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Non–technical summary

The rapidly increasing investment in information and communication technologies (ICT) and
the fast diffusion of the internet during the past decade have entailed widespread hopes about a
‘New Economy’ ensuring large productivity gains and persistent output growth. Only the more
recent economic downturn and the breakdown of once highly praised businesses have put these
hopes into perspective.

In order to get a more robust picture of the productivity effects of ICT, the potential insights
from using aggregate statistics have turned out to be limited. The growth of real output of the most
intensive ICT–using industries, like the service sector, is frequently understated by official statistics
due to problems in accounting for quality changes appropriately. Moreover, aggregate statistics
contain little information about complementary efforts by firms, like organizational changes and
process re-engineering, which have been found to be important accompanying efforts for a productive
use of the new technologies.

Consequently, the empirical literature on the productivity impacts of ICT has been increasingly
focussing on evidence at the firm–level. Since the mid 1990s, most of these studies have found
evidence of significant productivity contributions of ICT. The quantitative results of these studies,
however, differ to a large extent. These differences are not only due to varying samples of firms and
to diverse definitions of ICT capital but also due to differences in the quantitative techniques that
have been employed.

In this paper, the importance of choosing the right methodological approach is explored in
more detail. A variety of interfering factors like differing management abilities, measurement errors,
simultaneity of input and output decisions by firms as well as business cycles may lead to distortions
in the quantitative results. These effects are illustrated by applying different econometric techniques
to a representative sample of observations from German service firms over the period from 1994
to 1999. The empirical analysis yields evidence that, once all the mentioned interfering influences
are controlled for, ICT is found to have enhanced productivity in German services. However, these
effects are substantially smaller than those obtained in various existing studies on the topic.
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1 Introduction
Since the end of the 1990s, a broad variety of empirical studies has emerged exploring

the productivity impacts of ICT at the firm–level.1 Most of the studies employ a

production function framework to estimate the elasticity of output with respect to

ICT capital, controlling for the amount of other inputs. The quantitative results from

these studies, however, vary substantially. Apart from varying definitions of ICT stocks

and sample–specific variations, a substantial part of these differences may be due to

differing quantitative methods and model specifications. In particular, interferences from

firm–specific effects, simultaneity of input and output decisions, measurement errors,

the omission of worker skills, autocorrelated productivity shocks or functional form

restrictions in the underlying production function may induce biases in the empirical

analysis. However, previous firm–level studies on ICT productivity address only some, if

any, of these issues.2

The main aim of this paper is to explore the impacts of applying different quantitative

approaches to firm–level data in more detail and to discuss econometric strategies that

are suited to reveal the ‘real’ rather than ‘spurious’ productivity effects resulting from

the use of ICT. The paper discusses why using firm–level data (as compared to more

aggregate data sources) may help to control for biases arising from quality changes in

output which are not accounted for by official price statistics. Moreover, calibration

suggestions are derived in the paper about how existing firm–level survey data can be

transformed for the purpose of production function estimates.

The empirical application illustrating the effects of applying different models and

estimation techniques is based on a sample of more than 1100 firms from a representative

survey in the German business–related and distribution service sector covering the period

1994 to 1999. The focus on services seems worthwhile for three main reasons. First,

ICT investment has been most dynamic and most intensive in the service sector (e.g.

OECD, 2000a). Second, business–related service have been the most important driver of

economic growth over the last decades in industrialised countries (OECD, 2000b). Fi-

nally, assessing service quality correctly forms a particularly difficult issue in determining

the productivity impacts from ICT (Griliches, 1994). Firm–level results that address

this issue may be an insightful complement to findings from aggregate statistics. Beyond

1See for example studies by Bertschek and Kaiser (2001), Biscourp et al. (2002), Black and Lynch
(2001), Bresnahan et al. (2002), Brynjolfsson and Hitt (1995, 1996, 1998, 2000, 2001), Brynjolfsson and
Yang (1999), Greenan and Mairesse (1996), Greenan et al. (2001), Lehr and Lichtenberg (1999), Licht
and Moch (1999), Lichtenberg (1995).

2 Conducting a meta–analysis of results from 20 studies, Stiroh (2002b) shows that a substantial
part of differing results in the literature can indeed be explained by differences in model specification,
econometric techniques and underlying data sets. Moreover, he finds similar variations for alternative
specifications and quantitative methods in own estimations for a single set of U.S. industry–level data.
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analyzing the methodological issues, the study also aims to present evidence on the so

far hardly explored productivity impacts of ICT use on German businesses.3

The results presented in this paper from a preferred system GMM approach yield

evidence for significant productivity effects from ICT usage in German services. A

one–percent increase in ICT capital is found to raise a firm’s value added by 0.06 percent.

This point estimate is substantially lower than values obtained from simple pooled OLS

regressions and is overall robust with respect to varying parameters underlying the con-

struction of capital stocks as well as to sample modifications. Among the various issues

considered, unobserved heterogeneity between firms is found to be the most prominent

interference in conventional estimates. Controlling for this interference by estimation in

first differences, however, induces further problems that call for instrumental approaches.

The paper is organized as follows. Section 2 discusses the theoretical issues and

introduces a basic production function framework with three extensions. Section 3

gives an overview of the employed data and describes the calibrations for construct-

ing separate stock values for ICT and conventional capital. Section 4 discusses the

econometric issues and presents empirical results. Section 5 summarizes the main findings.

2 Theoretical and Methodological Issues
In the empirical literature, the most frequently used framework for analyzing the

productivity impacts of ICT has been to use a production function setup with ICT

capital entering as a separate production input.4 Many studies based on aggregate data

determine the corresponding elasticities rather indirectly applying growth accounting

approaches,5 whereas firm–level (and sometimes industry–level) studies usually take

advantage of the more numerous units of observations by directly estimating the

elasticities in econometric approaches. In this section, some advantages of firm–level

analyses are summarized. A Cobb–Douglas production function framework is then taken

3To the knowledge of the author, the only related studies for Germany are cross–section analyses by
Licht and Moch (1999) and Bertschek and Kaiser (2001).

4The most frequently applied proxies for ICT capital applied are the value of computers installed,
book values of office, computing and accounting machinery (OCAM) from balance sheets or investment
in ICT.

5The growth accounting approach aims to assign the contribution of growth of different inputs to
the overall growth of output. The residual in output growth that is not explained by the growth of the
observed inputs is interpreted as a rise in multifactor productivity (MFP). The approach is based on
the assumption of constant returns to scale and perfect competition, such that the elasticities of output
with respect to the different inputs equal the income shares of the corresponding inputs. The direct
growth contribution of ICT to output growth are calculated as the product of the share of ICT capital
services in total income and the growth of ICT capital stock. Extending this approach, Stiroh (2002a)
uses a difference–in–difference approach to assess potential spill–overs from ICT for U.S. industry data
for 1983–99. He regresses productivity growth obtained from a growth accounting framework on a time
dummy variable, a dummy variable denoting ICT–intensive firms and an interaction of both. His results
yield little support for spill–overs from ICT.

2



as a reference model to discuss econometric issues and varying model specifications.

2.1 The scope of firm–level analysis

As pointed out by Brynjolfsson (1994) and Licht and Moch (1999), quality improvements

— in particular improved customer service — are a prominent goal of ICT investment

decisions. Similarly, Griliches (1994) suggests that the problem of unmeasured quality

improvements in aggregate statistics is especially important in the case of ‘unmeasurable’

services like trade and F.I.R.E. (finance, insurance, real estate) where ICT investment

has grown most rapidly. As a consequence, the contribution of ICT to real output

growth inferred from aggregate data are likely to be understated. Suitably specified

firm–level studies, by contrast, may suffer less from this measurement bias for two reasons.

First, as set out in the next section 2.2, micro–data sets allow to include time–specific

industry dummy variables to make a firm’s output directly comparable to its competitors.

This helps to correct for potential measurement errors in industry price deflators.

Second, also variations in output quality between firms of the same industry and in the

same period may be accounted for at the firm level. If a firm invests in ICT in order to

improve the quality of its product and services (like extended shopping facilities or after

sales support) while its competitors continue to offer their old products, the innovating

firm will be able to charge a higher price for its new product and raise revenues.

Brynjolfsson and Hitt (2000) argue that microeconomic studies will capture this effect

and variations in output quality will contribute to measuring a higher output elasticity

of ICT investment.6 Appendix A shows that the production function estimates obtained

from firm–level data may be interpreted as reduced–form estimates of coefficients for a

model that implicitly takes into account productivity effects from quality improvements.

Most importantly, a strong impact of ICT use on output quality will entail a higher

estimate of the ICT coefficient in the production function.

However, there is also some limitations to estimating output elasticities based on

firm–level data. In particular, Klette and Griliches (1996) show that varying prices

at the firm–level due to imperfect competition may induce a downward bias on the

estimated input elasticities.7 This type of bias, however, affects the estimates of all

inputs in a similar fashion such that this issue is not addressed in more detail in this paper.

Apart from these rather technical arguments, the firm–level approach offers a broad

scope of insights that are much more difficult to obtain from aggregate data. Most

importantly, the productivity impacts of ICT may vary between firms. Some firms

6This argument is backed by empirical support from a firm–level study by Brynjolfsson and Hitt (1995)
who do not find any significant differences in IT productivity between “measurable” and “unmeasurable”
sectors, indicating that appropriate quality measurement is mainly a problem at the aggregate level.

7See Appendix A for further details.
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are better enabled than others to take productive advantage of new technologies. For

the particular case of ICT, it has been argued that complementary factors like skills,

innovations and organisational assets play a key role for ICT to unfold its benefits.8 In

industry– or country–level data, a large part of these firm–specific differences disappears

in the process of aggregation and firm–level analysis is more appropriate for addressing

these questions. Even though the investigation of complementary factors is beyond the

scope of this paper, the issues discussed in this paper aim at contributing to finding

suited methodological approaches to assess these questions.9

2.2 Reference framework
In the reference specification, output is assumed to be generated by a Cobb–Douglas

technology with labour and two types of capital as inputs:

Yit = F (Ait, Lit, ICTit, Kit) = AitL
γ1
it ICT

γ2
it K

γ3
it , (1)

where Yit is value added of firm i in period t, Lit represents labour input, ICTit and Kit

are the corresponding amounts of ICT and conventional (non-ICT) capital respectively,

and Ait is the multifactor productivity of firm i. After taking logs on both sides, eq. (1)

can be rewritten as:

yit = γ1lit + γ2ictit + γ3kit + ηi + λj(i),t + εit, (2)

where small letters denote the corresponding logarithmic values and multifactor pro-

ductivity log(Ait) = ηi + λj(i),t + εit is decomposed into a firm–specific fixed part ηi, a

time–variant industry–specific part λj(i),t (with j(i) denoting the industry j that firm i is

operating in), and a time–variant firm–specific residual εit. Firm–effect ηi captures fixed

or quasi–fixed10 factors affecting productivity, like management ability, organisational

capital, branding or location. The residual εit comprises measurement errors (µit)

and firm–specific productivity shocks (pit) such that εit = µit + pit. In this reference

framework, both mit and pit are assumed to be serially uncorrelated and only their sum

εit is considered.

The industry time–variant part λj(i),t captures variations in productivity that are

common to firms of a particular industry and that are left unexplained by the factors

included in the model. In this sense, λj(i),t helps to ensure that outputs of firms are more

readily comparable across industries. In particular, demand fluctuations induced by

industry–specific business cycles may lead to variations in the degree of factor utilisation

8See Bresnahan and Greenstein (1996), Brynjolfsson and Hitt (2000) and Yang and Brynjolfsson
(2001).

9In Hempell (2002, 2003), the role of innovation and innovative experience as well as training of
employees are investigated using the preferred SYS–GMM approach explored in this paper.

10The time span considered in the empirical analysis comprises a maximum of 6 years for each firm.
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that are similar across firms of one industry. The resulting changes of productivity of

firms operating in the corresponding industry are then captured by λj(i),t.

In a similar manner, λj(i),t helps to correct for mismeasurement of prices at the

industry–level. To illustrate this, define measured prices P̂j(i),t for industry j(i) as

the product of true prices Pj(i),t and an industry–specific measurement bias Mjt such

that P̂j(i),t = Pj(i),tMj(i),t or p̂j(i),t = pj(i),t + mj(i),t in logarithms.11 With zit denoting

nominal output of firm i in t, the real output yit of firm i operating in industry j(i), is

yit = zit − pj(i),t = zit − p̂j(i),t + mj(i),t and observed real output (i.e. output deflated

with observed prices) is ŷit = zit − p̂j(i),t = yit −mj(i),t. If — as argued above — ICT is

most heavily used in industries for which product quality tends to be understated (and

official prices are overstated consequently), ictit and mj(i),t are positively correlated. The

omission of mj(i),t will then lead to understating the true productivity contributions of

ICT. Since this type of mismeasurement affects all firms of industry j at a given point

in time t in the same way, the projection of output on a common dummy variable λj(i),t

helps to control for this measurement bias.

