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Nontechnical Summary

The EU-wide emissions trading scheme covering major CO2 production sites will be enacted

in 2005. Many design issues – most notably the initial allocation of allowances – are left to

EU Member States. Under the EU emissions trading Directive Member States must draw up

National Allocation Plans (NAPs) in which they (i) allocate the national emissions budget

defined in the EU burden sharing agreement (EU BSA) to the different sectors of the

economy and (ii) lay down the general rules that govern the initial emissions allocation to the

firms eligible for emissions trading.

This paper quantitatively analyzes aspects of efficiency and sectoral burden sharings that may

result from different allocation rules.

Furthermore it presents a flexible web-based simulation model where the user can specify the

design of National Allocation Plans for each EU-Member State an then evaluate the cost

implications at the regional and sectoral level.

Our analysis focuses on the hybrid nature of the EU trading scheme, i.e. a mixture of different

regulatory regimes: some sectors (industry and energy) are included in the trading scheme

while others (e.g., transport, services) are not. The co-existence of an emissions trading and a

non-trading part of the economy poses the problem of partitioning the overall emissions

budget between the two parts of the economy. We show that this can dramatically increase

the compliance costs of emission regulation.

Our qualitative assessment is based on a simple partial equilibrium model for the EU-15 CO2

market using marginal abatement cost curves that are specified separately for the trading and

the non-trading sector. Implementation of the EU BSA is simulated for illustrative policy

scenarios: (i) without emissions trading; (ii) with emissions trading and the overall optimal

allocation of permits to the trading and non-trading sectors and (iii) with emissions trading

where the trading sectors receive enough permits such they can emit at their business-as-usual

levels.
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1 Introduction

In 2005, an EU-wide emissions trading scheme (EU (2003)) that covers major CO2 producing

sites shall come into force. The key objective of the trading scheme is to promote cost-

efficiency of carbon reduction under the EU Burden Sharing Agreement which prescribes

specific commitments for the abatement of greenhouse gas emissions across EU Member

States (EU (1999)).

Prior to the enactment of the European trading scheme, each EU Member State must develop

a National Allocation Plan that defines the overall cap on carbon emissions for installations

included in the trading scheme as well as specifies the allocation rule for allowances.

Complementary domestic abatement policies must be undertaken in the sectors not covered

by the emissions trading scheme in order to balance the countries’ emission budgets as given

by the EU Burden Sharing Agreement.

While aiming at cost-efficiency, each Member State has to account for two central constraints

in the design of National Allocation Plans:

(i) allocation of emission allowances to installations (sectors) covered by the trading

scheme must be mainly for free1, and

(ii) competitive distortions involving different treatment of identical installations (firms

or sectors) across EU countries should be avoided.2

Considering these as guidelines for the implementation of the EU emissions trading scheme,

Böhringer and Lange (2004) have shown that it is generally impossible to preserve efficiency

while requiring free allocation of emission allowances and non-discrimination of similar

firms across countries. The intuition is straightforward: Overall efficiency implies equalized

marginal abatement costs across all emitters within the EU.

1 Member States must allocate 95 % of emission allowances dedicated to the emissions trading sectors
for free in the “warm-up” phase from 2005 to 2007. In the next phase - from 2008 to 2012 - this
threshold can be reduced to 90 %, whereas the rules for later phases have been not yet decided upon.
2 The National Allocation Plans will be scrutinized by the EU Commission with respect to “common
criteria” such as competitive distortions (Annex III, EU (2003)).
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Even if countries were fully identical, differences in exogenous emission reduction

requirements – as prescribed by the EU Burden Sharing Agreement – imply that identical

firms will face diverging specific allowance assignments, i.e. allocation factors.3 When

adopting harmonized rules for free allowance allocation, Böhringer and Lange (2004) point

out two policy options in order to achieve identical allocation factors and, thus, avoid

competitive distortions between identical firms within the EU emissions trading scheme:

Starting from a cost-efficient partitioning of the national emission budget between trading

sectors (i.e. sectors covered by the EU emissions trading scheme) and the non-trading sectors

(i.e. sectors outside the EU emissions trading scheme) of the economy, a national government

may implement harmonized (exogenous) allocation factors by:

(i) either auctioning off or buying the remaining permits corresponding to the difference

between the efficient amount of permit allowances for the trading sectors and the country’s

overall emission budget under the EU Burden Sharing Agreement, or

(ii) re-adjusting the initial partitioning of the country’s overall emission budget to meet the

prescribed allocation factor.

The two options differ substantially with respect to their implications for overall efficiency

and free allowance allocation, i.e. compensation to energy-intensive firms covered by the EU

emissions trading scheme. The first option preserves efficient partitioning of national

emission budgets but is in conflict with the requirement of free allowance allocation to

trading sectors. The second option, in turn, maintains free allocation of emission allowances

but involves potentially large efficiency losses as the re-partitioning of the country’s emission

budget implies differences between marginal abatement costs of the EU-wide trading scheme

and the domestic marginal abatement costs in the non-trading segments of each EU Member

State.

3 The allocation factor is defined as the ratio between assigned emission allowances and some historic
emission base.
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This paper complements basic economic reasoning with an interactive simulation model

based on marginal abatement cost functions for sectors subject to emissions trading in the EU

scheme (thereafter referred to as DIR sectors) and those sectors subject to complementary

domestic emission regulation (thereafter referred to as NDIR sectors). The model is able to

quantify the inherent trade-offs between efficiency, compensation, and competition neutrality

for alternative designs of National Allocation Plans in EU Member States. The interested

reader can access the model through a web-interface (http://brw.zew.de/simac/), specify

abatement cost functions, set up National Allocation Plans, and calculate the associated

economic implications.

An important feature of our interactive simulation model is the assessment of emission

regulation costs not only at the level of EU Member States but also for trading energy-

intensive DIR sectors as well as non-trading NDIR sectors. In the policy debate on

appropriate allocation factors for the DIR sectors, it is often overlooked that compensation to

DIR sectors via generous allocation factors implies larger reduction requirements and hence

higher economic costs for NDIR sectors given that both segments of the economy together

are only endowed with the overall national emission budget under the EU Burden Sharing

Agreement. Therefore, the design of National Allocation Plans does not only bear an

efficiency dimension due to the hybrid regulation of DIR and NDIR sectors but also a

potentially important equity dimension. In policy-relevant simulations, we find that National

Allocation Plans warranting EU-wide uniform allocation factors of one (i.e. DIR sectors are

allocated their business-as-usual emissions) induce total costs that are 10 times higher than

the aggregate costs for an efficient trading scheme and 6 times higher than purely domestic

abatement action (without international emissions trading). The associated cost for NDIR

sectors increase substantially vis-à-vis the efficient regulation while the respective costs for

DIR sectors fall to zero.

The remainder of the paper is structured as follows. In section 2, we develop a simple

analytical framework to demonstrate the trade-offs between efficiency, compensation and

harmonization (competitive neutrality) inherent to the forthcoming implementation of the
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hybrid EU regulation scheme. In section 3, we present a numerical framework based on

marginal abatement cost curves to assess the economic implications of alternative National

Allocation Plans. In section 4, we discuss the economic implications of illustrative policy

scenarios. In section 5, we conclude. Instructions for the use of the interactive web-interface

and the concrete algebraic model formulation (including the program code) are relegated to

the Appendix.

2 Analytical Framework

We set up a simple stylized partial model to illustrate the implicit trade-offs between three

central policy objectives underlying the forthcoming implementation of an EU-wide

emissions trading scheme: efficiency, compensation, and harmonization.

We consider R regions (r=1,...,R). Each region is constrained by an aggregate emission

budget rE (as given for EU Member States by the Burden Sharing Agreement). In designing

the National Allocation Plan each government has to decide on the number of emission

allowances it wants to distribute to the DIR sectors eligible for emissions trading, the fraction

with respect to rE being denoted by rθ . The remaining part – ( ) rr Eθ−1 – constitutes the

emission budget for the NDIR sectors which are not included in the trading system.

