ) is
√

n–consistent and it converges to the coefficients of the best linear quantile

predictor. Under standard regularity conditions as in Powell (1991) or Chamberlain (1994),

in particular y is continuously distributed conditional on x guaranteeing differentiability of

the population objective function, and analogous to the least squares case, it can be shown

then that βθ(λ) satisfies the following first order condition

∫

x

{∫

y

x(I(yλ < x′β)− θ)f(y|x)dy

}
f(x)dx = Ex(I(yλ < x′β)− θ) = 0

as a population moment condition, where I(.) is the indicator function. It is clear that

for the true λ0, we obtain βθ(λ0) = β0,θ. Even though, the linear quantile predictor as an

approximation does not satisfy Quant(yλ|x) = x′βθ(λ) for general λ (Angrist et al., 2004)

the population moment condition suffices for β̂θ(λ) to be a
√

n–consistent estimator of βθ(λ),

as suggested by Chamberlain (1994) and shown explicitly in Fitzenberger (1998).

12This definition is analogous to the linear projection for least squares, see Wooldridge (2002), chapters 2 and 3.
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2. The dummy variable indicating the admissible observations for the modified estimator is

given by

1Ii∈Nθ,n
= I({λx′iβ̂θ(λ) + 1 > 0} and {λx′iβ̂θ(λ) + 1 > 0})

which is based on the estimated linear quantile predictors for both λ and λ. For the popu-

lation quantile predictors, define

Ii = I({λx′iβθ(λ) + 1 > 0} and {λx′iβθ(λ) + 1 > 0}) .

√
n–consistency of β̂θ(λ) implies that E(1Ii∈Nθ,n

− Ii) = Op(n
−1/2) and V ar(1Ii∈Nθ,n

− Ii) =

Op(n
−1) for uniformly bounded moments (higher than second) of xi.

13

3. For the asymptotic analysis, we can replace 1Ii∈Nθ,n
by Ii in the objective function for the

second step of the modified estimator in equation (6) because the difference

1

n

n∑
i=1

Ii · ρθ(yi − g̃i[λ, β̂θ(λ)])− 1

n

n∑
i=1

1Ii∈Nθ,n
· ρθ(yi − g̃i[λ, β̂θ(λ)]). (9)

uniformly converges to zero in probability. Note that 1Ii∈Nθ,n
and Ii do not depend upon λ

(and therefore β̂θ(λ)), because λ and λ are fixed a priori. Thus, the asymptotic properties

of the modified estimator can simply be derived as resulting from minimizing the first term

in equation (9), i.e. the estimation error in 1Ii∈Nθ,n
does not matter asymptotically.

4. Since conditional on xi, Ii is not random, the asymptotic analysis in Powell (1991) and Cham-

berlain (1994) applies analogously to the modified estimator provided that E(1/n)
∑

i Iixix
′
i

is uniformly positive definite in order to guarantee identification. For finite λ and λ this con-

dition is satisfied for non-degenerate distributions of xi. Under this assumption and standard

regularity conditions as in Powell (1991), consistency and
√

n asymptotic normality of the

modified estimator follows immediately based on the analysis in Powell (1991) and Cham-

berlain (1994). Denoting η′ = (β′, λ) and following Chamberlain’s (1994, p. 204) notation

(see also the appendix in Machado and Mata, 2000) as closely as possible, the asymptotic

covariance matrix of the joint modified estimator η̂ = (β̂(λ̂)′, λ̂) is given by

[
A0

∂m(η0)

∂η′

]−1

A0 θ(1− θ) E

(
xix

′
i Ii

∂g̃i

∂η
x′i

xiIi
∂g̃i

∂η′ Ii
∂g̃i

∂η′
∂g̃i

∂η

)
A0

′
[
A0

∂m(η0)

∂η′

]−1′
,

13Alternatively, in cases, when our heuristic rule does not work, one can define

1Ii∈Nθ,n
= I(λx′iβ̂θ(λ) + 1 > 0) and Ii = I(λx′iβθ(λ) + 1 > 0) for all λ ∈ [λ, λ].

However, this rule can not be easily applied in practical applications.
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where A0 =

(
EK 0 0

0 ∂βθ(λ0)
∂λ

1

)
, EK is the K ×K identity matrix,

and m(η) = E

(
[I(yλ,i < xiβ)− θ] · xi

Ii · [I(yλ,i < xiβ)− θ] · ∂g̃i

∂η

)
.

The asymptotic results derived here differ from Chamberlain (1994) only by the fact that

the dummy Ii enters the asymptotic first order condition for the second step of the estimator

when optimizing over λ. Since Ii is nondecreasing for all observations when a smaller setR is

used (i.e. λ decreases or λ increases) still containing λ0, the asymptotic variance decreases (in

the usual matrix sense), i.e. the modified estimator becomes asymptotically more efficient.
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