While the industry–specific component λj(i),t will be controlled for by including

time–variant industry dummies,12 the potentially distorting effects from unobserved ηi

and εit will be addressed by econometric techniques. In particular, I will account for the

fact that both ηi and εit may be correlated with the inputs in general and ICT capital in

particular. This may well be the case if, e.g., firms with a good management (i.e. a high

ηi) are both more productive and more inclined to make use of ICT (in the following

referred to as firm effects), or if a demand shock (high εit) raises both productivity as

well as investments (simultaneity issues).

2.3 Extensions of the reference framework

In the following, the reference model (2) is extended by further aspects, by allowing for

1.) serial correlation of the errors εit, 2.) heterogenous labour inputs and 3.) a more

flexible functional specification. At best, these issues would be considered simultaneously

in the empirical analysis. Unfortunately, due to data limitations, this is not possible such

that these extensions must be explored separately.

Extension 1: Serially correlated residuals. Potential biases in the econometric

exploration of eq. (2) may arise if the productivity shocks pit are serially correlated

such that pit = ρpi,t−1 + eit, with eit ∼ i.i.d.13 This serial correlation may occur if, e.g.,

11Note that Mj(i),t > 1 and log(Mj(i),t) ≡ mj(i),t > 0 if the quality of output in industry j(i) are
understated such that measured prices P̂j(i),t are higher than the true ones.

12Alternatively, these dummies can be conceived as interactions between time and industry dummies.
13This extension follows the framework investigated in Blundell and Bond (2000).
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the effects from demand shocks may only be partially captured by the industry–specific

control variables λj(i),t. Measurement errors µit, by contrast, are assumed to be serially

uncorrelated. In order to estimate eq. (2) for this case, a dynamic or common factor

representation can be obtained by subtracting ρyi,t−1 from both sides of eq. (2). Inserting

eit = pit − ρpi,t−1 and rearranging yields:

yit = ρyi,t−1 + γ1nit + γ2ictit + γ3kit (2a)

−ργ1ni,t−1 − ργ2icti,t−1 − ργ3ki,t−1

+ηit(1− ρ) + λj(i),t − ρλj(i),t−1 + wit,

where wit = eit + µit − ρµi,t−1 is MA(1). In order to obtain estimates of the structural

coefficients γ1, γ2, γ3 and ρ, a two–step procedure is applied. In the first step, the

reduced–form model of the following form is estimated:

yit = π1yi,t−1 + π2nit + π3ictit + π4kit (3)

+π5ni,t−1 + π6icti,t−1 + π7ki,t−1

+ηit(1− ρ) + λj(i),t − ρλj(i),t−1 + wit.

In the second step, the underlying factor restrictions π1 = ρ, π2 = γ1, π3 = γ2, π4 = γ3,

π5 = −γ1γ2, π6 = −γ1γ3 and π7 = −γ1γ4 can then be tested and imposed by a

minimum–distance estimator.14

Extension 2: Heterogenous labour. In another version of model (2), heterogeneity

in the quality of labour is considered. This may be important if, e.g., the use of ICT is

most intensive in firms with a high share of high–skilled workers. Omitting heterogeneity

in workers’ skills may then lead to overstating the productivity impacts of ICT capital.

A firm’s workforce is decomposed into the number of employees that are high–skilled

Nh (with university degree or equivalent), medium–skilled Nm (vocational training), and

low–skilled Nl (no formal qualification) with Nit = Nl,it +Nm,it +Nh,it denoting the total

number of employees. Letting θh and θm denote the productivity differential of high

and medium skilled workers compared to low–skilled workers, effective labour input Lit is:

Lit = Nl,it + (1 + θm)Nm,it + (1 + θh)Nh,it (4)

= Nit · (1 + θmsm,it + θhsh,it),

with sm,it = Nm,it/Nit and sh,it = Nh,it/Nit denoting the shares of medium– and

high–skilled employees in total workforce of the firms respectively.15 With small values

for θm, θh, sm,it and sh,it, the term controlling for the skill structure may be simplified to:

14The details of this calculations are described in Appendix C.
15 The main assumption underlying this approach is that qualification raises the productivity of workers

by a fixed proportion. An alternative specification would be to let the three skill–groups enter the the
production function as separate inputs with each having its own constant elasticity. This is equivalent
to assuming that effective labour can be decomposed into L = Nλl

l Nλm
m Nλh

h . There are, however, two
main drawbacks in this approach. First, from a theoretical point of view, this approach implies that
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logLit = logNit + log (1 + θmsm,it + θhsh,it) ≈ nit + θmsm,it + θhsh,it. (5)

Inserting (5) into (2) then yields the model:

yit = γ1nit + γ2ictit + γ3kit + β1sm,it + β2sh,it + ηi + λj(i),t + εit. (2b)

with β1 = γ1θm and β2 = γ1θh.

The inclusion of skill–shares in the production function estimations as in eq. (2) is

a very common way in the related literature in order to control for heterogeneity of

labour quality.16 However, anticipating some of the results and applying mean shares for

sm and sh, the implicit products β1sm,it
∼= 0.110 and β2sh,it

∼= 0.549 yield rather high

values that make the approximation very inaccurate. This measurement error is posi-

tively correlated with the skill measures and may induce a bias also in other regressors.

In addition, I therefore also consider the more precise second–order Taylor approximation:

logLit = nit + log(1 + θmsm + θhsh)

≈ nit + θmsm + θhsh −
1

2
(θmsm + θhsh)

2

= nit + θmsm + θhsh −
1

2
θ2

ms
2
m −

1

2
θ2

hs
2
h − θmθhsmsh. (5a)

The model resulting from inserting eq. (5a) into (2) is:

yit = γ1nit + γ2ictit + γ3kit

+β1sm,it + β2sh,it + β11s
2
m,it + β22s

2
h,it + β12sm,itsh,it + ηi + λj(i),t + εit, (2b’)

where the additional parameters correspond to β11 = −1
2
θ2

m, β22 = −1
2
θ2

h, β12 = −θ2
mθ

2
h.

Apart from relying on a more accurate approximation of labour quality, eq. (2b’) can also

be used to explore the appropriateness of the underlying model for skills from eq. (4) by

testing the validity of the imposed common factor restrictions for β1, β2, β11, β22 and β12.
17

Extension 3: Flexible functional form. As it is well–known, the coefficients γj

in eq. (2) correspond to the elasticities of output with respect to the inputs j. One

disadvantage of the Cobb–Douglas production function is, however, that the elasticities

each of the three inputs is regarded as an essential input for production in the sense that Y = 0 if
Nl = 0 ∨ Nm = 0 ∨ Nh = 0. This seems to be a very restrictive assumption given that many firms
(in particular small ones) produce output employing workers of only one or two of the three skill groups.
By contrast, the specification of eq. (4) assumes that only the existence of one worker (independently
of her qualification) is essential such that Y = 0 if Nl = 0 ∧ Nm = 0 ∧ Nh = 0. Second, from an
empirical point of view, firms that do not employ workers from each of the three skill–groups would have
to be excluded in the alternative approach (since the specification is in logs). For the given sample, this
implies that more than half of the 578 firms for which information on skills is available would have to be
excluded from the empirical analysis. This would not only lead to a much lower precision of the estimates
but might also entail a serious selection bias.

16See, e.g., Lehr and Lichtenberg (1999), Caroli and van Reenen (2001) or Bresnahan et al. (2002).
17The calculations are analogue to the minimum–distance procedure described in detail in Appendix

C.
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of the individual inputs are restricted to be constant and the elasticity of substitution

between the individual inputs is restricted to one. A more flexible specification is the

translog–function (Christensen and Jorgenson, 1969) in which both the output elastici-

ties and the elasticities of substitution may vary. The translog–extension of equation (2) is:

yit = γ1lit + γ11l
2
it + γ2ictit + γ22ict

2
it + γ3kit + γ33k

2
it

+γ12litictit + γ13litkit + γ23ictitkit + ηi + λj(i),t + εit. (2c)

To keep the model tractable for the empirics, I abstract from the skill level in this

specification. The elasticity of output with respect to input j (αj) depends on the levels

of all the inputs employed. For comparability to the Cobb–Douglas framework, they may

be evaluated at the means of the corresponding logarithmic values (denoted by a bar).

The implicit mean elasticities are then given by:

ᾱL = ∂yit/∂lit = γ1 + 2γ11lit + γ12ictit + γ13kit (9)

ᾱICT = ∂yit/∂ictit = γ2 + 2γ22ictit + γ12lit + γ23kit (10)

ᾱK = ∂yit/∂kit = γ3 + 2γ33kit + γ13lit + γ23ictit. (11)

3 The Data
To implement the production framework empirically, data from the Mannheim Innova-

tion Panel in Services (MIP-S) are employed. This survey is conducted by the Centre

for European Economic Research (ZEW) on behalf of the German Federal Ministry

for Education and Research. The data have been collected annually since 1994 in a

representative survey of innovation activities in the German business–related service and

distribution sector and includes information from more than 2000 firms (Janz et al. ?).

It has an (unbalanced) panel structure in important key variables for the years since

1994. Among many other features, the data set contains annual data on sales, number

of employees (full-time equivalents), skill structures, expenditures on gross investment

and on ICT-capital (including hardware, software and telecommunication technology).

Since similar information has been collected in various other existing data sets, too, some

proceedings are discussed in the following of how information from other external sources

may be used to suitably transform the survey data to variables that are applicable for a

production function framework.

For output Yit, I construct a measure of firms’ value added. Alternatively, sales could

be used if firm–level intermediate goods were included as an additional input. However,

the data set does not contain information on firm–specific intermediate goods. Using sales

for output, this might induce an omitted variable bias in the regressions since industries

that operate rather at the end of the value chain (like wholesale and trade) rely more

strongly on intermediate goods in quantitative terms than other industries do. In order

to control for these differences and to deflate the corresponding output values, I calculate

8



the shares of real value added in nominal gross output at the NACE two–digit industry

level.18 The firm–level data on sales are then multiplied by these industry–specific

shares.19 For labour input, the annual average of the number of employees in full-time

equivalences is used.

A further issue concerns the separate construction of capital stocks for ICT capital and

conventional (non–ICT) capital from investment data. For this purpose, investment on

conventional capital is defined as total investment expenditures minus ICT expenditures

as reported by the firms and is deflated by the producer price deflator for investment

goods from the German Statistical office. For ICT goods, however, German official

price statistics tend to understate the real price decline (Hoffmann, 1998). Therefore,

the harmonized ICT price index for Germany calculated by Schreyer (2000) is applied.

He employs official statistics on ICT prices in the U.S., which are based on hedonic

techniques, as a reference and assumes that the differences between price changes for

ICT and non–ICT capital goods are the same across OECD countries.

Given the deflated investments for both types of capital, the perpetual inventory

method with constant, geometric depreciation is applied to construct the capital stocks

for ICT and non-ICT. Accordingly, the capital stock Kkt of type k in period t results

from investment Ik,t−1 in the following way:

Kkt = (1− δk)Kk,t−1 + Ik,t−1, (12)

with k = 1 for conventional (non–ICT) and k = 2 for ICT capital and investment and δk

denoting the depreciation rates of the capital stocks.20

Since no information is available on the level of capital stocks, initial capital stocks

are constructed employing the method proposed by Hall and Mairesse (1995).21 Under

the assumption that investment expenditures on capital good k have grown at a similar,

constant average rate gk in the past in all firms, equation (12) can be rewritten for period

18For this purpose, the time series 7711 and 7716 from the German Statistical Office are used.
19Let Zit and Yit be sales and value added of firm i in period t, and let Zj(i),t and Yj(i),t be sales and

value added aggregated over all firms of the same industry j(i) that firm i is operating in. Then the
unknown value added of firm i is approximated by Yit ' Zit · Yj(i),t/Zj(i),t.

20For conventional capital, the depreciation rates δ1 by industries are calculated as the shares of capital
consumption in net fixed assets evaluated at replacement prices (time series 7719 and 7735 of the German
Statistical Office). The unweighed mean over all service industries amounts to 9% with a maximum in
the NACE 72 (data processing) of 21% and a minimum in NACE 70 (real estate) with 2.2%. For ICT
capital, a rate of δ2 = 0.30 is assumed. Relying on available data from the U.S. (Fraumeni, 1997; Moulton
et al., 1999), depreciation rates for IT–hardware, software and telecommunication capital are 31.2% for
IT–hardware, 55.0% for prepackaged software, 33.0% for custom and own–account software and 15.0%
for telecommunication capital. Using data by EITO (2001) for the year 1999, total ICT investment
expenditures in Germany consist of 47.0% for IT–hardware, 26.9% for software and 26.1% for end–user
and network telecommunication equipment. Taking these market shares as weights, this yields an average
depreciation rate of ICT capital of δ1 = 0.312 · 0.47 + (0.55 + 0.33)/2 · 0.269 + 0.15 · 0.261 = 0.304.

21Hall and Mairesse (1995) refer to R&D stocks for which methodological problems are very similar.
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t = 1 (1994) by backward substitution in the following way:22

Kk1 = Ik0 + (1− δk)Ik,−1 + (1− δk)
2Ik,−2 + . . . (13)

=
∞∑

s=0

Ik,−s(1− δk)
s = Ik0

∞∑
s=0

[
1− δk
1 + gk

]s

=
Ik1

gk + δk
.