Aggregate abatement costs in DIR sectors are given by Cr
DIR(e) with (∂Cr

DIR/∂e≤0,

∂2Cr
DIR/∂e2>0), and likewise for NDIR sectors by Cr

NDIR(e) with (∂Cr
NDIR/∂e≤0,

∂2Cr
NDIR/∂e2>0), where e denotes emissions. Total abatement costs are represented by Cr(Er)

with the same curvature properties.

Efficiency

Aggregate efficiency requires minimization of total abatement costs of all regions4:

4 We assume that the reduction target must be achieved within the EU: There are neither international
emissions trading opportunities beyond EU borders nor abatement options using project-based
mechanisms like the Clean Development Mechanism that could further reduce overall compliance
costs.
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DIR
rr eeE += . The difference between the exogenous emission budget rE and

aggregate optimal emissions *
rE , i.e. *

rr EE − , renders the optimal trade volume in emission

allowances. Figure 1 illustrates the case where domestic abatement costs to reach the

domestic target rE are below the international emission price; hence, the region becomes an

exporter of emission allowances.

Figure 1: Optimal emissions in NDIR and DIR sectors at international emissions price σ

From the perspective of an (EU-) social planner, the efficient solution could be decentralized

by imposing uniform emission taxes at the optimal rate σ on the NDIR sectors. The remaining
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eligible for international emissions trading, i.e. the optimal fraction of the regional emission

budget to be allocated to DIR sectors amounts to ( ) r
NDIR
rrr EeE /

** −=θ .

Compensation

Compensation to DIR sectors has been a conditio-sine-qua-non for the legal approval of the

trading initiative by the EU Parliament. In this vein, implementation of the EU trading

scheme via National Allocation Plans prescribes free allocation of emission allowances to

DIR sectors. As to allocation rules, two approaches are prominently discussed: Emission

allocation should be based on output levels (benchmarking) or on historic emissions

(grandfathering). Applied to historic data, these rules boil down to lump-sum transfers to

firms in the DIR sectors.5 Reflecting current policy proposals, we assume that firms in the

DIR sectors receive an initial allocation of allowances based on some historic emission level

0
,DIRre . The total allocation of allowances to DIR sectors in region r, i.e. rr Eθ , is determined

by the allocation factor rλ according to:

0
,

*
DIRrrrr eE λθ = .

Harmonization

From a legal point of view, requests for harmonized National Allocation Plans imply equal

compensation of identical firms across different countries. In practical terms, this means that

allocation factors rλ should be the same across identical firms.

Trade-offs between efficiency, compensation and harmonization

Under efficient partitioning of national emission budgets and (non-distortionary) static

emission-based allocation of free allowances the endogenous allocation factors
0
,

*

DIRr

rr
r

e

Eθλ =

5 In contrast, distortions and efficiency losses result if the basis for allocation is updated over time.
Such dynamic allocation rules provide strategic incentives to increase output and/or emission intensity
and thus work as distortionary subsidies. Böhringer and Lange (2003) provide a generic analysis of the
economic implications of dynamic allocation schemes for emission allowances. They find that in open
trading systems – where the allowance price is perceived as exogenous – emission-based allocation is
more distortionary than output-based allocation since it does not only distort production but also
emission intensities.
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will generally differ across regions. If harmonization is the primary policy objective, this

means either giving up on efficiency (by re-adjusting )rθ or on comprehensive

compensation (by auctioning potentially larger parts of the efficient emission budget for DIR

sectors rr
DIR
r Ee **

θ= ).

3 Numerical Framework

In order to quantify the policy relevance of the trade-offs between efficiency, compensation,

and harmonization, we transform the stylized analytical framework of section 2 into a simple

numerical model based on marginal abatement cost curves for DIR and NDIR sectors in the

EU-15. They are calibrated to empirical data.

Model Parameterization

Marginal costs of emission abatement may vary considerably across countries and sectors due

to differences in carbon intensity, initial energy price levels, or the ease of carbon substitution

possibilities. Continuous marginal abatement cost curves for the DIR and NDIR sectors in EU

countries can be derived from a sufficiently large number of discrete observations for

marginal abatement costs and the associated emission reductions in the DIR and NDIR

sectors. In applied research these values are often generated by partial equilibrium models of

the energy system (such as the POLES model by Criqui and Mima (2001) or the PRIMES

model by Capros et al. (1998)), that embody a detailed bottom-up description of

technological options. Another possibility is to derive marginal abatement cost curves from

computable general equilibrium (CGE) models (see e.g. Reilly et al. (1999) or Eyckmans et

al. (2001)). We adopt the latter approach and generate a reduced form of complex CGE

interactions in terms of marginal abatement cost curves that are directly accessible to the non-

CGE specialist. In order to obtain such marginal abatement cost curves for the DIR and NDIR

sectors across EU countries, we make use of a standard static multi-region, multi-sector CGE

model for the EU economy (see Böhringer (2002) for a detailed algebraic exposition) based

on the most recent consistent accounts of EU Member States’ production and consumption,
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bilateral trade and energy flows for 1997 (as provided by the GTAP5-E database – see

Dimaranan and McDougall (2002)). With respect to the analysis of carbon abatement

policies, the sectors in the model have been carefully selected to keep the most carbon-

intensive sectors in the available data as separate as possible. The energy goods identified in

the model include primary carriers (coal, natural gas, crude oil) and secondary energy carriers

(refined oil products and electricity). Furthermore, the model features three additional energy-

intensive non-energy sectors (iron and steel; paper, pulp and printing; non-ferrous metals)

whose installations – in addition to the secondary energy branches (refined oil products and

electricity) – are subject to the EU emissions trading system. The remaining manufacturers

and services are aggregated to a composite industry that produces a non-energy-intensive

macro good, which together with final demand captures the activities (NDIR segments) that

are not included in the EU trading system.

To generate our reduced form model, we perform a sequence of carbon tax scenarios for each

region where we impose uniform carbon taxes (starting from 0 € to 200 € per ton of carbon in

iso-distant steps of 1 €). We thereby generate a large number of marginal abatement costs, i.e.

carbon taxes, and the associated emission reductions in DIR and NDIR sectors. The final step

involves a fit to the set of “observations”. Various types of functional forms could be

employed. Common forms include iso-elastic exponential functions (of the type

b
o eeaeC )()( −⋅=′− ), quadratic or more elaborate polynomial functions

( �+−⋅+−⋅=′− 2
21 )()()( eeaeeaeC oo ) as well as exponential functions

( ( )( )0( ) exp oC e a b e e e′− = ⋅ ⋅ − ) (see e.g. Reilly et al. (1999) or Böhringer and Löschel

(2003)).6 For our numerical framework, we apply a least-square fit by a polynomial of third

degree which provides sufficient flexibility.

6 Baseline emission levels oe do not impose a binding emission reduction – hence, the associated

marginal abatement costs for emission use at the baseline level are zero. Clearly, zero marginal

abatement costs also hold for emission levels oee > .
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The functional form of the marginal abatement cost curves in region r for the DIR and NDIR

sectors is, thus, given by:

{ }NDIRDIRieeaeeaeeaeC iroiriroiriroiririr iririr
,)()()()( 3

,3
2

,2,1 ∈−+−+−=′−

Table 1 lists the associated least-square estimates for the coefficients of marginal abatement

cost curves across regions. Costs are measured in 1997 dollars per ton of carbon, while the

quantities are measured in million tons of carbon.