In order to derive the initial capital stocks, assumptions about pre-period growth rates

of both type of investments must be made. For non-ICT investment expenditures, I

assume an annual growth rate of approximately 5% (g1 = 0.05).23 For ICT investment,

no time series are available for Germany. In order to get a rough idea of the evolution of

ICT investments during the last decades, U.S. data are referred to as a rough guideline.

Jorgenson and Stiroh (1995) calculate an average annual growth rate of 44.3% in real

computer investment and of 20.2% for OCAM (office, computing, and accounting

machinery) between 1958 and 1992 for the U.S. Since the share of computers in OCAM

has been rising continuously — reaching 94% in 1992 —, an annual pre-period growth

rate close to the growth rate of computer investment of g2 = 0.4 is assumed for ICT

investment.24 Since there are time lags between the installation and the productive

contribution of capital goods, the capital stock at each period’s beginning (or at the end

of the corresponding previous period) are taken as measures for capital inputs.

In order to apply suited econometric techniques, only firms with consistent information

on at least three consecutive periods available are included in the sample. The resulting

unbalanced reference sample (denoted “full sample”) consists of 1177 firms with a total

of 4939 observations. The statistics of the sample are summarised in Table 7 in Appendix

D. The majority of firms in the reference sample are small and medium–sized firms with

a median of 42 employees. About 10% of the sample consists of large firms with more

than 500 employees. Tables 10 and 11 show that, overall, the sample reflects industry

and size structure of the German business–related and distribution services fairly well.25

Finally, the last two columns of Table 7 report the (cross–sectional) means and medians

of the firms’ (longitudinal) averages of capital and output intensity (capital per employee)

for the sample. The figures indicate that in the median firm of the sample, a workplace

22In fact, the initial value of investment for firm i Iik,1 is replaced by the average of the observed values
of investment such that Iik,1 '

∑T
t=1 Iik,t. With this “smoothing” it is aimed to correct for cyclical effects

which might affect investments in different initial years in the unbalanced panel. Sensitivity analyses show
that the results are hardly affected if true initial investments instead of ‘smoothed’ ones are used.

23Calculations on capital data provided by Müller (1998) show that gross capital stock in German
services has grown on average by 4.8% annually between 1980 and 1991.

24The sensitivity of the empirical results with respect to the parameters choosen for g and δ is considered
in the next section.

25The most striking exception are the undersampling of retail trade and the oversampling of traffic and
postal services as well as software and telecommunication. As far as firm size is concerned, large firms
are oversampled (see Table 10).
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is equipped with ICT capital worth e 1,397, and with non–ICT capital worth about e

24,979. The median value added per employee is e 60,307.26

Estimating the first two extensions of eq. (2a) and (2b) puts substantially more

requirements on the data, which reduces the corresponding samples remarkably. For esti-

mating the dynamic specification (2a), only 708 firms for which at least four subsequent

observations are available can be included in the “reduced sample”. The data needs for

the regressions including human capital based on eq. (2b) are even more restrictive. For

578 firms (denoted as “small sample”), consistent data on the skill–structure are avail-

able: the fraction of employees with vocational training (Berufs- or Fachschulabschluss)

for medium–skilled, and the fraction of employees with a university degree including

universities of applied sciences (Hochschul- or Fachhochschulabschluss) for highly–skilled

workers.27 As indicated in Table 8, the structure of the small sample differs from the full

sample. In particular, the average firm size (183 employees) is only about a third of the

firm size in the full sample. Therefore, estimates based on the small sample will be used

mainly to explore the effects of including human capital variables into the specification.28

Some firms reported a share of ICT investment in total investment expenditures

equal to zero for all the periods surveyed. Since the econometric specification is in logs,

these firms are excluded from the full sample. However, it may seem more reasonable

to assume that ICT investment in these firms is not zero, in fact, but rather very low

and rounded to zero by the respondents.29 Excluding these firms might lead to an

overestimation of the real output contributions of ICT in the economy. In order to

explore this potential bias, a third sample (“extended sample”) is constructed. Here,

the ICT stock per worker in firms that reported zero ICT investment is assumed to

be equal to the corresponding industry minimum with the corresponding values being

imputed. The corresponding statistics for the extended sample (see Table 9) indicate

that the endowment of workplaces with ICT is slightly smaller, and the endowment with

conventional capital slightly higher than in the full sample.

Independently of the specific sample used, the summary statistics indicate that the

share of ICT capital in the total capital stock is very low. Comparing the medians

26The corresponding mean values are substantially higher than the median since some firms — in
particular of real estate — display very high values for both inputs and output per employee.

27In one question, firms were asked to report the number of total employees and in another question
to report the number of employees by skill–groups. In various cases, the sum of the latter was not equal
to the former. Some 15 firms, for which the reported number of total employees deviated more than 50%
from the sum of the skill groups, were excluded from the sample.

28Note that there are only 82 firms for which both human capital variables and at least four subsequent
observations per firm are available. These data restrictions make it necessary to analyse the extension
proposed in the previous section isolation, even though it would be worthwhile, of course, to obtain
estimates from an approach combining approaches (2a) and (2b).

29Note that the definition of ICT investment as asked in the questionnaire is very broad, including
expenditures for IT hardware, software and telecommunication equipment.
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of ICT per worker and conventional capital per worker for the full sample (Table

7), ICT endowment amounts to 5.1% in total capital.30 Similarly, aggregating firms’

time–averages of both types of capital over all firms in the sample yields a share of

aggregate ICT capital in total aggregate capital of 5% (not reported in the tables).

These values are slightly higher than the share of 3% calculated by Schreyer (2000) using

aggregate data for Germany in 1996 (including the less ICT–intensive manufacturing

sector). As argued in Griliches (1994), the overall small shares of ICT input together

with measurement errors may make it difficult to distinguish the output contributions

of ICT from stochastic events and may make the identification of productivity effects of

ICT resemble the search for the “needle in the haystack”. In the empirical application,

controlling for measurement errors will therefore be an important issue.

4 Empirical Results

This section discusses several econometric issues that need to be adressed for estimating

equations (2) consistently. The best suited system GMM estimator will then be applied

to explore the three extensions (2a-c). Apart from the constant and the input variables,

the empirical specification includes a regional dummy for East German firms and 6

year dummies interacted with 7 industries.31 All regressions are computed using the

DPD98 programme developed by Arellano and Bond (1998) running in GAUSS. Only

heteroscedasticity–consistent standard errors are reported.

4.1 Reference specification

The reference production function (2) is estimated first in a simple pooled OLS re-

gression32 (see first column of Table 1). The coefficients of all three inputs from the

pooled OLS regression in column 1 of Table 1 are significantly different from zero at the

one–percent level. While the output elasticity with respect to labour amounts to some

reasonable 61%,33 the point estimate of the ICT coefficient (24.4%) clearly exceeds the

coefficient of conventional capital (14.9%) even though ICT forms only a small part of

the total capital stock. Similarly high ICT elasticities have been found in cross section

30Taking the corresponding means, the share is even lower (1.8%).
31Table 10 summarises the underlying classification of industries. Since there is no output data available

for banking and insurance (only the balance sheet total and insurance premiums respectively), these
industries are excluded from the analysis.

32From an econometric point of view, a pooled regression corresponds to a simple cross–section regres-
sion except that a larger number of observations can be obtained from the inclusion of several years.

33Under the assumption of constant returns to scale and perfect competition, the income share of labour
in an economy should equal its labour coefficient in the production function. For Germany, the average
share of labour payments in national income between 1994 and 1999 amounted to 72.4% (Statistisches
Bundesamt, 2001).
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regressions for Germany by Bertschek and Kaiser (2001) and Licht and Moch (1999).

The high elasticity of ICT capital found in pooled or cross section OLS regressions

raises serious doubts about the correctness of the applied estimation specification. Given

the average share of ICT capital in value added of 6.2%, the results imply a gross rate of

return to ICT investment of nearly 400%.34 Assuming user costs of ICT of around 42% as

suggested by Jorgenson and Stiroh (1995), the implied net returns are still substantially

higher than 300%. For conventional capital, for which the share in value added is 258%,

the results imply gross returns of only 5.8% which are close to its generally assumed

user costs. The large excess returns to ICT can hardly be explained by higher user and

adjustment costs of ICT capital alone which may be ‘hidden’ behind ICT investment.

Rather, the results may be biased due to three main sources: firm effects, simultaneity

issues, and omitted variables (e.g., skills). While the latter aspect is discussed with the

extensions (2b), the first two involve econometric issues which are discussed with the

reference specification (2). In the exploration of these issues, also interferences arising

from measurement errors and the sensitivity with respect to the construction of the ICT

capital stocks are discussed.

Unobserved firm characteristics (‘firm effects’) may bias the results if the invest-

ment strategies of highly productive firms are systematically different from their less

productive competitors within the same industry.35 It is likely that highly produc-

tive firms with a skilled and flexible management will be both more productive and

tend to invest more in new technologies than other firms. This would induce an

upward bias in the ICT coefficient. The highly significant autocorrelation in the errors

of both first– and second–order36 in the pooled regression further supports this conjecture.

Table 1 reports the results of the estimation in first differences.37 The figures indicate

that once unobserved heterogeneity is controlled for, the output contributions of both

types of capital are no longer significantly different from zero whereas the labour

coefficient remains virtually unchanged.38 Obviously, the high coefficients of both types

of capital in the pooled regression were in fact due to unobserved heterogeneity. This

finding coincides with very similar findings by Brynjolfsson and Hitt (1995) and Black

and Lynch (2001). Moreover, the autocorrelation in the disturbance terms found in the

34The marginal returns to ICT (MPI) are just the product of the output elasticity of ICT and the
inverse ratio of ICT capital in output: MPIit = ∂Yit/∂ICTit = γ2 · Yit/ICTit.

35Productivity differences between different industries are captured by the industry dummies.
36See the last two rows AR(1) and AR(2) of Table 1.
37This means that the firms’ corresponding fixed effects are eliminated by explaining output growth

by the growth rates of the inputs. The results from the alternative within estimation where deviations
from means are used (not reported) are very similar.

38Since there is no variation in the East dummy over time, this variable is excluded from the first–
differences estimation.
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Table 1: Results for the ICT–augmented production function

Dependent Variable: log(value added)
(1) (2) (3) (4) (5) (6) (7)

inputs OLS OLS GMM[–1] GMM[–2] SYS–GMM SYS–GMM SYS–GMM
pooled 1st dif 1st diff. 1st diff. reference not interact. extended

log(labour) 0.607*** 0.598*** 0.555*** 0.282* 0.699*** 0.717*** 0.686***
(0.020) (0.075) (0.087) (0.154) (0.056) (0.056) (0.058)

log(ICT capital) 0.244*** -0.025 0.024 0.032 0.060* 0.022 0.049*
(0.020) (0.017) (0.026) (0.041) (0.034) (0.034) (0.026)

log(non–ICT cap.) 0.149*** -0.035 0.140 0.310** 0.201*** 0.213*** 0.189***
(0.015) (0.052) (0.119) (0.157) (0.036) (0.037) (0.036)

East–Germany -0.127*** — — — -0.386*** -0.402*** -0.384***
(0.043) (0.045) (0.047) (0.045)

observations 4939 3762 3762 3762 4939 4939 5107
firms 1177 1177 1177 1177 1177 1177 1222
R–square 0.844 0.236 0.218 0.137 0.843 0.839 0.836
Wald stat. [df]:
inputs 24160[4] 65.1[3] 52.2[3] 17.3[3] 560[4] 561[4] 609[4]
time and ind.
dummies 702[41] 133[35] 149[35] 113[35] 651[41] 550[11] 685[41]
Sargan (p–values) — — 0.187 0.248 0.258 0.119 0.193
errors (p–values):
AR(1) 0.000 0.005 0.007 0.006 0.004 0.004 0.003
AR(2) 0.000 0.131 0.135 0.085 0.049 0.042 0.039
***,** and * denote significance at the 1,5 and 10 per–cent level.

All regressions contain a constant and industry interacted dummy variables for 6 years (1994–99) and 7 industries (no interaction
only in regression 6). GMM[-1] and GMM[-2] refer to estimations using all lagged levels of explanatory variables t − s with lag
s ≥ 1 and ≥ 2 correspondingly (see text for details). For all regressions, heteroscedasticity consistent standard errors reported.

pooled specification has vanished and was obviously due to the firm effects.39

The implausibly low estimates of the capital coefficients for the estimates in first

differences may be caused by a second type of bias, which is due to measurement errors.

Measurement errors are likely to be substantial in both types of capital stocks since

both the depreciation and the pre–sample growth rates are assumed equal across firms.

Deviations from this assumption will add noise — though presumably not a systematic

one — in the construction of the firms’ capital stocks. As pointed out by Griliches and

Hausman (1986), measurement errors may induce a downward bias in the OLS estimates.

However, this distortion may be offset by a simultaneity bias. If firms determine input

and output simultaneously, exogenous shocks — like demand shifts, for example — result

in an increase of both input and output for the profit–maximizing firm.40 In econometric

terms, the disturbance term εit will be positively correlated with the input variables in

39Note that the observed first–order correlation of the errors is induced by the data transformation.
If the errors εit are i.i.d. with variance σ2 their corresponding first differences will be AR(1): E(∆εit ·
∆εi,t−1) = E((εit − εi,t−1)(εi,t−1 − εi,t−2)) = −σ2. Therefore, the relevant test for equations in first
differences is whether the corresponding errors are AR(2) or not.

40See Griliches and Mairesse (1998).
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equation (2) causing an upward bias in the input coefficients. However, the simultaneity

bias may apply in particular to factors that can be adjusted easily in the short term.

This is not so much the case for capital stocks. Moreover, in the construction of the data,

capital stocks at the beginning of the corresponding years have been used. Therefore, the

(upwards) simultaneity bias is expected to be rather small for the two capital coefficients.

In order to analyse the distortions due to measurement errors and simultaneity,

GMM estimates with internal instruments are applied to the production function in

first differences. This approach takes advantage of the panel structure of the data by

instrumenting contemporaneous inputs in differences with the corresponding values

in the past and is discussed in more detail in Appendix B. More specifically, in the

specification of column 3 of Table 1, the corresponding (log) levels of the available lagged

inputs xt−1, xt−2, ..., x1 are used to instrument the input in differences ∆xt = xt − xt−1

(GMM[–1]), with x denoting the inputs L, ICT and K.41 In column 4 of Table 1, the

instruments xt−1 are dropped to allow for simultaneity of capital stocks at the beginning

of each period t and shocks arising in t (GMM[–2]).

The corresponding results from the two–step estimation42 show that in both specifica-

tions, the point estimates for the capital coefficients increase whereas the labour elasticity

decreases. This tendency is much more pronounced in the GMM[-2] specification where

the coefficient of conventional capital rises to 0.310 and the labour coefficient drops to a

(quite low) value of 0.285.43 However, the capital coefficients remain insignificant from

zero in both these specifications when the one–step results are considered (see Table 12

in Appendix D). Summarizing the results, these findings indicate that the measurement

error bias in the capital coefficients clearly exceeds the counteracting simultaneity

bias.44 By contrast, for the case of labour input, the simultaneity bias exceeds the

measurement–error bias as it was expected. For both specifications, the Sargan test45

does not reject the validity of the instruments. Finally, like in the specification in OLS

41Including xt−1 as an instrument is based on the assumption that by taking capital stocks at the
beginning of each period it is ensured that the inputs are predetermined, i.e. uncorrelated with the
idiosyncratic shock εit of the same period since E(xt−1∆εt) = 0 ⇔ E(xt−1εt) − E(xt−1εt−1) = 0. The
validity of this assumption can be tested (see footnote 43). In the remainder, however, this moment
condition will be dropped to explicitly control for potential simultaneity of inputs and output.

42The one–step results are reported in Table 12 in Appendix D. Even though the two–step estimates
reported in the main part are more efficient, its standard errors are less appropriate for tests of signifi-
cance. As pointed out by Blundell and Bond (1998) on the basis of Monte Carlo simulations, ”[i]nference
based on one–step GMM estimators appears to be much more reliable when either non–normality or
heteroskedasticity is suspected” (142).

43 The results from a Sargan difference test (see Appendix B) suggest that the additional moments
employed in the GMM[–1] compared to the GMM[-2] specification (E(xt−1∆εt)=0) cannot be rejected
(p=0.186).

44These findings coincide with similar results in Black and Lynch (2001) for estimates of the production
function with one type of capital only.

45See Appendix B for technical details.
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first differences, no autocorrelation of the error term is detected.

One reason for the insignificant capital coefficients found in the GMM regressions may

be the small power of the instruments used. Since capital stocks within firms are highly

persistent over time, the correlation of the first differences with the second lag in levels is

close to zero.46 Blundell and Bond (1998) show that this may induce finite–sample biases

of the GMM estimator in first differences. Based on an application to production function

estimation, Blundell and Bond (2000) argue that in the specification in first–differences,

the weak instruments will bias the GMM estimates in the direction of the within group

estimation, that is towards zero. They suggest using the sytem GMM (SYS–GMM)

estimator originally proposed by Arellano and Bover (1995). In this estimation strategy,

both the equation in differences is instrumented by suitably lagged differences (like in the

simple GMM–estimation) and the equation in levels is instrumented by suitably lagged

differences additionally. These two specifications are then estimated simultaneously.47

The corresponding regression (“SYS–GMM reference”) adds the production function

equation in levels (with lagged differences of period t−1 as instruments) to the GMM[–2]

specification. As shown in column 5 of Table 1, like conventional capital and labour, the

coefficient of ICT capital turns out to be positive and highly significant (p = 0.014 in the

one–step estimation).48 Several features support the appropriateness of this econometric

specification. The output elasticity of labour amounts to about 70% which is consistent

with aggregate statistics (see footnote 33). The coefficients of ICT and non–ICT capital

are 6% and 20% respectively, and the null–hypothesis of constant returns to scale cannot

be rejected at the 1%–level (not reported).49 A further robust result is that East–German

firms in services are significantly less productive than their West–German counterparts.

The coefficient of the East–Dummy (-0.386) implies that the multi–factor productivity

in East–German firms is only about two–thirds of the West–German level. This finding

coincides with aggregate statistics on productivity differentials in Germany. While the

test for serial correlation of the errors is at the border of significance (p = 0.049), the

Sargan–statistic (p = 0.258) does not reject the validity of the instruments at the usual

significance levels.50 Moreover, the difference Sargan statistic (44.3[12]) does not reject

46Formally, this can be illustrated by assuming Kit being AR(1): Kit = ρKi,t−1 + rit with ε ∼ i.i.d
and E(rit) = 0. If Kit is weakly autocorrelated (|ρ| � 1 and ρ 6= 0), the past levels are correlated
with the contemporaneous levels. For the first available instrument Ki,t−2, this is: E(∆Kit ·Ki,t−2) =
E((Kit−Ki,t−1) ·Ki,t−2) = E(Kit ·Ki,t−2)−E(Ki,t−1 ·Ki,t−2) = ρ2−ρ. If the evolution of Kit resembles
a random walk (ρ ≈ 1), the correlation between the variable in differences and its past values in levels
will disappear (ρ2 − ρ ≈ 0) and the instruments will therefore turn out to be weak.

47Appendix B gives a brief overview of the involved technical details.
48The less reliable p–value in the two–step estimation amounts to 0.078.
49This result holds for both the one–step and the two–step estimation results.
50Appendix B summarises the background of this test and discusses why serial correlation of the errors

may be at odds with the validity of the moment conditions (see footnote 80, p. 36). In empirical terms,
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the validity of the additional instruments obtained from the equation in levels (p=0.299).

Since these results stem from the preferred specification in this study, a glance at the

implied rates of return appears worthwhile. Given the calculated average share of ICT

capital in output of 6.2% for the firms in the sample, the results imply that e 1 invested

in ICT capital yields returns of e 1.96.51 This high value is very similar to the findings

in various related studies.52 Assuming again user costs of ICT of around 42%, the

remaining excess returns to ICT of 54% may well be due to complementary investment

like training of the workforce, innovation efforts or costs due to the re-structuring of or-

ganizational forms which are not accounted for as inputs in the framework employed here.

In order to further investigate the sources of potential biases in estimating the

productivity of ICT, the effect of ignoring different business cycles and mismeasured

output prices is analysed. To isolate the role of including interacted time and industry

dummies, the SYS–GMM approach is estimated with simple (not–interacted) time

and industry dummies. The corresponding results in column 6 of Table 1 show that

the coefficient of ICT capital is indeed affected by this change. The corresponding

point estimate decreases to roughly 2.2% and is only marginally significant.53 By

contrast, the other coefficients do not exhibit any remarkable changes compared to the

specification with interacted dummies. Moreover, a Wald test of significance of the

30 additional interaction dummies included in specification (5) clearly rejects the null

hypothesis of no joint significance.54 These results suggest that it is indeed important

to control for industry–specific effects in order to assess the contributions of ICT correctly.

In the last column of Table 1, results for the SYS–GMM estimation with interacted

dummies are replicated, but now for the extended sample in which also those firms are

included that reported zero ICT investment for all the periods surveyed. As detailed in

section 3, this sample is extended by 46 firms that have reported zero ICT investment

for all years observed, imputing the industry minimum in terms of ICT per worker. The

inclusion of these firms slightly lowers the point estimate for ICT (4.9%) as compared to

the values reported for the reference sample. Moreover, the ICT coefficient is significantly

positive only in the two–step estimation.55 These results appear quite reasonable if one

considers that firms may differ in their output elasticities. Those firms with a lower

output elasticity of ICT will be maximizing profits with a lower share of ICT capital in

the following results for the model extension 1 will shed some more light on how results may be affected
by this issue.

51For non–ICT capital, the results imply that one Euro invested yields a much smaller return of e
1.078.

52See Brynjolfsson and Hitt (2000).
53The results from the one–step estimation (see Table 12) yield a significance level of p=0.099.
54The χ2–test statistic is 189.9 with 30 degrees of freedom.
55The one–step estimates imply a p–value for the ICT coefficient of 0.107.

17



Table 2: Sensitivity analyses of the results with respect to varying parameters for the
construction of the capital stocks

varying parametrisation of δICT (with gICT = 0.4)
0.05 0.1 0.2 0.3 0.4 0.5 1.0

est. coeff. of log(ICT) 0.074** 0.072** 0.067** 0.060** 0.052** 0.046** 0.007**
mean of log(ICT) -1.617 -1.736 -1.947 -2.131 -2.297 -2.451 -3.596

varying parametrisation of gICT (with δICT = 0.3)
0.1 0.3 0.4 0.5 0.7 0.9

est. coeff. of log(ICT) 0.106*** 0.070** 0.060** 0.052** 0.041** 0.033**
mean of log(ICT) -1.825 -2.052 -2.131 -2.197 -2.303 -2.385

Notes: ICT denotes ICT capital stock measured in e million. Estimated oefficients (est. coeff.)
are obtained from the reference specification employed in the regressions in the paper (Table 1, col.
5). δICT denotes the annual depreciation rate assumed for ICT capital, gICT the assumed growth
rate of ICT investments in the pre–1994 periods (see text). The parameter values of δICT = 0.3
and gICT = 0.4 (bold letters) correspond to the preferred parametrisation used in the regressions
reported in the other tables of the paper.
∗∗ and ∗∗∗ denote significance at the 5%– and 1%–level respectively.

output; excluding these firms might overstate the ICT coefficient.

A last exploration based on the reference model (2) concerns the sensitivity of the

results with respect to the way in which capital stocks are constructed. As is obvious

from eq. (12) and (13) on page 9, both the level and the evolution of the capital stocks of

the firms depends on the parametrisation used for annual depreciation δ and pre–period

growth rates of investment g. In order to explore to what extent the econometric results

depend on the assumed values for the ICT capital stock, I subject the reference regression

underlying col. 5 of Table 1 to two kinds of robustness checks. In the first, I calculate

alternative ICT capital stocks using different values for depreciation rates δICT while

holding assumed growth rate gICT constant. In the second, I did the reverse, holding

δICT constant while varying gICT .

The estimates for the elasticity of ICT resulting from these variations are reported in

Table 2. Most strikingly, the qualitative result of significant productivity contributions

of ICT is robust to both kinds of variations. Unsurprisingly, however, the point estimate

of the elasticity decreases in both parameters. For the extreme case of a complete

depreciation of ICT within one year (δICT = 100%), the point estimate is very small.56

Moreover, lowering the assumed depreciation of ICT from an annual rate of 30% to

20% increases the estimated elasticity of ICT only modestly from 0.060 to 0.067. The

56This finding supports the importance of employing capital stocks instead of investments for assessing
the productivity contributions correctly. Employing investments implicitly correponds to assuming capital
to depreciate completely after one period.
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effects of a similar variation of gICT is only slightly higher. The main message from this

exercise is thus that the empirical results reported in Table 1 do not depend critically on

assuming certain values for δICT and gICT .

4.2 Results for the extended models

This subsection reports further evidence for the variations of model eq. (2) discussed in

the theoretical part.

Extension 1: Serially correlated residuals. In Table 3, the estimated elasticities

for the dynamic extension of eq. (2a) are reported. Since the employed sample differs

from the one used in the previous regressions,57 also the results for the static model are

displayed in the first row. Comparing the two–step results from col. 2 to the analogue

specification for the full sample (col. 5 of Table 1) shows that the change in the sample

impacts the results only very little.

As indicated in the theoretical section and described in detail in Appendix C, the

results for the dynamic specification reported in cols. 3 and 4 are obtained from first

estimating the reduced–form model and then imposing the common factor restrictions.

The reduced–form estimates are summarised in Table 13 in Appendix D. Unlike in the

results for the previous regressions, Table 3 reports both the results for the one–step and

the two–step SYS–GMM results because the point estimates from the minimum distance

procedure depend on both the point estimates and the variances of the reduced form

estimates. For the reduced–form model, variances from the one–step SYS–GMM results

are preferred whereas the point estimates from the two–step findings are more efficient.

A common finding from both the one– and the two–step specification is that there is

strong evidence for serial correlation in the residuals with ρ being roughly 0.77. Similarly,

the estimates of the labour elasticity is substantially lower than for the static model.

The estimates of the capital coefficients, however, differ substantially between one– and

two–step estimates with the one–step results being substantially higher.58 By contrast,

the two–step results for the capital coefficients are not too far from the values obtained

for the static model. Both capital coefficients are estimated more imprecisely for the dy-

namic model, however, with the ICT coefficient not being significantly different from zero.