Table 1: Coefficients for marginal abatement cost functions (base-year: 1997)

Directive Sectors (DIR) Non-Directive Sectors (NDIR)

rDIRa ,,1 rDIRa ,,2 rDIRa ,,3 rNDIRa ,,1 rNDIRa ,,2 rNDIRa ,,3

Austria 33.90 6.24 9.39 153.68 11.28 34.90

Belgium 13.60 -0.49 0.99 32.68 2.28 0.35

Denmark 8.57 -1.82 0.46 94.97 29.05 -0.78

Finland 26.44 3.41 1.01 104.07 30.23 16.55

France 11.27 0.59 0.25 8.86 0.24 0.00

Germany 1.60 0.00 0.00 5.77 0.08 0.00

Greece 19.52 -1.08 0.45 61.59 2.87 2.36

Ireland 8.55 19.52 15.70 169.53 61.00 41.43

Italy 4.41 0.10 0.01 12.78 -0.40 0.11

Netherlands 3.61 1.22 0.08 18.22 0.52 0.07

Portugal 29.20 -1.44 9.85 83.66 28.48 -1.27

Spain 6.29 -0.01 0.07 18.32 0.78 0.01

Sweden 49.51 0.32 38.26 104.01 14.25 -0.06

U.K. 4.08 0.08 0.01 6.97 0.12 0.00

Obviously, simulation results are sensitive to both the quality of the fit as well as the accuracy

of the underlying “observations”. In our case, marginal abatement cost functions capture the

economic costs of reducing carbon at a historical point in time, i.e. 1997. If regulation applies

to future periods, the prospective adjustment costs must be measured against the projected

business-as-usual. The concrete assessment of future marginal and inframarginal abatement

costs then hinges on baseline projections for the economy which – given the uncertainty

about the future – is a challenge for quantitative analysis and demands for comprehensive
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sensitivity analysis. In our context, Table 2 illustrates the impact of the base-year choice on

the magnitude of effective emission reduction requirements which are a key driver of

marginal and inframarginal costs.

Table 2: Carbon emissions and reduction requirements (EUROSTAT (2002) and EiE (1999))

CO2 - Emissions
Reduction requirements

(in % with respect to)

1990 1997 2010* 1990 1997 2010*

Austria 55 59.4 64.2 13 19.4 25.5

Belgium 117.7 132 115.1 7.5 17.5 5.4

Denmark 55.7 68.6 59 21 35.9 25.4

Finland 53.5 60.1 64.9 0 11 17.6

France 362.3 367.8 462 0 1.5 21.6

Germany 950.8 837.5 837.8 21 10.3 10.3

Greece 79.2 92.8 133.8 -25 -6.7 26

Ireland 29.7 36.7 46.9 -13 8.6 28.4

Italy 399.3 409.9 451 6.5 8.9 17.2

Netherlands 187.4 207.5 185.9 6 15.1 5.2

Portugal 41.1 49.5 60.9 -27 -5.4 14.3

Spain 216 260.7 288.9 -15 4.7 14

Sweden 52.8 55.7 53.2 -4 1.4 -3.2

U.K. 575.7 538.6 584.8 12.5 6.5 13.9

EU (total) 3176.2 3176.8 3408.4 8.4 8.4 14.6

*Emissions as projected in EiE (1999)

The first three columns list the carbon emissions for 1990 (the reference year of the reduction

commitments under Kyoto and the EU Burden Sharing Agreement), for 1997 (the base-year

for our model simulations) as well as the projected emissions for 2010 (the central year for

which emission reduction should be achieved). 7 The effective reduction targets under the

Burden Sharing Agreement can change dramatically along the time-path. While Germany, for

example, starts out with a rather stringent reduction target of 21 % with respect to 1990, the

effective reduction target halves with respect to baseline emission levels in 1997 or 2010.

7 The commitment period for achieving on average the emission reduction targets under Kyoto and the
EU Burden Sharing Agreement is 2008-2012.



11

Spain, in turn, had been attributed an emission budget of 15 % in excess of its 1990 emissions

but due to economic growth faces an effective reduction of 6 % in 1997 which rises up to 14

% vis-à-vis projected business-as-usual emission levels in 2010.

For reasons of uncertainties and potentially large inconsistencies associated with business-as-

usual projections, we base our simulation analysis on historical data for 1997 – the most

recent year for which a consistent economic data set at the EU level is available.

Acknowledging the importance of the reference period, however, our web-based interface

accommodates the flexible parameterization of marginal abatement cost functions and

associated base-year-emissions.

Partial versus General Equilibrium Analysis

The reduced form representation of economy-wide adjustment to emission regulation

provides a transparent and easy access to numerical analysis. A potential drawback of such a

simplifying approach is the neglect of market interaction and spillover effects. There are

several articles illustrating the importance of such indirect effects (Böhringer (2002),

Böhringer and Rutherford (2002), Bernard et al. (2003), Klepper and Peterson (2002)). In the

context of carbon abatement policies, induced terms-of-trade effects on fossil fuel markets

may substantially alter the direct costs of abatement. Depending on the magnitude of global

cuts in fossil fuel demand and the level of fossil fuel supply elasticities, a drop in

international fuel prices provides secondary benefits for fossil fuel importers while it hurts

fossil fuel exporters. Adjustment costs in one country thus generally depend on how much

other countries reduce their emissions.

Against this background, the crucial question regarding the robustness of partial equilibrium

results based on marginal abatement cost curves is whether terms-of-trade effects are

sufficiently small. For our policy issue, the omission of terms-of-trade effects is in place: On

the one hand, when determining the impact of different National Allocation Plans, policies

outside the EU can be taken as exogenous. On the other hand, changes in the allocation rules

in EU countries do not affect the overall European reduction target, which after all has a
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negligible impact on world prices as EU emission cutback under the Burden Sharing

Agreement amounts only to a very small share in global carbon emissions. 8

Apart from terms-of-trade effects, other potentially important general equilibrium interactions

concern revenue-recycling. It is well-known that the manner in which revenues from

environmental regulation are recycled to the economy can have a larger impact on the gross

costs of environmental policy (see Goulder (1995) or Bovenberg (1999)). Within the National

Allocation Plans, a larger part of allowances, i.e. scarcity rents, is handed lump-sum to

energy-intensive industries. Thus, omission of alternative recycling strategies can be

justified.9

4 Policy Scenarios and Results

Policy Scenarios

The primary objective of emissions trading is to achieve potential efficiency gains. So-called

“where-flexibility” assures that emissions will be abated where it is cheapest across all

emitting sources. Full “where-flexibility” implies flexibility across countries – say regional

flexibility – and flexibility across the sectors of the economy – say sectoral flexibility. It is the

nature of a hybrid emissions trading regime such as the EU scheme for carbon dioxide that

sectoral flexibility is restricted in the sense that not all sectors are eligible for trading.

We illustrate the policy relevance of trade-offs between efficiency, compensation and

harmonization in implementing National Allocation Plans along three stylized policy

scenarios:

(i) NoTrade: The NoTrade scenario delivers a benchmark for the magnitude and

distribution of efficiency gains emerging from cross-country flexibility of emission

abatement within the EU. Under NoTrade, EU Member States meet the emission reduction

8 The cutback in emissions under the Burden Sharing Agreement amounts to 1.7% of global carbon use
in 1997 and 1% of projected global carbon use in 2010 with negligible impacts on international fossil
fuel prices.
9 A crude shortcut to an explicit representation of tax interaction effects is the use of estimates for
marginal costs of public funds that may be applied ex-post to assess the „double dividend“ of recycling
revenues for cuts in distortionary taxes (see e.g. Böhringer and Rutherford (2002)).
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target as prescribed by the Burden Sharing Agreement through domestic action only:

Domestic carbon taxes are set sufficiently high to keep with the exogenous emission budget.

Here the countries minimize their individual abatement costs but do not trade. This is

equivalent to a setting where domestic governments auction off their national emission

budget to domestic emitters, i.e. a situation with full sectoral flexibility but without any

regional flexibility.

(ii) NAP_Opt: The counterpart to the NoTrade case is the scenario NAP_Opt where

National Allocation Plans are coordinated to exploit the full potential of efficiency gains from

“where-flexibility” in emission abatement across EU Member States. This implies that the

partitioning of national emission budgets between DIR and NDIR sectors assures equalization

of marginal abatement costs across all carbon emitters. In technical terms, the cost-efficient

design of National Allocation Plans can be derived from unrestricted emissions trading across

all sectors and EU Member States. Emissions of NDIR sectors for the cost-efficient solution

then determine the remaining budget of emission allowances for the DIR sectors (equal to the

difference between the national emission budgets and the NDIR emissions). Obviously, the

cost-efficient country-specific allocation factors rλ are endogenous. In the NAP_Opt

scenario there is full “where-flexibility” including regional and sectoral flexibility.

(iii) NAP_Unity: This scenario accounts for two central elements in the policy debate on

the implementation of the EU emissions trading scheme. Firstly, there is the concern

regarding competitive distortions due to non-uniform allocation factors across EU countries.

Secondly, there are fears that energy-intensive industries in most EU countries will be forced

to decrease their production levels as a consequence of binding emission constraints. In our

static framework, preserving competition neutrality through uniform allocation factors and

warranting business-as-usual production comes down to an allocation factor of unity. The

settings for the NAP_Unity scenario reflect these policy considerations by adopting a

harmonized allocation factor of 1=λ (under emissions-based allowance assignment) for all

regions. In order to achieve the harmonized allocation factor of unity, the optimal partitioning
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of the national emission budget (as determined by scenario NAP_Opt) will be abandoned and

marginal abatement costs between DIR and NDIR sectors will fall apart inducing an

efficiency trade-off due to harmonization. In the NAP_Opt scenario sectoral flexibility

between DIR and NDIR sectors is restricted but there is full regional flexibility within the

DIR sectors of the regions.

Free emission allocation to DIR sectors is based on historic emissions of these sectors for the

base-year 1997. Table 3 provides a summary of the central policy settings across the four

scenarios.

Table 3: Overview of scenario characteristics

Scenario Regulation Scheme International
Emissions Trading

Allocation
Factor

DIR sectors NDIR sectors

NoTrade CO2 tax CO2 tax No None

NAP_Opt

Permits /

emission-based

allocation

CO2 tax

Yes

(in DIR sectors) Endogenous

NAP_Unity

Permits /

emission-based

allocation

CO2 tax

Yes

(in DIR sectors)

Exogenous

1=rλ

Results

Table 4 reports quantitative results for our scenarios on marginal abatement costs as well as

total abatement costs differentiated in both DIR and NDIR sectors. Under NoTrade, the

marginal abatement costs are equivalent to the domestic carbon tax which EU Member States

must levy to achieve their respective emission reduction target under the Burden Sharing

Agreement. A key determinant for the magnitude of marginal abatement costs is the effective

cutback requirement. Ceteris paribus, the more emissions a country has to reduce, the more

costly it is at the margin to substitute away from carbon in production and consumption.
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The high marginal abatement costs for regions such as Austria, Belgium, and Denmark reflect

large reduction requirements vis-à-vis countries such as Sweden or France that have low

marginal costs along with small abatement targets. Clearly, countries that do not face any

binding emission target – in our case: Greece and Portugal – have marginal abatement costs

of zero. Apart from the magnitude of emission reduction requirements, other important

determinants of marginal abatement costs include initial energy prices, carbon intensities, or

the ease of carbon substitution in production and consumption activities that are reflected in

the slope and curvature of sectoral marginal abatement cost curves. These additional

determinants explain why a country (e.g. Austria) may need higher carbon taxes than another

country (e.g. Denmark) although its effective percentage reduction target is smaller.

The pronounced differences in marginal abatement costs across EU countries for the NoTrade

case result from the lack of regional flexibility. They indicate the potential for efficiency

gains from cross-country emissions trading. An efficient implementation of the hybrid

regulation under National Allocation Plans would imply equalized marginal abatement costs

of 9.9 € per ton of CO2 which represents the price of traded emission allowances in the DIR

sectors as well as the tax rate to be levied on CO2 emissions in NDIR sectors. The pattern of

permit trade emerges from the magnitude of marginal abatement costs under NoTrade vis-à-

vis the equalized marginal abatement costs for the case of tradable permits. Countries whose

marginal abatement costs under NoTrade are below the uniform permit price will sell permits

and abate more emissions. In turn, countries whose marginal abatement costs are above the

uniform permit price will buy permits and abate less.

Imposition of uniform allocation factors that grant DIR sectors their BAU emission levels, i.e.

1=rλ , imply an effective reduction requirement of zero for these segments given that the

base-year for emission allocation coincides with the target year for abatement compliance.10

10 Clearly, this is a rather extreme setting but it serves the purpose to illustrate the implications of
generous allowance allocation to DIR sectors that appears as a common feature in the concrete
specification design of National Allocation Plans across EU Member States.
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All the abatement is shifted to NDIR sectors which are excluded from international emissions

trading. The hybrid regulation then leads to extremely high marginal abatement costs in the

NDIR sectors of several EU Member States.

The differences in marginal abatement costs across scenarios are reflected in the differences

of aggregate EU abatement costs under the Burden Sharing Agreement. Total compliance

costs amount to nearly 2 billion € for the NoTrade case. These costs can be substantially

reduced via implementation of an efficient EU emissions trading scheme. In our case, the cost

savings equal more than a third of the NoTrade compliance costs. All countries are better off

under efficient trading as compared to purely domestic action. In our partial equilibrium

framework – where we neglect terms-of-trade and income effects – this result does not come

as a surprise: Comprehensive “where-flexibility” must be pareto-superior.

Ceteris paribus a country’s gains from unconstrained “where-flexibility” rise with an

increased deviation of its autarky marginal abatement costs from the efficient international

permit price. For example, the efficiency gains under NAP_Opt for Germany compared to the

NoTrade case are very small (ca. 0.2 %) since Germany’s autarky carbon value is very close

to the international permit price. In contrast, Austria gains more than 60 % from efficient

trading as its NoTrade marginal abatement costs are six times the international permit price.

Countries which do not face a binding emission constraint under NoTrade unambiguously

will have negative costs under NAP_Opt, i.e. they will be better off with EU regulation than

without because their revenues from permit sales exceed the domestic abatement costs (here:

Greece and Portugal). Likewise countries with relatively low abatement targets may more

than offset overall abatement costs with revenues from permit sales (here: France and

Sweden).

As soon as we restrict “where-flexibility” at the sectoral level and do not depict the efficient

partitioning of national budgets, efficiency implications of carbon trade may be quite

different. It is no longer clear that the EU as a whole nor individual Member States will
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benefit vis-à-vis domestic abatement policies (e.g. carbon taxes where part of tax revenues

may be recycled lump-sum to energy-intensive industries for compensation purposes).

Scenario NAP_Unity provides evidence on the potential magnitude of efficiency losses

through hybrid regulation: Under NAP_Unity aggregate costs are 10 times higher than under

an efficient trading scheme and 6 times higher than for purely domestic abatement action. In

this case, there are no efficiency gains that could be exploited in DIR sectors through regional

flexibility because the implied carbon price is zero. All abatement is shifted to the NDIR

sectors and must be achieved by domestic policies. Countries, thus, can not take advantage of

sectoral flexibility ending up with higher marginal abatement costs for the DIR sectors

compared to the NoTrade scenario and zero marginal costs for the NDIR sectors.11 As a

consequence there occur substantial excess costs even compared to the NoTrade scenario

where one assures at least equalization of marginal abatement costs across sectors within the

domestic economy.

This leads us to another central insight from our stylized policy analysis. Hybrid regulation

may not only deteriorate efficiency in a drastic way but also induce politically delicate burden

shifting between DIR and NDIR sectors. Generous compensations to DIR sectors are directly

at the expense of NDIR sectors with potentially large increases in marginal and inframarginal

costs (see e.g. Austria, Belgium, Denmark, or Finland). The NDIR sectors which do not

receive any compensation from scarcity rents in the first place then bear the additional burden

of diluting the polluter-pays-principle for DIR sectors.12

11 Countries which do not have a binding emission constraint under NoTrade (here: Greece and
Portugal) are obviously indifferent between NoTrade and NAP_Unity because marginal abatement
costs for DIR and NDIR sectors are zero in both scenarios.
12 In fact, preferential treatment – including full exemptions – of energy-intensive industries is a
common feature in environmental policy practise of all OECD countries (see OECD (2001), p. 78) but
in general this is at the expense of environmental effectiveness rather than more stringent regulation
for other sectors. In the case of the hybrid EU trading scheme, however, the situation is different as the
environmental target is fixed.
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Table 5 shows the large differences in endogenous allocation factors for the efficient

NAP_Opt scenario.

They range from 0.34 for Denmark up to 1.18 for Greece and provide clear evidence that

concerns about competitive distortions between identical firms within the EU can be justified

(when keeping with the objectives of overall efficiency and free allowance allocation). The

cross-country differences in allocation factors reflect country-and sector-specific differences

in the relative ease of carbon mitigation as captured by the curvature of calibrated marginal

abatement cost curves.