57In the dynamic specification, also the coefficients of the once lagged inputs as well as the lagged
dependent variable are included. The lagged difference of these variables (e.g. ∆ictt−1) is then instru-
mented by the levels lagged 3 periods (icti,t−3). Thus, in this specification only firms can be included for
which at least four subsequent periods (t, t− 1, t− 2, t− 3) are available.

58In the dynamic one–step results, the sum of the two capital coefficients (roughly 0.48) as well as the
labour coefficient correspond fairly well to comparable results by Blundell and Bond (2000) who report
estimates of 0.49 for total capital and 0.48 for labour input for U.S. manufacturing firms during 1982–89.
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Table 3: Structural coefficients for the static and dynamic specification

Dep. Variable: log(value added)
(1) (2) (3) (4)

statica statica dynamicb dynamicb

(one–step) (two–step) (one–step) (two–step)

AR(1) of error — — 0.774*** 0.771***
(0.112) (0.066)

log(labourt) 0.768*** 0.722*** 0.464*** 0.487***
(0.099) (0.079) (0.153) (0.112)

log(ICTt) 0.090** 0.057* 0.158 0.074
(0.042) (0.030) (0.122) (0.070)

log(non–ICTt) 0.109*** 0.166*** 0.320** 0.216***
(0.069) (0.051) (0.138) (0.088)

Minimised distance[df] — — 3.923[3] 8.778[3]
Common factor restr.
(p–values) — — 0.270 0.032
***, **, * = significant at the 1, 5 and 10 per cent level respectively
Results from SYS-GMM estimates with robust standard errors in parentheses.
a The static model corresponds to the specification underlying col. 5 in Table 1 for
the full sample except for sample differences. b The results for the dynamic specifi-
cation are obtained from applying a minimum distance procedure to the estimated
coefficients reported in Table 3 in Appendix D. The test of the validity of the com-
mon factor restrictions is based on the value of the minimised distance function (see
Appendix C). The underlying sample for all results consists of the “reduced sample”
with 3532 observations for 708 firms covering the years 1994–1999 (see section 3 for
details).

The test of validity of the imposed common factor restrictions are rejected for the

two–step estimates but are not rejected for the one–step estimates. This difference in

the test statistics, may be a direct consequence of the estimated standard errors of

the reduced–form parameters which tend to be biased towards zero in the two–step

estimation. Since the test for the validity of the factor restrictions depends on these

standard errors,59 this test is not too informative about the question whether the

one–step point estimates are more reliable than the two–step results.

To sum up the evidence from the dynamic model, accounting for serial correlation

yields ambiguous results compared to the static specification. On the one hand, the

point estimates are higher in the dynamic model. On the other hand, the coefficients are

estimated much less precisely and fail to reach statistical significance.

Extension 2: Heterogenous labour. A further issue in estimating the productivity

of ICT is the potential bias owing to omitted variables that may be complementary to

59See eq. 38 in Appendix C.
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the firm’s use of ICT. In particular, recent studies have found that differences in the

skills of the workforce play an important role in this regard (Bresnahan et al., 2002).60

On the one hand, ignoring differences in workers’ skills might lead to an overestimation

of the true impacts of ICT on production. On the other hand, a firm’s ‘skill–mix’ tends

to be very persistent over time. Thus, their effect may not be distinguishable from other

quasi–fixed factors which are controlled for as unobserved heterogeneity between firms.

In this case, no distortions are expected.

In order to assess the role of omitting differences in workers’ skills, the model is

extended by the shares of employees with vocational training and with university degree

as summarised in eq. (2b) and (2b’). As discussed in section 3, the resulting small

sample consists of 578 firms only. The first column of Table 4 reports the results

from applying the SYS–GMM reference estimation strategy (column 5 in Table 1) to

the small sample. Compared to the full sample, the coefficient of labour (0.758) is

slightly higher for the small sample whereas both capital coefficients are substantially

smaller.61 One reason for these changes may be that average firm size as well as

average and median endowment of workplaces with ICT capital are notably lower in the

small sample.62 Moreover, the reduction in the significance levels of both capital coef-

ficients may be a direct consequence of the loss of precision due to the reduced sample size.

The second column of Table 4 displays the effect from including the proxies for human

capital in the regression. In this specification, the shares of the employees with high

and medium skills (represented by ‘% university’ and ‘% vocational’) are treated as

exogenous, i.e. these variables are instrumenting themselves. This Both the share of

employees with university degree and the share of workers with vocational training are

highly significant and positive.63 As the comparison to the first column reveals, including

the human capital variables slightly reduces the coefficients of labour but leaves the

60Other candidates for complements to ICT are investments in intangible capital goods such as training,
innovation or organizational capital (Bresnahan et al., 2002; Brynjolfsson and Hitt, 1998; Hempell, 2002;
Hempell, 2003). However, the investigation of the impacts of all these complements on the ICT coefficient
is beyond the scope of this paper and is left for future research.

61Moreover, only the non–ICT coefficient is significantly different from zero in the one–step estimation.
Note that values reported in brackets of Table 4 are — unlike in the previous tables — the t–values from
the one–step estimates. This comprehensive manner of presentation substitutes for further tables with
one–step results in the Appendix.

62See last columns of Tables 7 and 8 in Appendix D.
63The implicit values for the productivity differentials for medium– and high–skilled workers are θm =

βm/γ1 = 0.419/0.726 = 0.577 and θh = βh/γ1 = 0.970. With competitive salaries in the labour market,
these values should roughly correspond to the wage spread over the corresponding skill levels. For the
service sector, Kaiser (2000) calculates wage premiums of θw

m = 0.325 for medium–skilled workers and of
θw

h = 1.025 for high–skilled workers. This comparison indicates that the approximation in eq. 5 may lead
to an overestimation of the corresponding coefficient for medium–skilled employees. Alternatively, firms
may pay less than competitive wage premiums to skills.
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Table 4: The effects of heterogenous labour

Dep. Variable: log(value added)

inputs (1) (2) (3) (4) (5)

log(labour) 0.758*** 0.726*** 0.758*** 0.680*** 0.565***
(4.601) (4.872) (6.375) (4.633) (3.841)

log(ICT capital) 0.016 0.027 0.006 0.017 -0.098
(0.362) (0.380) (0.589) (0.168) (-0.969)

log(non–ICT capital) 0.146* 0.150 0.147* 0.181 0.110**
(1.855) (1.386) (1.677) (1.242) (2.189)

% university — 0.704*** -0.190 1.581 1.752***
(2.626) (-0.947) (1.576) (2.878)

% vocational — 0.419** 0.099 1.373*** 0.676*
(2.534) (-0.231) (3.661) (1.802)

(% university)2 — — — -0.913 —
(-1.200)

(% vocational)2 — — — -0.923*** —
(-3.202)

%univ. * % voc. — — — -0.873 —
(-1.281)

log(ICT) * % univ. — — — — 0.557**
(2.026)

log(ICT) * % voc. — — — — 0.140
(1.524)

observations 1847 1847 1847 1847 1847
number of firms 578 578 578 578 578
R–square 0.821 0.826 0.814 0.826 0.814

Wald stat.[df]:
inputs 142[3] 173[5] 339[6] 294[8] 210[7]
time and ind. dummies 335[34] 341[34] 419[34] 326[34] 353[34]

Sargan (p–values) 0.677 0.794 0.385 0.772 0.806

Residuals (p–values):
AR(1) 0.014 0.020 0.002 0.008 0.043
AR(2) 0.183 0.084 0.097 0.061 0.198

***,**,* = significant at the 1, 5 and 10 per cent level
Results are based on the two–step SYS–GMM estimator and contain a constant, a
regional dummy for East–German firms as well as interacted time and industry dum-
mies. T–values reported in brackets are obtained from (heteroskedasticity–robust)
first–step estimation results. The signs of coefficients and t–values may therefore
vary in some few cases.
Labour and capital inputs are instrumented by past values as described in the text,
while % vocational and % university are treated as exogenous except in specification
3 where also past values are used as instruments.

coefficient of non–ICT capital broadly unaffected.64 The elasticity of ICT increases

slightly from 0.016 to 0.027 even though in the one–step estimates both the coefficient

64In a related exercise, Lehr and Lichtenberg (1999) report similar qualitative results.
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and its standard error remain practically the same.65

Treating the skill–composition as exogenous may be justified if productivity shocks

impact the quantity of labour but not its composition by skills and if, moreover,

skill–composition is not affected by firm effects. However, these assumptions may be

violated and may also impact the ICT estimates. Specification (3) is the same as (2)

except that also the skill variables are now treated as endogenous by using their past

values as instrument in an analogue manner to the other inputs. The skill coefficients are

estimated very imprecisely with the coefficient for high–skilled workers becoming even

(insignificantly) negative.66 Independently of the way of instrumenting skills, the co-

efficients of the input factors labour, ICT and non–ICT capital remain broadly unaffected.

A further issue consists in the fact that the approximation of eq. (5) is very imprecise.

Col. 4 reports additional results for the more accurate model (2b’) with skills being

instrumented by themselves again. The (insignificant) ICT coefficient is very close to

the one obtained for the specification without controlling for labour heterogeneity while

the coefficient of labour is notably lower and the one for non–ICT higher than in col. 1.

Again, there is no indication from the results that the omission of labour quality may

exert any important bias on the ICT estimate. A test of the validity of the common

factor restrictions for the skill coefficients from eq. (5a) does not reject the model at

the 5%–level (p–value 0.074).67 However, the structural parameters obtained from a

minimum distance procedure yield rather high values for the implied coefficients θm and

θh.
68

In order to obtain some more evidence on the link between skills and ICT, spec-

ifications (4) and (5) additionaly consider interaction terms between ICT and the

skills variables. The interaction between ICT and human capital is highly significant,

65 Further unreported regressions show that including skill groups as separate inputs (instead of adding
skill shares, see comments in footnote 15) does not yield very different results. For a sample of 222 firms
with non–zero number of employees for all three skill groups, both ways of considering heterogeneity of
labour quality yields very similar but insignificant ICT coefficients of slightly more than 0.05 which are
slightly higher than in the specification without controlling for skill structure of the employees.

66It is extremely difficult to trace the sources of these counterintuitive results. Finite sample biases
due to poor instruments are unlikely to be the reason since further explorations show that the power of
the instruments for the skill shares is even slightly higher than for the capital variables. There is neither
evidence for outliers to be driving the results. Excluding firms with exceptionally high changes in the skill
shares as potential outliers have no noteworthy effects on the results. Instrumenting present skill shares
with lagged shares, however, yields results that are very similar to treating skill shares as exogenous.

67Instrumenting skill–shares and their interactions as in col. (3) yields even higher p–values for the
test of the imposed common factor restrictions.

68The corresponding coefficients are: θm = 1.413 (0.155) and θh = 1.201 (0.181) with standard errors in
parantheses. A peculiarity of these results is that the coefficient for medium skills is higher than the one
for medium skills. A closer look at the results of Table 4 shows that this is mainly due to the very small
precision of the estimates for high skills combined with a low absolute value for the interaction term %
university * % vocational. Jointly, these two results push the structural parameter θh toward zero in the
minimum distance approach.
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indicating that the productivity of ICT is increasing with the share of highly edu-

cated employees. The coefficient of ICT alone becomes even negative, implying that

in order to make productive use of ICT, skilled workers are even an essential prerequisite.69

Summing up, there is no evidence that omitted heterogeneity in labour quality leads

to an overestimation of the average productivity impacts of ICT. This may be due to

the fact that the share of high–skilled workers tends to be highly persistent over time.

Human capital might thus be treated as a firm’s quasi–fixed asset that is controlled for

by first differencing. However, the findings suggest that ICT must be complemented by

highly educated employees in order to result in positive productivity effects — a result

that is in line with similar findings in Bresnahan et al. (2002).

Extension 3: Flexible functional form. A final issue concerns the functional form

of the production technology. In particular, the Cobb–Douglas technology may be too

restrictive if scale effects and complementarities between the inputs may affect the

results. To assess this question, both the simplest (pooled OLS) and the best suited

(SYS–GMM) estimations are applied to the translog production function of equation

(2c). Unfortuately, the scope for empirical investigation of these issues is quite limited by

data constraints. In particular, the data basis is too small to obtain meaningful estimates

for a human–capital augmented translog function.70

The corresponding results and the average elasticities as of eq. (9) are reported in

the first two columns of Tables (5) and (6). Like in the estimations for the Cobb–

Douglas framework, pooled OLS and SYS–GMM estimates differ substantially in

both the individual coefficients and the implicit average elasticities. Again, the mean

output contributions are overestimated by using pooled OLS (Table 6). A striking

feature of the translog function is that even for the SYS–GMM estimation, the implicit

average elasticity of ICT (0.148) is much higher than in the Cobb–Douglas specification.71

There are two features of the results, however, that raise doubts about the reliability

of the translog specification. First, the Wald statistic for the joint significance of the

additional translog inputs72 from the one–step estimation rejects the relevance of these

69With skills being instrumented, the interaction of ICT and skills is positive, too, but smaller in
both economic and statistical significance. The estimates of the direct productivity contributions of
skills, however, are very low, too, pointing to the same problems in the specification as discussed for the
corresponding specification without interaction (col. 3).