Finally, we turn to the induced percentage emission reductions at the regional and sectoral

level that are reported in Table 5. By definition, the aggregate region’s emission reduction

must comply with the EU Burden Sharing Agreement for the NoTrade scenario. Within

regions, the DIR sectors will contribute relatively more to the reduction requirement which

means that carbon abatement options in energy-intensive industries through fuel shifting or

energy savings is relatively cheaper than in the NDIR sectors.13 For efficient carbon trading

the direction and magnitude of changes in autarky emission reductions are driven by the

differences between the autarky carbon value and the international permit price (the

qualitative movements for DIR and NDIR sectors within a single region are the same). Under

NAP_Unity, total emission reduction at the regional level will be the same as under NoTrade

because regional flexibility across DIR sectors hasn’t any effect. The implied shifts at the

sectoral level are, however, dramatic: Under NAP_Unity the NDIR sectors have to deliver the

overall regional abatement duties implying very high NDIR percentage reduction for several

EU countries.

13 The one exception is France whose electricity sector is mainly based on carbon-free nuclear power
whereas in other countries (e.g. Denmark or Germany) power and heat production is carbon-intensive
and accounts for a large share of overall DIR carbon emissions.
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5 Conclusions

The forthcoming EU-wide carbon market constitutes a milestone in international

environmental policy. It provides the first multi-jurisdictional emissions trading regime and

will establish the world-largest market for tradable permits. The concrete implementation via

National Allocation Plans entails a hybrid regulation where energy-intensive sectors are

eligible for emissions trading and other segments of the economy must be constrained by

complementary domestic policy instruments. The hybrid setting creates trade-offs between

overall economic efficiency and other objectives of the EU trading scheme, i.e. free allowance

allocation of tradable emission permits and equal treatment of comparable energy-intensive

sites across EU Member States. In this paper, we have developed a simple quantitative

framework that allows the non-technical reader to investigate these trade-offs in a flexible and

user-friendly way. Illustrative simulations highlighted the need to re-consider the current

guidelines for National Allocation Plans in order to avoid substantial excess costs of regulation

and drastic sectoral burden shifting. The hybrid regulation together with compensation (free

allowance allocation) of energy-intensive industries may have been necessary in an initial

stage to promote market-based regulation of carbon emissions. In the medium-run,

comprehensive coverage of all carbon emitters should materialise the full potential of

efficiency gains.14 Furthermore, the inherent conflict between compensation and harmonisation

could be resolved by a gradual transition to an auctioned permit system. The latter simply

implies the rigorous adoption of the “polluter pays principle” which – in terms of efficient

resource use – should be the guiding principle of any market-based environmental policy.

Finally, it should be stressed that our analysis is of interest beyond the scope of the current

debate on National Allocation Plans. The derived insights may not be only useful for the re-

design of Allocation Plans across EU Member States in future periods, but also with respect to

the specification of any hybrid regulation regime where emissions trading for some sectors is

combined with complementary regulation in other sectors.

14 Carbon emissions could be easily controlled upstream via a rather limited number of fuel retailers.
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Appendix A: Analytical Framework

A.1 Algebraic Model Summary

This appendix provides an algebraic summary of the equilibrium conditions for a simple

partial equilibrium model designed to investigate the economic implications of emission

allocation and emissions trading in a multi-sector, multi-region framework. Emission

mitigation options are captured through marginal abatement cost curves that are differentiated

by sectors and regions.

Cast as a planning problem, our model corresponds to a nonlinear program that seeks a cost-

minimizing abatement scheme subject to initial emission allocation and institutional

restrictions for emissions trading between sectors and regions. The nonlinear optimization

problem can be interpreted as a market equilibrium problem where prices and quantities are

defined using duality theory. In this case, a system of (weak) inequalities and complementary

slackness conditions replace the minimization operator yielding a so-called mixed

complementarity problem (see e.g. Rutherford (1995)).15

Two classes of conditions characterize the (competitive) equilibrium for our model: zero profit

conditions and market clearance conditions. The former class determines activity levels

(quantities) and the latter determines prices. The economic equilibrium features

complementarity between equilibrium variables and equilibrium conditions: activities will be

operated as long as they break even, positive market prices imply market clearance – otherwise

commodities are in excess supply and the respective prices fall to zero.16

15 The MCP formulation provides a general format for economic equilibrium problems that may not be
easily studied in an optimization context. Only if the complementarity problem is “integrable” (see
Takayma and Judge (1971)), the solution corresponds to the first-order conditions for a (primal or dual)
programming problem. Taxes, income effects, spillovers and other externalities, however, interfere with
the skew symmetry property which characterizes first order conditions for nonlinear programs.
16 In this context, the term „mixed complementarity problem“ (MCP) is straightforward: „mixed“
indicates that the mathematical formulation is based on weak inequalities that may include a mixture of
equalities and inequalities; „complementarity“ refers to complementary slackness between system
variables and system conditions.
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In our algebraic exposition of equilibrium conditions, we use i as an index for sectors and r as

an index for regions.17 Table A.1 explains the notations for variables and parameters.

Table A.1: Variables and parameters

Variables: Activity levels

irD Emission abatement by sector i in region r

irMD Imports of emission permits by sector i in region r from domestic market

irXD Exports of emission permits by sector i in region r to domestic market

irM Imports of emission permits by sector i in region r from international market

irX Exports of emission permits by sector i in region r to international market

Variables: Price levels

irP Marginal abatement cost by sector i in region r

rPD Price of domestically tradable permits in region r

PFX Price of internationally tradable permits

Parameters

targetir Effective carbon emission reduction requirement for sector i in region r

iririr aaa ,3,2,1 ,, Coefficients of marginal abatement cost function for sector i in region r

Zero Profit Conditions

1. Abatement by sector i in region r ( ⊥ irD ):

iririririririr PDaDaDa ≥⋅+⋅+⋅ 3
,3

2
,2,1

2. Permit imports by sector i in region r from domestic market ( ⊥ irMD )

17 The variable associated with each equilibrium condition is added in brackets and denoted with an
orthogonality symbol ( ⊥ ).
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irr PPD ≥

3. Permit exports by sector i in region r to domestic market ( ⊥ irXD )

rir PDP ≥

4. Permit imports by sector i in region r from international market ( ⊥ irM )

irPPFX ≥

5. Permit exports by sector i in region r to international market ( ⊥ irX )

PFXPir ≥

Market Clearance Conditions

6. Market clearance for abatement by sector i in region r ( ⊥ irP ):

≥++ iririr MDMD targetir irir MX ++

7. Market clearance for domestically tradable permits ( ⊥ irPD )

�� ≥
i iri ir MDXD

8. Market clearance for internationally tradable permits ( ⊥ irPFX )

�� ≥
i iri ir MX

A.2 GAMS Code

Numerically, the algebraic MCP formulation of our model is implemented in GAMS (Brooke,

Kendrick and Meeraus (1987)) using PATH (Dirkse and Ferris (1995) ) as a solver. Below, we

present the GAMS code to replicate the results reported in the paper. The GAMS file and the

EXCEL reporting sheet can be downloaded from ftp://ftp.zew.de/pub/zew-docs/div/

nap_diy.zip.



27

$TITLE Analysis of EU Carbon Emissions Trading Schemes using MAC curves

$ontext
===============================================================================
GAMS (Release 21.0) source code to replicate results of

ZEW Discussion Paper 04-40:
Assessing National Allocation Plans in Europe:

An Interactive Simulation Approach

C. Boehringer, T. Hoffmann, A. Lange, A. Löschel, and U. Moslener
Centre for European Economic Reserach (ZEW), Mannheim

correspondence: boehringer@zew.de

Mannheim June, 2004
===============================================================================
$offtext

*==== Model Dimensions and Data
SET r Regions within EU emissions trading scheme

/
AUT Austria,
BEL Belgium,
DEU Germany,
DNK Denmark,
ESP Spain,
FIN Finland,
FRA France,
GBR United Kingdom,
GRC Greece,
IRL Ireland,
ITA Italy,
NLD Netherlands,
PRT Portugal,
SWE Sweden
/;

SET i Segments of economy
/
DIR Directive sectors,
NDIR Non-Directive sectors
/;

SET dir(i) /DIR/, ndir(i) /NDIR/;

Table carbonstat Benchmark carbon emission summary (in Mt of C)
* Source: EUROSTAT (2002), Energy Database,ISBN/ISSN 92-894-3300-0

C_90_Total C_97_Total C_97_DIR C_97_NDIR
AUT 15.0 16.2 5.6 10.6
BEL 32.1 36.0 11.6 24.4
DEU 259.3 228.4 101.1 127.3
DNK 15.2 18.7 9.7 9.0
ESP 58.9 71.1 27.6 43.5
FIN 14.6 16.4 9.0 7.4
FRA 98.8 100.3 21.1 79.2
GBR 157.0 146.9 56.8 90.1
GRC 21.6 25.3 12.0 13.3
IRL 8.1 10.0 4.2 5.8
ITA 108.9 111.8 44.3 67.5
NLD 51.1 56.6 19.0 37.6
PRT 11.2 13.5 5.4 8.1
SWE 14.4 15.2 3.7 11.5 ;
* Key:
* C_90_Total: Total carbon emissions in 1990 by region
* C_97_Total: Total carbon emissions in 1997 by region
* C_97_DIR: Carbon emissions of Directive sectors in 1997 by region
* C_97_NDIR: Carbon emissions of Non-Directive sectors in 1997 by region
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TABLE mac_coef(r,i,*) Exogenous coefficients for MAC function
* (here: polynomial of third degree)
* Source: Own calculations based on European CGE model (Böhringer 2002:
* Applied Economics, 34, 523-533)

DIR.a1 DIR.a2 DIR.a3 NDIR.a1 NDIR.a2 NDIR.a3
AUT 33.89602 6.23977 9.38573 153.67840 11.28374 34.89848
BEL 13.60163 -0.48508 0.98647 32.68014 2.28401 0.35231
DEU 1.60372 0.00318 0.00042 5.76568 0.08324 0.00095
DNK 8.56613 -1.81555 0.45910 94.96873 29.04864 -0.77840
ESP 6.28601 -0.00715 0.07213 18.32066 0.77646 0.01453
FIN 26.44297 3.40724 1.00766 104.06960 30.23331 16.55028
FRA 11.26670 0.59175 0.25369 8.85555 0.23857 0.00387
GBR 4.07568 0.07888 0.00764 6.96756 0.11765 0.00188
GRC 19.52391 -1.08455 0.44979 61.58611 2.87499 2.35554
IRL 8.55214 19.52084 15.70231 169.52670 61.00378 41.42915
ITA 4.41291 0.10278 0.01290 12.77975 -0.40161 0.11182
NLD 3.61171 1.22083 0.08135 18.21548 0.51576 0.07399
PRT 29.19865 -1.43556 9.85353 83.65847 28.47781 -1.26674
SWE 49.50944 0.32218 38.25903 104.01410 14.25379 -0.06324;

PARAMETER eu_bsa(r) Carbon emission reduction under EU_BSA wrt 1990 (in percent)
* Source: EU (1999) Preparing for Implementation of the Kyoto Protocol
* available at: http://europa.eu.int/comm/environmen/docum/99230-en.pdf

/ AUT 13.0, BEL 7.5, DEU 21.0, DNK 21.0, ESP -15.0,
FIN 0.0, FRA 0.0, GBR 12.5, GRC -25.0, IRL -13.0,
ITA 6.5, NLD 6.0, PRT -27.0, SWE -4.0

/;

SCALAR exr Exchange rate EURO97 in USD97 / 1.134 /;
* source AMECO:http://europa.eu.int/comm/economy_finance/indicators/
* annual_macro_economic_database/ameco_applet.htm

SCALAR CO2inC Conversion factor from carbon dioxide to carbon;
CO2inC = 12/44;

* Compute percentage reduction targets w.r.t 1990 and 1997
PARAMETER cutback Percentage reduction targets;

cutback(r,"1990") = eu_bsa(r);
cutback("EUR","1990") = 100*sum(r,(cutback(r,"1990")/100)*

carbonstat(r,"C_90_Total"))
/sum(r, carbonstat(r,"C_90_Total"));

cutback(r,"1997") = 100*(1- ((1 - cutback(r,"1990")/100)
*carbonstat(r,"C_90_Total"))
/carbonstat(r,"C_97_Total"));

cutback("EUR","1997") = 100*sum(r,(cutback(r,"1997")/100)*
carbonstat(r,"C_97_Total"))
/sum(r, carbonstat(r,"C_97_Total"));

OPTION cutback:1:1:1;
DISPLAY cutback;

* For scenarios without hybrid carbon regulation (scenarios: NoTrade and TRD)
* assign some arbitrary allocation factor to initialize emission partitioning
* between DIR and NDIR sectors - here: lambda0 = 0.5 (the partitioning
* effectively only matters for the hybrid regulation scenarios)

SCALAR lambda0 arbitrary allocation factor to initialize emission partitioning;
lambda0 = 0.5;

PARAMETER target(*,*) Effective carbon emission reduction requirement in Mt of carbon;

target("DIR",r) = carbonstat(r,"C_97_DIR") – lambda0 * carbonstat(r,"C_97_DIR");
target("NDIR",r) = carbonstat(r,"C_97_NDIR") - (carbonstat(r,"C_90_Total")*(1-

cutback(r,"1990")/100) - lambda0 * carbonstat(r,"C_97_DIR"));

* Assignment of MAC curve coefficients
* Approximations of MACs: MAC = a1*d + a2*d**2 + a3*d**3

PARAMETER a1, a2, a3;
a1(i,r) = mac_coef(r,i,"a1");
a2(i,r) = mac_coef(r,i,"a2");
a3(i,r) = mac_coef(r,i,"a3");
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DISPLAY a1,a2,a3,target;

* Define subset of regions if some regions should be omitted from analysis
SET re(r); re(r) = YES;

*==== Model Definition (as a Mixed Complementarity Problem)

POSITIVE VARIABLES
p(i,r) Marginal abatement cost by sector i in region r,
pfx Internationally tradable permit price,
pd(r) Domestically tradable permit price in region r,
d(i,r) Abatement by sector i in region r,
x(i,r) Exports of permits by sector i in region r to international market,
m(i,r) Imports of permits by sector i in region r from international market,
xd(i,r) Exports of permits by sector i in region r to domestic market,
md(i,r) Imports of permits by sector i in region r from domestic market;

EQUATIONS
mkt_p(i,r) Market clearance for abatement by sector i in region r,
mkt_pd(r) Market clearance for domestically tradable permits in region r,
mkt_pfx Market clearance for internationally tradable permits,
zprf_d(i,r) Zero profit condition for abatement of sector i in region r,
zprf_m(i,r) ZPRF for imports of sector i in region r from international market,
zprf_x(i,r) ZPRF for exports of sector i in region r to international market,
zprf_md(i,r) ZPRF for imports of sector i in region r from domestic market,
zprf_xd(i,r) ZPRF for permit exports of sector i in region r to domestic market;

mkt_p(i,re).. d(i,re) + m(i,re) + md(i,re) =e= target(i,re) + x(i,re) +xd(i,re) ;
mkt_pd(re).. sum(i, xd(i,re)) =e= sum(i, md(i,re)) ;
mkt_pfx.. sum((i,re), x(i,re)) =e= sum((i,re), m(i,re)) ;
zprf_m(i,re).. pfx =e= p(i,re);
zprf_x(i,re).. p(i,re) =e= pfx;
zprf_md(i,re).. pd(re) =e= p(i,re);
zprf_xd(i,re).. p(i,re) =e= pd(re);
zprf_d(i,re).. a1(i,re)*d(i,re) + a2(i,re)*d(i,re)**2 + a3(i,re)*d(i,re)**3

=e= p(i,re);

MODEL simac /mkt_p.p, mkt_pd.pd, mkt_pfx.pfx, zprf_d.d, zprf_m.m,
zprf_x.x, zprf_md.md, zprf_xd.xd /;

simac.iterlim = 8000;