70Including human capital into the translog specification would require to treat each skill group as
a separate input in the production function. For this case, all the problems mentioned in footnote 15
apply. Moreover, the number of regressors rises exponentially with the number of inputs considered in
the translog function, which leads to a further decrease in the degrees of freedom of the regressions.

71In a similar comparison between the Cobb–Douglas and the translog specification, Brynjolfsson and
Hitt (1995) find an only slightly higher average elasticity of ICT for the translog version.

72These are the regressors l2, ict2, k2, l · ict, l · k), (ict · k which are not included in the Cobb–Douglas
specification.
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Table 5: Results for the translog production function

Dep. Variable: value added (logs)
inputs (log) OLS SYS–GMM SYS–GMM

full full extended
labour 1.100*** 1.178*** 1.077***

(0.104) (0.137) (0.144)
ICT capital 0.050 -0.045 0.006

(0.068) (0.085) (0.070)
non–ICT capital 0.065 0.156*** 0.169***

(0.048) (0.055) (0.059)

labour2 -0.040*** -0.049*** -0.045***
(0.011) (0.013) (0.015)

ICT capital2 0.006 0.001 0.008***
(0.005) (0.006) (0.003)

non–ICT capital2 0.031*** 0.013* 0.008
(0.005) (0.007) (0.007)

labour*ICT 0.059*** 0.049*** 0.043***
(0.012) (0.016) (0.013)

labour*non–ICT -0.020* -0.008 -0.004
(0.010) (0.012) 0.0144

ICT*non–ICT -0.042*** -0.009 -0.009
(0.008) (0.008) (0.007)

East–Germany -0.336*** -0.607*** -0.544***
(0.042) (0.146) (0.145)

observations 4939 4939 5107
firms 1177 1177 1222
R–square 0.859 0.850 0.846
Wald–statistics[df]:
all inputs 6,801[10] 7,479[10] 6,556[10]
additional inputs� 77.15[6] 22.88[6] 89.82[6]
time and ind. dummies 721.6[41] 767.1[41] 804[41]
Sargan (p–values) — 0.144 0.080
errors (p–values)
AR(1) 0.000 0.003 0.004
AR(2) 0.000 0.043 0.047
***,**,* = significant at the 1, 5 and 10 per cent level
The results of the second column are based on the two–step SYS-
GMM and contain a constant and industry dummy variables inter-
acted with year dummy variables. Heteroscedasticity consistent
standard errors reported. �refers to additional inputs not included
in Cobb–Douglas specification.

variables (4.96[6], p=0.549). Second, the translog estimates are highly sensitive to small

changes in the sample. To illustrate this, the SYS–GMM estimator is applied to the ex-

tended sample instead of the full sample. This extension of the sample by 45 firms (3.8%

of the sample) causes substantial changes in the ICT–related coefficients (see column 3

of Table 5). Moreover, the average elasticities for all three inputs change remarkably (see

Table 6). By contrast, the sensitivity to sample changes was much smaller for the Cobb–
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Table 6: Implicit average elasticities for the translog production function

inputs OLS SYS–GMM SYS–GMM
full full extended

labour 0.707 0.677 0.619
ICT capital 0.215 0.148 0.124
non–ICT capital 0.140 0.168 0.193

Douglas specification (see columns 5 and 7 of Table 1). The underlying reason may be

that in particular the quadratic terms are very sensitive to potential outliers in the sample.

5 Conclusions

The use of firm–level data is gaining in importance for the analysis of productivity

effects of ICT. In contrast to aggregate data, firm–level information is less dependent

on the accuracy of price deflators and entails a higher variation in the factors that

may determine the performance of businesses. Moreover, unlike growth accounting

approaches, estimating production functions based on firm–level data does not require to

assume constant returns to scale and perfect competition.

In this paper, it is shown that the empirical results on the productivity of ICT

gained from a production function framework are highly contingent upon the specific

econometric methods applied. The empirical analysis based on firm–level panel data from

the German service sector yields evidence of various interfering influences that should be

addressed econometrically. First, and most prominently, well–managed firms are likely

to be intensive users of ICT. If these unobservable firm effects are not taken into account

by using a first–differences or a within–estimator, the productivity impacts of ICT will

be drastically overstated. Second, counteracting this effect, measurement errors in the

explanatory variables may lead to an underestimation of the corresponding elasticities.

This problem turns out to be particularly important for the case of ICT capital. Even

though ICT investment has increased substantially over the last years, the share of ICT

equipment and software in total capital is still very small. This makes it difficult to

distinguish the output contributions of ICT from statistical noise. By contrast, third, the

simultaneity of input and output decisions by firms, which may induce an upward bias

of the output contributions of ICT, is found to be less important for the econometric

specification. If panel data are available, both the measurement error bias and the

simultaneity bias may be overcome by applying a GMM estimator that uses information

from suitably distant previous periods to instrument the production inputs of the firm.

However, when unobserved firm–effects are taken into account, too, this estimation
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strategy may suffer from small sample biases due to weak instruments. Therefore, the

most suited approach is found to be the system GMM (SYS–GMM) strategy proposed

by Arellano and Bover (1995). This approach applies the GMM estimator to the firms’

production function equation in levels and first differences simultaneously and thus

makes use of more powerful instruments.

Fourth, potential mismeasurement of output prices and the omission of industry–specific

business cycles may understate the productivity impacts of ICT also at the firm–level.

This bias may partially be addressed by including interacted time and industry dummies

in the regression. Fifth, the explicit consideration of serial correlation of exogenous shocks

at the firm–level in a dynamic specification of the production function yields slightly

higher but also less precise estimates for the ICT coefficient. Sixth, the shares of high–

and medium skilled workers have a large and significant effect on productivity. However,

the omission of these variables does not lead to an overestimation of the productivity

contributions of ICT once firm–specific fixed effects are taken into account. Obviously,

most of the variation in the skill structure is between rather than within firms. Finally,

estimates based on the more flexible translog production function yield higher ICT

elasticities than the Cobb–Douglas specification. However, these estimates turn out to be

much more sensitive with respect to small sample changes and yield little improvements

in the explanatory power compared to the more parsimonious Cobb–Douglas specification.

What about the implications for the empirical work on the economics of ICT? From

an econometric point of view, the data needs necessary to address the methodological

issues raised in this paper are indeed quite demanding. In particular, a longitudinal

structure of at least three observations per firm is required to apply the suited SYS–GMM

estimator. On the other hand, the calibration strategies proposed in this paper for

constructing appropriate input and output data may be applicable to various other

existing longitudinal micro data sets, which frequently contain information on sales,

employment and investment. In any case, great caution seems to be appropriate for the

interpretation of cross–section results on the topic. The findings of this study indicate

that a big part of such results may be due to spurious correlations that tend to dominate

the real causal impacts of ICT on the productivity of businesses.

From an economic point of view, the findings of this paper point to the need of

investigating particular firm characteristics and strategies in more detail. The results

from the preferred system GMM estimation imply that a one–percent increase in ICT

raises output by about 0.06 percent. This corresponds to a net–rate of return to ICT

investment of more than 50%. These apparent excess returns are likely to be due to

unobserved complementary expenses such as adjustment cost, innovation efforts, training
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or intangible assets, but they may also reflect differences between firms in their ability

to exploit the potential benefits of ICT. The findings from this study, for example, the

availability of skilled workers are a prerequisite for using ICT productively. Therefore,

the exploration of adjustment costs and of relevant firm characteristics and strategies

related to ICT use are important issues for future research on the productivity and

welfare impacts of the ‘Information Economy’.
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vestment, in L. Mátyás and P. Sevestre (eds), The Econometrics of Panel Data: A

Handbook of the Theory with Applications, Kluwer Academic Publishers, Dordrecht,

pp. 685–710.

Bresnahan, T. and Greenstein, S. (1996). Technical Progress and Co-Invention in Com-

puting and in the Uses of Computers, Brookings Papers on Economic Activity, Mi-

croeconomics pp. 1–77.

Bresnahan, T. F., Brynjolfsson, E. and Hitt, L. M. (2002). Information Technology,

Workplace Organization, and the Demand for Skilled Labor: Firm-Level Evidence,

Quarterly Journal of Economics 117(1): 339–376.

Brynjolfsson, E. (1994). Technology’s True Payoff, Informationweek, October 10th pp. 34–

36.

29



Brynjolfsson, E. and Hitt, L. (1995). Information Technology as a Factor of Production:

The Role of Differences Among Firms, Economics of Innovation and New Technology

3(3-4): 183–199.

Brynjolfsson, E. and Hitt, L. (1996). Paradox Lost? Firm-Level Evidence on the Returns

to Information Systems Spending, Management Science 42(4): 541–558.

Brynjolfsson, E. and Hitt, L. M. (1998). Information Technology and

Organizational Design, mimeo, MIT Sloan School of Management.

http://ebusiness.mit.edu/erik/ITOD.pdf.

Brynjolfsson, E. and Hitt, L. M. (2000). Beyond Computation: Information Technology,

Organizational Transformation and Business Performance, Journal of Economic Per-

spectives 14(4): 23–48.

Brynjolfsson, E. and Hitt, L. M. (2001). Computing Productivity: Firm-Level Evidence,

mimeo, University of Pennsylvania, Wharton School.

Brynjolfsson, E. and Yang, S. (1999). The Intangible Costs and Benefits of Computer

Investments: Evidence from the Financial Markets, Proceedings of the International

Conference on Information Systems, Atlanta, Georgia, MIT Sloan School.

Caroli, E. and van Reenen, J. (2001). Skill-Biased Organizational Change? Evidence

from a Panel of British and French Establishments, Quarterly Journal of Economics

116(4): 1449–1492.

Christensen, L. R. and Jorgenson, D. W. (1969). The Measurement of U.S. Real Capital

Input, 1929–1967, Review of Income and Wealth 15(4): 293–320.

EITO (2001). European Information Technology Observatory 2001, EITO, Frank-

furt/Main.

Fraumeni, B. M. (1997). The Measurement of Depreciation in the U.S. National Income

and Product Accounts, Survey of Current Business 77(7): 7–23.

Gouriéroux, C. and Monfort, A. (1995). Statistics and Econometric Models, Vol. 1, Cam-

bridge University Press, Cambridge.

Greenan, N. and Mairesse, J. (1996). Computers and Productivity in France: Some

Evidence, Working Paper No. 5836, National Bureau of Economic Research.

30



Greenan, N., Mairesse, J. and Topiol-Bensaid, A. (2001). Information Technology and

Research and Development Impacts on Productivity and Skills: Looking for Correla-

tions on French Firm Level Data, NBER Working Paper No. 8075, National Bureau

of Economic Research.

Griliches, Z. (1994). Productivity, R&D, and the Data Constraint, American Economic

Review 84(1): 1–23.

Griliches, Z. and Hausman, J. A. (1986). Errors in Variables in Panel Data, Journal of

Econometrics 31(1): 93–118.

Griliches, Z. and Mairesse, J. (1998). Production Functions: The Search for Identification,

in S. Strøm (ed.), Econometrics and Economic Theory in the 20th Century — The

Ragnar Frisch Centennial Symposium, Cambridge University Press, pp. 169–203.

Hall, B. H. and Mairesse, J. (1995). Exploring the Relationship Between R&D and

Productivity in French Manufacturing Firms, Journal of Econometrics 65(1): 263–

293.

Hempell, T. (2002). Does Experience Matter? Innovation and the Productivity of ICT

in German Services, ZEW Discussion Paper 02–43, Centre for European Economic

Research, Mannheim. (ftp://ftp.zew.de/pub/zew-docs/dp/dp0243.pdf).

Hempell, T. (2003). Do Computers Call for Training? Firm-Level Evidence on

Complementarities Between ICT and Human Capital Investments, ZEW Dis-

cussion Paper 03–20, Centre for European Economic Research, Mannheim.

(ftp://ftp.zew.de/pub/zew-docs/dp/dp0320.pdf).

Hoffmann, J. (1998). Problems of Inflation Measurement in Germany, Discussion Paper

No. 01-98, Economic Research Centre of the Deutsche Bundesbank.

Jorgenson, D. W. and Stiroh, K. (1995). Computers and Growth, Economics of Innovation

and New Technology 3(3-4): 295–316.

Kaiser, U. (2000). A Note on the Calculation of Firm-Specific and Skill-Specific Labor

Costs from Firm-Level Data, ZEW Discussion Paper 00–08, Centre for European

Economic Research, Mannheim.

Klette, T. J. and Griliches, Z. (1996). The Inconsistency of Common Scale Estimators

When Output Prices Are Unobserved and Endogenous, Journal of Applied Econo-

metrics 11(4): 343–361.

31



Lehr, B. and Lichtenberg, F. (1999). Information Technology and its Impact on Produc-

tivity: Firm-Level Evidence from Government and Private Data Sources, Canadian

Journal of Economics 32(2): 335–362.

Licht, G. and Moch, D. (1999). Innovation and Information Technology in Services,

Canadian Journal of Economics 32(2): 363–383.

Lichtenberg, F. R. (1995). The Output Contributions of Computer Equipment and Per-

sonnel: A Firm-Level Analysis, Economics of Innovation and New Technology 3(3-

4): 201–217.