*==== Scenario Definition and Reporting

SET sc Scenarios
/
NoTrade No international trade (domestic uniform carbon tax),
Trade Comprehensive international emissions trading,
NAP_Opt Efficient hybrid implementation of EU emission trading,
NAP_Unity NAPs with exogenous emission-base allocation factor of unity
/,

notrade(sc) /NoTrade/,
trade(sc) /Trade/,

naps(sc) /NAP_Opt, NAP_Unity/,
nap_opt(sc) /NAP_Opt/,
nap_unity(sc) /NAP_Unity/,

runsc(sc) /NoTrade, Trade, NAP_Opt, NAP_Unity/;

PARAMETER
cost Summary - total compliance costs (in millions of USD),
mac Summary - marginal abatement costs (in USD per ton of carbon),
domabate Summary - domestic abatement,
lambda Summary - allocation factor for emission allowances,
reduction Summary – percentage emission reduction vis-a-vis base-year;

* Scenario Trade is the benchmark for defining efficient allocation factors in a
* hybrid system. We therefore do an initial solve for comprehensive trading to
* determine the optimal allocation factor.
x.UP(i,re) = +INF;
m.UP(i,re) = +INF;
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pfx.UP = +INF;

SOLVE simac using mcp;
lambda(re,"NAP_Opt") = (carbonstat(re,"C_90_Total")*(1-cutback(re,"1990")/100) -

(carbonstat(re,"C_97_NDIR")-d.l("NDIR",re))) /
carbonstat(re,"C_97_DIR");

LOOP(SC$RUNSC(SC),
x.LO(i,re) = 0;
m.LO(i,re) = 0;
xd.LO("DIR",re) = 0;
md.LO("DIR",re) = 0;
pfx.LO = 0;

x.UP(i,re) = +inf;
m.UP(i,re) = +inf;
xd.UP("DIR",re) = +inf;
md.UP("DIR",re) = +inf;
pfx.UP = +inf;

IF(notrade(sc),
* No international emissions trading:

x.FX(i,re) = 0;
m.FX(i,re) = 0;
pfx.FX = 0;
);

IF(trade(sc),
* Comprehensive international emissions trading:

x.UP(i,re) = +INF;
m.UP(i,re) = +INF;
pfx.UP = +INF;
);

IF(nap_opt(sc),
* Efficient implementation of hybrid NAP system

target("DIR",re) = carbonstat(re,"C_97_DIR") - lambda(re,"NAP_Opt") #
* carbonstat(re,"C_97_DIR");

target("NDIR",re) = carbonstat(re,"C_97_NDIR") -
(carbonstat(re,"C_90_Total")*(1- cutback(re,"1990")/100)
- lambda(re,"NAP_Opt")*carbonstat(re,"C_97_DIR"));

x.FX("NDIR",re) = 0;
m.FX("NDIR",re) = 0;
pfx.UP = +INF;
xd.FX("DIR",re) = 0;
md.FX("DIR",re) = 0;
);

IF(nap_unity(sc),
* Implementation of hybrid NAP with emission based allocation factor of unity
* (base year: 1997)

target("DIR",re) = carbonstat(re,"C_97_DIR") - 1* carbonstat(re,"C_97_DIR");
target("NDIR",re) = carbonstat(re,"C_97_NDIR") - (carbonstat(re,"C_90_Total")

*(1- cutback(re,"1990")/100)
- 1*carbonstat(re,"C_97_DIR"));

x.FX("NDIR",re) = 0;
m.FX("NDIR",re) = 0;
pfx.UP = +INF;
xd.FX("DIR",re) = 0;
md.FX("DIR",re) = 0;
);

md.l(i,re) = 0; xd.l(i,re) = 0; m.l(i,re) = 0; x.l(i,re) = 0;
d.l(i,re) = 0; pfx.l = 0; p.l(i,re) = 0;
SOLVE simac using mcp;

cost(re,"DIR",sc) = eps + ROUND( ( sum(i$DIR(I), (1/2)*a1(i,re)*d.l(i,re)**2
+ (1/3)*a2(i,re)*d.l(i,re)**3
+ (1/4)*a3(i,re)*d.l(i,re)**4)
+ sum(i, (m.l(i,re) - x.l(i,re))*pfx.l)), 1);

cost(re,"NDIR",sc) = eps + ROUND( ( sum(i$NDIR(i),
(1/2)*a1(i,re)*d.l(i,re)**2

+ (1/3)*a2(i,re)*d.l(i,re)**3
+ (1/4)*a3(i,re)*d.l(i,re)**4)), 1);
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cost(re,"Total",sc) = cost(re,"DIR",sc) + cost(re,"NDIR",sc);

mac(re,i,sc) = eps + ROUND(p.l(i,re),1);

domabate(re,i,sc) = eps + ROUND(d.l(i,re),2);

reduction(re,"DIR",sc) = ROUND(100* d.l("DIR",re)/carbonstat(re,"C_97_DIR"), 1);

reduction(re,"NDIR",sc) = ROUND(100* d.l("NDIR",re)/carbonstat(re,"C_97_DIR"), 1);

reduction(re,"TOTAL",sc) = ROUND(100*
sum(i,d.l(i,re))/carbonstat(re,"C_97_TOTAL"), 1);

lambda(re,sc)$naps(sc) = 1$(not d.l("NDIR",re)) + [(carbonstat(re,"C_90_Total")*(1-
cutback(re,"1990")/100) - (carbonstat(re,"C_97_NDIR")-
d.l("NDIR",re)))
/ carbonstat(re,"C_97_DIR")]$(d.l("NDIR",re)) ;

);

DISPLAY cost, mac, domabate,lambda, reduction;

*==== Replicate Tables of Paper
PARAMETER c_2010 Projected carbon emissions by region in 2010
* Source: Energy Policies of IEA Countries - 2001 Review (Compendium), IEA publications

/ AUT 17.5, BEL 31.4, DEU 228.5, DNK 16.1, ESP 78.8,
FIN 17.7, FRA 126.0, GBR 159.5, GRC 36.5, IRL 12.8,
ITA 123.0, NLD 50.7, PRT 16.6, SWE 14.5 /;

PARAMETER
table_2 Table 2 of paper "CO2 emissions and reduction requirements",
table_4 Table 4 of paper "Marginal abatement costs and total compliance costs",
table_5 Table 5 of paper "Allocation factors and emission reduction";

* Generate Table 2 of paper
table_2(re, "1990_a") = ROUND(1/CO2inC*carbonstat(re, "C_90_Total"),1);
table_2("EUR","1990_a") = sum(re,table_2(re,"1990_a"));
table_2(re, "1997_a") = ROUND(1/CO2inC*carbonstat(re, "C_97_Total"),1);
table_2("EUR","1997_a") = sum(re,table_2(re,"1997_a"));
table_2(re,"2010_a") = ROUND(1/CO2inC*c_2010(re),1);
table_2("EUR","2010_a") = sum(re,table_2(re,"2010_a"));

table_2(re,"1990_p") = eps + cutback(re,"1990");
table_2("EUR","1990_p") = ROUND(100*sum(re,(table_2(re,"1990_p")/100)*

table_2(re,"1990_a"))/sum(re, table_2(re,"1990_a")), 1);
table_2(re,"1997_p") = eps + ROUND(100*(1 - ( (1-

table_2(re,"1990_p")/100)*table_2(re,"1990_a"))
/table_2(re,"1997_a")),1);

table_2("EUR","1997_p") = ROUND(100*sum(re,(table_2(re,"1997_p")/100)*
table_2(re,"1997_a"))/sum(re, table_2(re,"1997_a")), 1);

table_2(re,"2010_p") = eps + ROUND(100*(1 - ( (1-
table_2(re,"1990_p")/100)*table_2(re,"1990_a"))
/table_2(re,"2010_a")),1);

table_2("EUR","2010_p") = ROUND(100*sum(re,(table_2(re,"2010_p")/100)*
table_2(re,"2010_a"))/sum(re, table_2(re,"2010_a")), 1);

* Generate Table 4 of paper
table_4(re, "MAC_NoTrade") = eps +

ROUND(exr*CO2inC*mac(re,"DIR","NoTrade"),1);
table_4(re, "MAC_NAP_Opt") = eps +

ROUND(exr*CO2inC*mac(re,"DIR","NAP_Opt"),1);
table_4(re, "MAC_NDIR_NAP_Opt") = eps +

ROUND(exr*CO2inC*mac(re,"NDIR","NAP_Opt"),1);
table_4(re, "MAC_DIR_NAP_Unity") = eps +

ROUND(exr*CO2inC*mac(re,"DIR","NAP_Unity"),1);
table_4(re, "MAC_NDIR_NAP_Unity") = eps +

ROUND(exr*CO2inC*mac(re,"NDIR","NAP_Unity"),1);

* Total cost figures in Table 4 are given in millions of EUROs
table_4(re, "Cost_ToT_NoTrade") = eps + exr*cost(re,"Total","NoTrade");
table_4(re, "Cost_DIR_NoTrade") = eps + exr*cost(re,"DIR","NoTrade");
table_4(re, "Cost_NDIR_NoTrade") = eps + exr*cost(re,"NDIR","NoTrade");
table_4(re, "Cost_ToT_NAP_Opt") = eps + exr*cost(re,"Total","NAP_Opt");
table_4(re, "Cost_DIR_NAP_Opt") = eps + exr*cost(re,"DIR","NAP_Opt");



32

table_4(re, "Cost_NDIR_NAP_Opt") = eps + exr*cost(re,"NDIR","NAP_Opt");
table_4(re, "Cost_ToT_NAP_Unity") = eps + exr*cost(re,"Total","NAP_Unity");
table_4(re, "Cost_DIR_NAP_Unity") = eps + exr*cost(re,"DIR","NAP_Unity");
table_4(re, "Cost_NDIR_NAP_Unity") = eps + exr*cost(re,"NDIR","NAP_Unity");

set item /Cost_ToT_NoTrade, Cost_DIR_NoTrade, Cost_NDIR_NoTrade, Cost_ToT_NAP_Opt,
Cost_DIR_NAP_Opt, Cost_NDIR_NAP_Opt, Cost_ToT_NAP_Unity, Cost_DIR_NAP_Unity,
Cost_NDIR_NAP_Unity/;

table_4("eur",item) = sum(re, table_4(re,item));

* Generate Table 5 of paper
table_5(re, "Lambda_NAP_Opt") = eps + ROUND(lambda(re,"NAP_Opt"),2);
table_5(re, "Lambda_NAP_Unity") = eps + ROUND(lambda(re,"NAP_Unity"),2);
table_5(re, "Cut_ToT_NoTrade") = eps + reduction(re,"TOTAL","NoTrade");
table_5(re, "Cut_DIR_NoTrade") = eps + reduction(re,"DIR","NoTrade");
table_5(re, "Cut_NDIR_NoTrade") = eps + reduction(re,"NDIR","NoTrade");
table_5(re, "Cut_ToT_NAP_Opt") = eps + reduction(re,"TOTAL","NAP_Opt");
table_5(re, "Cut_DIR_NAP_Opt") = eps + reduction(re,"DIR","NAP_Opt");
table_5(re, "Cut_NDIR_NAP_Opt") = eps + reduction(re,"NDIR","NAP_Opt");
table_5(re, "Cut_ToT_NAP_Unity") = eps + reduction(re,"TOTAL","NAP_Unity");
table_5(re, "Cut_DIR_NAP_Unity") = eps + reduction(re,"DIR","NAP_Unity");
table_5(re, "Cut_NDIR_NAP_Unity") = eps + reduction(re,"NDIR","NAP_Unity");

$libinclude xlexport table_2 tables.xls table_2!table_2
$libinclude xlexport table_4 tables.xls table_4!table_4
$libinclude xlexport table_5 tables.xls table_5!table_5
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Appendix B: User-Guide to the SIMAC-Model Interface

In order to make our model accessible to the non-technical reader we developed a web-based

interface. Under http://brw.zew.de/simac/ the user can replicate the scenarios described in

Section 4 of the paper as well as specify and compute new ones. The model simulates the user-

defined implementation of the EU Burden Sharing Agreement under a hybrid regulation

system. It reports marginal abatement costs, total compliance costs, and emission reductions

for sectors covered by the EU emissions Directive (DIR sectors) and the sectors that are not

covered by the Directive (NDIR sectors). The web-based interface enables the user to

- specify the division of the national emissions budget between DIR and NDIR sectors,

- specify alternative historic and base-year emissions,

- specify alternative abatement cost functions at the county level for the DIR sectors and the

NDIR sectors separately, and

- save the specified scenarios and simulation results within a personal user account.

Login

The interface is accessible through http://brw.zew.de/simac/. The user is required to log in by

providing a username and a password (username and password may consist of letters and

digits, special characters are not allowed).

Figure B.1: SIMAC Login screen
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The click on the button “Login to Interface” invokes a check if the user is already

known or not. In the latter case a new user account will be automatically created. Clicking the

button “Proceed to Interface” then leads the user to the main input and result screen.

Figure B.2: Login confirmation

On the left hand side of the screen there is a box that lists all previously defined user scenarios.

As a default – following the analysis in our paper – the interface provides (i) a scenario with

full regional and sectoral “where-flexibility” (NAP_Opt) and (ii) a scenario with full regional

flexibility but restricted sectoral flexibility (NAP_Unity) assuming a allocation factor of unity

for the DIR sectors across all countries).

Figure B.3: SIMAC main screen
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Loading a scenario

A previously defined scenario can be activated by selecting the name in the list followed by a

click on the button “Load Scenario”. The scenario will be loaded from the database and

displayed with all associated parameters. The field “Name of Scenario” above the

scenario table always shows the name of the active scenario.

Figure B.4: Loading a scenario

Creating a new scenario

To create a new scenario the user must provide a name for it (field “Name of Scenario”

on top of the page). Subsequently, the desired input values can be specified in the framed entry

fields. Four different input values can be entered at the country level:

- total carbon emissions of the year 1990 (the Kyoto reference year) in Mt CO2,

- carbon emissions of some desired base-year in Mt CO2,

- carbon emissions of the DIR sectors in the base-year and

- emission reduction targets of the DIR sectors in Mt CO2.

Scenario List

Activates
Scenario

Display Active Scenario
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A click on the button “Calculate and Save Scenario” starts the simulation on the

server. After performing the calculations (which may take a few seconds), the scenario results

are displayed on the main screen and the simulated scenario will be added to the list of

available scenarios on the left hide side of the screen. For each user-defined scenario three

cases will be calculated and displayed in order to provide a useful assessment:

- the results of the scenario itself (“Scenario”),

- the results assuming full regional and sectoral flexibility (“Optimal”) and

- the results assuming only domestic emission reduction (“NoTrade”).

Figure B.4: Calculating a new scenario

Deleting a scenario

The user may delete a scenario from the database by selecting it in the list, loading it and

pressing the button “Delete from Database”. Note that default scenarios cannot be

deleted.

Name Scenario
Start Calculation

Scenario
Added
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Figure B.5: Deleting a scenario

Specifying coefficients for the marginal abatement cost functions

The interface allows for the adjustment of the marginal abatement cost functions. By default

all scenarios will be computed with a default set of coefficients (for the functional form of the

marginal abatement cost curves and the default coefficients see Table 1 of the paper). A click

on the link “MAC Specification” opens the input screen for the coefficient specification of

marginal abatement cost functions at the regional level.

Figure B.6: Specification of marginal abatement cost functions

The interface provides alternative sets of coefficients for the marginal abatement cost

functions. In order to add new coefficients, the user first must enter a new name in the field

above the table with the coefficient fields. Having modified the coefficients for some or all

Delete Scenario

Specify
MACs

Save
Coefficients



38

countries and sectors the new set must be saved by clicking the “Save Coefficients”

button. The main screen then re-appears featuring the additional dataset of coefficients as a

new option for scenario specification.

Technical implementation

The core model itself is implemented in GAMS. To have it accessible through the web by

different users it is linked to a web server and a RDBMS (relational database management

system). The link between these applications is established by a CGI-Script (Common

Gateway Interface) which is implemented in Perl (Practical Extraction and Reporting

Language). The figure below illustrates the basic concept of the web-based interface.

Figure B.7: Architecture of web-based interface
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