Moulton, B. R., Parker, R. P. and Seskin, E. P. (1999). A Preview of the 1999 Compre-

hensive Revision of the National Income and Product Accounts — Definitional and

Classificational Changes, Survey of Current Business 79(8): 7–20.

Müller, A. A. (1998). Kapitalstock und Produktionspotential im privaten und öffentlichen
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Appendix

A ICT–induced quality improvements in a simple

partial equilibrium model
Supplementing the arguments in section 2.1, this part of the appendix uses a simple

partial equilibrium model to show how quality improvements induced by ICT use may

implicitly be taken into account in the ICT coefficients obtained from production function

approaches at the firm–level.

Consider a simplified version of the production function stated in eq. (2) for a firm

operating in some given industry I for which output deflators PIt are available:

yit = γ1lit + γ2ictit + γ3kit, (14)

where yit is real output based on industry deflators and small letters denote values in

logarithms. Suppose further that firms do not follow the same pricing strategies such

that aggregate industry deflators pIt are an imperfect measure of output at the firm

level. The heterogeneity in pricing induces an aggregation error such that (imperfectly)

measured output ỹit can be defined as a combination of true output and a measurement

error:

ỹit ≡ yit + pit − pIt, (15)

where pit − pIt is the measurement error due to aggregation. Inserting (15) in (14) gives:

ỹit = γ1lit + γ2ictit + γ3kit + pit − pIt. (16)

The output of firms may, however, differ not only in terms of prices but also in quality.

In particular, as argued in the main text (section 2.1, p. 3), the use of new technologies

may be particularly suited to improve ancillary aspects of product quality, like speed of

delivery, extended shopping facilities or after sales support. To focus on the role of ICT

for product quality, consider the simplest case in which product quality Q is determined

by the intensity of ICT used in the production process (defined as the fraction of ICT

over non–ICT capital) such that:73

Qit = = B ·
(
ICTit

Kit

)ω

or qit = b+ ω(ictit − kit)

and Qt = B ·
(
ICTIt

KIt

)ω

or qIt = b+ ω(ictIt − kIt), (17)

73The intensity of ICT could equivalently be defined as the share of ICT input in output produced.
This makes the model slightly more involved without changing the main results.
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where small letters indicate logarithms and subscripts I denote the corresponding mean

values at the industry level.74 The marginal contributions of ICT to output quality are

proportional to ω and, if ω is restricted to fall into the interval 0 ≤ ω ≤ 1, the marginal

contributions of relative ICT input to product quality are positive and decreasing in ICT

intensity.

For the demand side, I use a slightly extended version of the model proposed by Klette

and Griliches (1996), denoted by KG in the remainder. The demand for goods from firm

i at t is given by:

Y D
it = Y D

It ·
(
Pit

PIt

QIt

Qit

)η

or yD
it = yIt

D + η(pit − pIt − (qit − qIt)). (18)

That is, the demand for output produced by firm i in period t depends on total

demand for output produced in the corresponding industry Y D
It and the price Pit relative

to the price level at the industry level PIt. The extension of the KG–model consists in

the correction of prices for differentials in output quality Qit/QIt. This extension is based

on the idea that utility–maximising consumers take heterogenous output quality into

account when comparing prices. The parameter η < 0 reflects the elasticity of demand

with respect to relative prices.75

In equilibrium with yD
it = yit and yD

It = yIt, inserting eq. (15) and (17) in (18) yields:

ỹit = yIt + (1 + η)(pit − pIt) + ηω(qit − qIt)

= yIt + (1 + η)(pit − pIt) + ηω(ictit − ictIt)− ηω(kit − kIt). (19)

Solving (19) for pit − pIt, inserting in (16) and rearranging yields:

ỹit =
1 + η

η
[γ1lit + γ2ictit + γ3kit]−

1

η
yIt

−ω(1 + η)(ictit − kit) + ω(1 + η)(ictIt − kIt). (20)

Eq. (20) summarises the main theoretical issues of estimating the productivity ICT

as discussed in section 2.1 (p. 3). The first part of the equation is basically identical to

the KG–model. It shows that if prices vary between firms due to imperfectly competitive

markets (with −1 > η > −∞), the estimates of the input elasticities obtained from

a production function estimation as of eq. (14) must be interpreted as reduced–form

74In addition, all firms are assumed to be sufficiently small such that the impact of changes in one
variable in one firm has an negligible effect on industry averages.

75Note that strong competition is mirrored by high (absolute) values for η, such that a small price
deviation from industry average causes a strong decrease in demand for goods from firm i.
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estimates that underestimate the true input elasticities by the factor η/(η + 1).76

The second line of eq. (20) corresponds to the extension of the KG–model and displays

the impacts of quality improvements on the estimated reduced–form elasticities. The

reduced–form elasticities can be interpreted more easily by rearranging eq. (20) to:

ỹit =

[
1 + η

η
γ1

]
lit +

[
1 + η

η
γ2 − ω(1 + η)

]
ictit +

[
1 + η

η
γ3 + ω(1 + η)

]
kit

−1

η
yIt + [ω(1 + η)] (ictIt − kIt) + εit.

This equation shows that the higher the impact of ICT intensity on output quality, i.e.

the higher ω, the higher will be the reduced–form estimate of ICT. Even though this term

does not corresponds to the output contributions of ICT in a narrow sense (measured by

γ2), this broader measure also takes into account welfare effects from improved output

quality. However, this quality–impact is closely linked to the competition parameter

η. The more competitive markets are (i.e. the more negative η), the stronger are the

impacts of quality improvements on the reduced–form estimate of the ICT elasticity.

Moreover, as pointed out by the GK–model, higher absolute values for η also imply a

lower bias of the reduced–form elasticities induced by the term (η + 1)/η.77

B GMM estimation of the production function
Referring to equation (2), the basis of the Generalised Method of Moments (GMM)

approach employed in this paper follows basically the suggestions by Arellano and Bond

(1991), Arellano and Bover (1995) and Blundell and Bond (1998). It consist in assuming

the choice for the k = 3 inputs in the initial period xi1 = (li1, icti1, ki1) to be uncorrelated

with the residuals uit = ηi + εit in the subsequent periods E[xi1εit] = 0, for t = 2, . . . , T ,

where T denotes the number of periods.78 This assumption entails the following moment

conditions:

E[x′i,t−s∆uit] = 0 for t = 3, . . . , T and t− 1 ≥ s ≥ 2. (21)

Note that by first–differencing of uit, the fixed–effect ηi, which may be correlated with

the inputs, is cancelled out. The system of equations (21) can be summarised in matrix

76An empirical approach to assess the size of this bias is to include industry output yt in the regression
to get an estimate of the coefficient η.

77 An empirical strategy to obtain the parameters γ1, γ2, γ3, η and ω would be to regress measured
firm–level output ỹit on firm–level inputs lit, ictit and kit and on industry–level data yIt, ictIt and kIt.
The structural coefficient η could then be recovered from the coefficient of yt. In combination with the
estimate for ictt − kt, this would allow for obtaining also ω. Finally, with η and ω known, also the
elasticities γ1, γ2, γ3 can be deduced from the estimates. For the analyses of this paper, however, the
corresponding industry–level data for Germany are not available. However, in the empirical application,
interacted time and industry dummies control for the industry–specific heterogeneity of yIt, ictIt and kIt.

78Note that in eq. (2), it is assumed that εit are serially uncorrelated.
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notation in the following way:

E[Z ′iDui] = 0 (22)

with79

Zi = ZD
i =



xi1 0 0 · · · 0 0 · · · 0

0 xi1 xi2 · · · 0 0 · · · 0
...

...
...

...
...

...

0 0 0 · · · xi1 xi2 · · · xi,T−2


T−1 × k(T−2)(T−1)/2

(23)

D =



−1 1 0 · · · 0 0 0

0 −1 1 · · · 0 0 0
...

...
...

...
...

...

0 0 0 · · · −1 1 0

0 0 0 · · · 0 −1 1


T−1 × T

ui = (ui1, ui2, . . . , uiT )′.

The dimensions of ZD
i show that eq. (22) comprises k(T − 2)(T − 1)/2 moment con-

ditions.80 After solving eq. (2) for uit and inserting in the moment conditions (21), the

residuals depend on the data (y, x) as well as the parameters φ = (γ1, γ2, γ3, λ12, . . . , λJT ),

where J denotes the number of industries such that eq. (22) can be written as a function:

E[Z ′iDui] = E[ψ(y, x, φ)] = 0. (24)

By the analogy principle, the expected value of the population is replaced by the

sample mean such that we can define bN(φ) = N−1∑N
i=1 ψ(y, x, φ) with N denoting the

number of firms in the sample. For given sample values (y, x), the GMM estimator φ̂(A)

associated with a matrix A is the choice of φ that minimises the quadratic form:

φ̂(A) = arg min
φ
bN(φ)′ A bN(φ), (25)

79Note that xit = (lit, ictit, kit) has k = 3 columns, such that also each zero entry in the Zi–matrix
represents a vector (0, 0, 0). Similarly, the apparent number of columns of the matrix Z must be multiplied
by k = 3.

80 Note that serial correlation of the errors εit may be at odds with these moment conditions. To see
that, suppose that εit = ρεit + eit and insert this into the moment condition of eq. (21) for s = 2. It
then follows that E[∆εitXi,t−2] = (ρ − 1)E[εi,t−1Xi,t−2] = ρ(ρ − 1)E[εi,t−2Xi,t−2] 6= 0 unless ρ = 1 or
ρ = 0. Thus, unlike in the case of OLS, serial correlation may harm not only the efficiency but also the
consistency of the estimates in the case of GMM estimation since the consistency of the GMM estimates
hinges on the validity of the underlying moment conditions. However, the validity of the instruments
can also be tested directly using the Sargan statistic, which is discussed further below. This test is a
further measure of how strongly potential serial correlation (among other factors) impacts the moment
conditions underlying the GMM estimates, and only the combination of the test for serial correlation and
the Sargan statistic will give a comprehensive picture of the validity of the moment conditions.
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where any choice of the (T − 1× T − 1) weighting matrix A yields a consistent (though

not efficient) estimator. For a linear model of the form yit = xitβ + uit as in eq. (2), this

minimisation problem is solved by:

φ̂(A) =

[ (
N∑

i=1

x∗
′

i Zi

)
A

(
N∑

i=1

Z ′ix
∗
i

)]−1 [ ( N∑
i=1

x∗
′

i Zi

)
A

(
N∑

i=1

Z ′iy
∗
i

)]
. (26)

where x∗i = Dxi. The optimal choice for A, which yields an efficient φ̂, is given by

A∗ = V ar(ψ(y, x, φ))−1. Since this variance–covariance matrix is not known, a two–step

procedure can be applied: in the first step, an arbitary weighting matrix A is used81 to

obtain a consistent estimate of φ. The one–step coefficients are then used to calculate the

estimated first–differenced residuals v̂∗i = Dv̂i where v̂i are the estimated errors obtained

from the level equation (2). A more efficient weighting matrix for the second–step

estimation is then:

AN =

(
N−1

N∑
i=1

Z ′iv̂
∗
i v̂
∗′

i Zi

)−1

. (27)

A convenient feature of the GMM estimator is that for the efficient weighting matrix

AN for any given Zi, the minimised value of the distance function bN(φ)′ AN bN(φ) from

eq. (25) is asymptotically χ2
r−k–distributed with the number of degrees of freedom equal

to the number of overidentifying restrictions, i.e. the difference between the number of

columns of Zi (denoted by rD) and the number of columns of xi (denoted by k). Thus,

the validity of the employed instruments can be tested empirically using the Sargan

test–statistic:82

S = SD =

(
N∑

i=1

v̂i
∗′
Zi

)
AN

(
N∑

i=1

Z ′iv̂i
∗
)

asym∼ χ2
r−k. (28)

The SYS–GMM estimator is an extension of the GMM estimator above. The main

idea is to find variables that are uncorrelated with the fixed effects ηi and that thus can

be used as instruments for the equation in levels. Arellano and Bover (1995) consider

the case where the covariance between the explanatory variables xit and the individual

effects ηi are constant over time, such that E(xitηi) = E(xisηi) ∀s.83 Together with the

moment conditions of eq. (21), this gives the (T − 2) additional moment conditions for

the equations in levels:84

81The DPD98 programme used in this paper employs the matrix A = DD′ for this purpose.
82For the regression GMM[-2] in column (4) of Table 1, e.g., the number of moment conditions r (with

T = 6) is r = 3 ·(6−2)(6−1)/2 = 30 such that the corresponding Sargan statistic has r−k = 30−3 = 27
degrees of freedom.

83As shown by Blundell and Bond (1998), the joint stationarity of the dependent and the independent
variables is a sufficient, yet not necessary prerequisite for these restrictions to hold.

84Arellano and Bover (1995) show that, given the moment conditions of eq. (21), further moment
conditions of the type E(∆x′i,t−suit) = 0 are redundant since, e.g. E(∆x′i,t−1uit) − E(∆x′i,t−1ui,t−1) =

37



E(∆x′i,t−1uit) = 0, t = 2, . . . , T . (29)

These additional moment restrictions can be implemented by letting uS
i =

(
Dui

ui

)
and:

ZS
i =



ZD
i 0 0 · · · 0

0 ∆xi2 0 · · · 0
...

...
...

...

0 0 0 · · · ∆xi,T−1


T−1 × k(T−2)(T+1)/2

, (30)

where ZD
i is the instrument matrix (23) for the equation in first differences. Thus, the

moment conditions of the system GMM estimator are:

E[ZS
i

′
uS

i ] = 0. (31)

The validity of the additional instruments obtained from the orthogonality conditions

(29) can be tested using a Difference Sargan test.85 Since the set of instruments used for

the equation in first differences ZD
i is a strict subset of the set of instruments used for

the system of equations in levels and in first–differences, the corresponding Difference

Sargan statistic is:

S∆ = SS − SD asym∼ χ2
rS−rD , (32)

where SS and SD are the Sargan statistics obtained for the system GMM and first

difference GMM correspondingly, and rS and rD are the corresponding number of

columns of the instrument matrices ZS and ZD.86

C Imposing and testing common factor restrictions

by minimum distance

In order to obtain the structural parameters θ = (ρ, γ1, γ2, γ3) of eq. (2a), a two–step

procedure is applied. In the first step, the reduced–form equation (3) with parameters

π = (π1, . . . , π7) is estimated by SYS–GMM. In the second step, then, the estimates of

the parameters πi are used to deduce the structural parameters as of eq. (2a) by testing

and imposing the corresponding common factor restrictions π1 = ρ, π2 = γ1, π3 = γ2,

π4 = γ3, π5 = −γ1 · γ2, π6 = −γ1 · γ3 and π7 = −γ1 · γ4 using a minimum distance (or

E(x′i,t−1∆uit) − E(x′i,t−2∆uit) such that the first term E(∆x′i,t−1uit) is just a combination of the last
three terms which are already implied by conditions (21) and (29).

85See Arellano and Bond (1991), e.g., for further details on this test.
86For the exemplified case, rS − rD = k(T − 2).
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asymptotic least squares) procedure.

Let the function h : <4 → <7 relate θ to π such that π = h(θ) =

(ρ, γ1, γ2, γ3,−ργ1,−ργ2,−ργ3)
′. Using this function, the focus of interest are thus

the structural parameters θ = (ρ, γ1, γ2, γ3)
′ that minimise the norm π − h(θ).87

In order to simplify calculations, I additionally specify the function g : <7 → <7

such that g(π) = (π1, π2, π3, π4,−π5/π1,−π6/π1,−π7/π1)
′ which makes g(h(θ)) =

(ρ, γ1, γ2, γ3, γ1, γ2, γ3)
′ linear in the components of θ. For given reduced–form estimates

π̂, the structural parameter estimates θ̂ are then imposed to minimise the quadratic

distance:

θ̂ = arg min
θ

[g(π̂)− g(h(θ))]′ Ω̂−1 [g(π̂)− g(h(θ))] (33)

= arg min
θ



π̂1 − ρ

π̂2 − γ1

π̂3 − γ2

π̂4 − γ3

−π̂5/π̂1 − γ1

−π̂6/π̂1 − γ2

−π̂7/π̂1 − γ3



′

Ω̂−1



π̂1 − ρ

π̂2 − γ1

π̂3 − γ2

π̂4 − γ3

−π̂5/π̂1 − γ1

−π̂6/π̂1 − γ2

−π̂7/π̂1 − γ3


, (34)

with Ω̂ = [∂g(π̂)/∂π′] ̂var(π̂) [∂g(π̂)/∂π′]′, where ̂var(π̂) denotes the estimated variance

covariance matrix of the unrestricted parameters π̂ and

∂g(π̂)/∂π′ =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0
π̂5

π̂2
1

0 0 0 −1
π̂1

0 0

π̂6

π̂2
1

0 0 0 0 −1
π̂1

0

π̂7

π̂2
1

0 0 0 0 0 −1
π̂1


. (35)

The asymptotic variance matrix of the estimate θ̂ is given by:

var(θ̂) =
(
[∂g(h(θ))/∂θ′]′ Ω−1 [∂g(h(θ))/∂θ′]

)−1
(36)

where the Jacobian ∂g(h(θ))/∂θ′ is just a 7 × 4–matrix of zeros and ones by the

construction of the function g(•):
87 The following specifications and derivations follow Blundell et al. (1996), Wooldridge (2002,

ch. 14) and the more general discussion of asymptotic least squares by Gouriéroux and Monfort (1995,
ch. 9 and 10).
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∂g(h(θ))/∂θ′ =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1


. (37)

Finally, the validity of the common factor restrictions that link the structural equation

(2a) to the reduced–form specification (3) can be tested. For large cross–sections N , the

minimised value of the distance function of eq. (33) has an asymptotic χ2–distribution

with three degrees of freedoms since:

[g(π̂)− g(h(θ̂))]′ Ω̂−1 [g(π̂)− g(h(θ̂))] = SMD asym∼ χ2
(rred−rstruct), (38)

where rred = 7 represents the number of the reduced–form parameters comprised by π

and rstruc = 4 is the number of structural parameters contained in θ .
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D Tables

Table 7: Detailed statistics for the full sample (4939 obs. for 1177 firms)

percentiles per employee
mean std. min. max. 10% 50% 90% mean median

value added* 54.541 717.21 0.118 27,380 0.362 2.647 40.705 121,917 60,307
employees 614.563 9379 1 310,792 7 42 506 — —
ICT capital* 5.058 131.25 < 0.001 6,537 0.006 0.488 0.923 3,946 1,392
non–ICT capital* 102.387 1833.645 0.001 60,340 0.061 1.107 56.360 218,492 24,979
East (dummy) 0.421 0.494 0 1 0 0 1 — —
*measured in e million, except for values per employee

Table 8: Detailed statistics for the small sample (1847 obs. for 578 firms)

percentiles per employee
mean std. min. max. 10% 50% 90% mean median

value added* 18.513 88.658 0.032 1,124 0.362 2.306 22.821 120,448 58,857
employees 183.673 613.885 1 7,200 7 36 300 — —
ICT capital* 0.362 1.466 < 0.001 30.855 0.006 0.041 0.529 3,106 1,240
non–ICT capital* 24.946 102.911 0.003 1,450 0.062 0.900 41.378 228,230 24,852
East (dummy) 0.444 0.497 0 1 0 0 1 — —
% university 0.191 0.264 0 1 0 0.061 0.667 — —
% vocational 0.566 0.303 0 1 0.129 0.615 0.944 — —
*measured in e million, except for values per employee

Table 9: Detailed statistics for the extended sample (5107 obs. for 1222 firms)

percentiles per employee
mean std. min. max. 10% 50% 90% mean median

value added* 53.145 705.526 0.012 27,380 0.351 2.495 39.805 122,198 60,575
employees 596.7 9224 1 310,792 7 40 499 — —
ICT capital* 4.892 129.075 < 0.001 6,537 0.004 0.045 0.892 3,801 1,302
non–ICT capital* 100.300 1,803 0.001 60,340 0.060 1.060 55.375 226,947 25,574
East (dummy) 0.422 0.494 0 1 0 0 1 — —
*measured in e million, except for values per employee
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Table 10: Comparison of the different samples and the population by industries

samples population*
full small extended

industry nace–digit # % # % # % %
wholesale trade 51 163 13.9 83 14.4 172 14.1 10.6
retail trade 50, 52 183 15.6 87 15.1 190 15.6 31.3
transport and postal services 60–63, 64.1 210 17.8 104 18.0 222 18.2 11.7
electr. processing and telecom. 72, 62.2 100 8.5 44 7.6 100 8.2 3.4
consultancies 74.1, 74.4 100 8.5 48 8.3 103 8.4 12.1
technical services 73, 74.2, 74.3 142 12.1 75 13.0 152 11.7 10.7
other business–rel. services 70, 71, 74.5-.8, 90 279 23.7 137 23.7 292 23.9 20.3
total 1177 100 578 100 1222 100 100
*German service firms with 5 and more employees in 1999.
Source: German Statistical Office, ZEW and own calculations

Table 11: Comparison of the different samples and the population by size classes

full sample small sample ext. sample population*
size class
(# employees) # % # % # % % firms % sales

5–9 189 16.1 88 15.2 205 16.8 57.6 9.4
10–19 189 16.1 105 18.2 206 16.9 24.0 9.9
20–49 246 20.9 137 23.7 254 20.8 11.7 9.7
50–99 156 13.3 87 15.1 156 12.8 3.5 6.9
100–199 167 14.2 76 13.2 168 13.8 1.6 6.0
200–499 102 8.7 48 8.3 102 8.3 1.0 7.0
500 and more 128 10.9 37 6.4 131 10.7 0.6 51.1
total 1177 100 578 100 1222 100 100 100
*German service firms with 5 and more employees in 1999.
Source: German Statistical Office, ZEW and own calculations
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Table 12: One–step results for the ICT–augmented production function

Dep. Variable: value added (logs)
(3) (4) (5) (6) (7)

inputs (logs) GMM[–1] GMM[–2] SYS–GMM SYS–GMM SYS–GMM
1st diff. 1st diff. reference not interact. extended

labour 0.515*** 0.247 0.707*** 0.737*** 0.723***
(0.174) (0.158) (0.073) (0.074) (0.075)

ICT capital 0.053 0.069 0.114** 0.081* 0.052
(0.043) (0.041) (0.046) (0.049) (0.032)

non–ICT capital 0.191 0.366 0.148*** 0.155*** 0.166***
(0.198) (0.208) (0.046) (0.049) (0.046)

East–Germany — — -0.340*** -0.343*** -0.375***
(0.051) (0.053) (0.049)

observations 3762 3762 4939 4939 5107
firms 1177 1177 1177 1177 1222
R–square 0.218 0.137 0.843 0.839 0.836
Wald statistics [df]:
inputs 14.7[3] 13.9[3] 446[4] 441[4] 494[4]
time and ind. dummies 108[35] 130[35] 586[41] 488[11] 583[41]
errors (p–values):
AR(1) 0.010 0.000 0.002 0.003 0.002
AR(2) 0.118 0.042 0.028 0.025 0.030

***,**,*=significant on the 1,5 and 10 per cent level
Results are based on the one–step estimation corresponding to table 1. See footnotes on this table for
further details.
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Table 13: Dynamic specification of the production function

Dep. Variable: log(value added)
(1) (2) (2) (3)

static static dynamic dynamic
(one–step) (two–step) (one–step) (two–step)

log(value addedt−1) — — 0.638*** 0.105***
(0.135) (0.084)

log(labourt) 0.768*** 0.722*** 0.391** 0.352***
(0.099) (0.079) (0.159) (0.123)

log(ICTt) 0.090** 0.057* 0.161 0.136
(0.042) (0.030) (0.136) (0.079)

log(non–ICTt) 0.109 0.166*** 0.294 0.194
(0.069) (0.051) (0.243) (0.179)

log(labourt−1) — — -0.066 -0.051
(0.165) (0.138)

log(ICTt−1) — — -0.097 -0.031
(0.074) (0.045)

log(non–ICTt−1) — — -0.266 -0.182
(0.224) (0.174)

R–square 0.829 — 0.950 —

Wald stat.[df]
inputs 193[3] 292[3] 790[7] 1428[7]
time and ind. dummies 429[41] 530[41] 59[34] 62[34]
Sargan (p–values) — 0.021 0.128
erros (p–values)
AR(1) 0.001 0.003 0.003 0.001
AR(2) 0.026 0.046 0.333 0.332
***, **, * = significant at the 1, 5 and 10 per cent level respectively
SYS-GMM estimates include a constant, a regional dummy variable for East–German firms
as well as interacted industry and year dummy variables. Robust standard errors reported
in brackets. The underlying sample consists of an unbalanced panel with 708 firms and 3532
observations covering the years 1994–1999.
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Table 14: One–step results for the translog production function

Dep. Variable: value added (logs)
inputs (log) SYS–GMM SYS–GMM

full extended
labour 1.044*** 1.006***

(0.256) (0.277)
ICT capital 0.044 0.070

(0.156) (0.119)
non–ICT capital 0.214** 0.224**

(0.085) (0.090)

labour2 -0.041* -0.040
(0.024) (0.027)

ICT capital2 0.002 0.011**
(0.012) (0.005)

non–ICT capital2 0.006* 0.004
(0.011) (0.011)

labour * ICT 0.047 0.042*
(0.030) (0.023)

labour * non–ICT -0.020 -0.018
(0.018) (0.020)

ICT * non–ICT -0.006 -0.007
(0.015) (0.012)

East–Germany -0.512*** -0.513***
(0.188) (0.189)

[.2em] observations 4939 5107
firms 1177 1222
R–square 0.850 0.846
[.2em] Wald–statistics[df]:
all inputs 4,784[10] 4,039[10]
additional inputs� 4.96[6] 34.17[6]
time and ind. dummies 531.5[41] 528.5[41]
[.2em] errors (p–values)
AR(1) 0.002 0.004
AR(2) 0.008 0.014
***,**,* = significant at the 1, 5 and 10 per cent level
Results are based on the one–step SYS–GMM
corresponding to Table 5.
See comments on this table for further details.
�refers to additional inputs not included in Cobb–Douglas specification.
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