
Genetic algorithms for econometric optimization1

Dirk Czarnitzkia,b,c and Thorsten Doherrc

a K.U.Leuven, Dept. of Managerial Economics, Strategy and Innovation, Belgium
b Centre for R&D Monitoring (ECOOM) at K.U.Leuven

c Centre for European Economic Research (ZEW), Mannheim, Germany

This Version: May 2009
First Version: July 2002

Abstract

This paper discusses a tool for optimization of econometric mod-
els based on genetic algorithms. Due to the increasing popularity of
semi–parametric estimators, researchers often have to optimize non–
differentiable, non–smooth criterion functions that cannot be solved
with conventional gradient methods. Genetic algorithms constitute
an alternative opportunity for optimization. So far, however, applica-
tions are not wide–spread, as there is no software readily available yet.
This paper overcomes this limitation by describing a genetic algorithm
implemented in STATA that can easily be dynamically linked to any
criterion function to be optimized. We describe the algorithm, provide
two example applications, and provide a step–by–step guide on how to
use the software.

Keywords: Genetic Algorithm, Semiparametrics, Monte Carlo Simulation
JEL–Classification: C14, C25, C45, C61, C63

Address: Dirk Czarnitzki Thorsten Doherr
K.U.Leuven Centre for European Economic

Research (ZEW)
Dept. of Managerial Economics,
Strategy and Innovation

Dept. of Industrial Economics
and International Management

Naamsestraat 69 P.O.Box 10 34 43
3000 Leuven 68034 Mannheim
Belgium Germany

Phone: +32 16 326 906 +49 621 1235–291
Fax: +32 16 326 732 +49 621 1235–170
E-Mail: dirk.czarnitzki@econ.kuleuven.be doherr@zew.de

1Helpful comments by François Laisney, James L. Powell, two anonymous referees and
the editor are gratefully acknowledged. Moreover, we would like to thank the participants
of the “Econometrics Lunch” of the University of California at Berkeley, where an earlier
version of this paper has been presented.

1 Introduction

Many new inventions in the field of engineering sciences are based on the
knowledge of structures in nature. These are the results of an optimization
process called evolution. The basic principles are crossover, mutation and
selection. Evolution theory explains these principles on the basis of whole
populations. Genetic science takes a much closer look at the individual
aspects of evolution: the genes. It explains the meaning of crossover and
mutation at a molecular level. The knowledge of both worlds is combined
in genetic algorithms for using the problem solving capabilities of evolution
for a large number of scientific and engineering problems or models.

Genetic algorithms (GAs) simulate evolution for a population of candidate
solutions in an artificial environment representing a specific problem. Ex-
amples are the optimization of movement patterns for artificial life–forms,
the emergence of markets in an economy, transport or packaging problems
in logistics, or the determination of weights for neural networks. These,
by no means exhaustive examples, demonstrate the versatility of GAs.
Goldberg (1989) provides a survey of existing applications of GAs in
different fields. Among many other fields, GAs have already been used in
economic research2 and econometrics. In the latter field, Dorsey and Mayer
(1995) were the first to apply GAs to 11 “test problems” taken from econo-
metric literature. These consider highly non–smooth and non–differentiable
criterion functions where commonly used algorithms are likely to fail.
Among others, they use a non–linear least squares example of Judge et al.
(1985) where conventional methods like the Newton–Raphson algorithm
fail to converge to the global minimum (the function has two local minima).
Furthermore, they consider disequilibrium models as used by Maddala and
Nelson (1974) and Mayer (1989), and also demonstrate the usefulness of
Genetic Algorithms to estimate, for instance, semi–parametric econometric
models, such as the Maximum Score estimator of Manski (1975, 1985).
Östermark (1999) extends the concepts of GAs to hybrid GAs where a GA
is combined with features of constrained non–linear programing techniques.3

While the literature clearly demonstrates the usefulness of genetic algo-
rithms in the field of econometrics, heuristic techniques, such as genetic

2Examples are Axelrod, R. (1987), Marimon et al. (1990), Arifovic (1994), Price (1997),
Varetto (1998), or Cooper (2000).

3See Corana et al. (1987) and Goffe et al. (1994) for a related non–gradient iterative
method. They both apply simulated annealing to four different estimation problems, but
Goffe et al. extend the original method of Corana et al. in three different dimensions.

1

algorithms, are not commonly used yet. For instance, Cameron and
Trivedi (2005) mention the upcoming importance of genetic algorithms and
simulated annealing, but only briefly reference to these techniques in their
recent textbook. An important reason for the scarce use of such procedures
may the lack of readily available software for the implementation of these
techniques for a broad range of optimization problems. So far, genetic algo-
rithms have been implemented by scholars only for their specific problems
in various different programming languages. The goal of our contribution is
not an application of a genetic algorithm to a specific econometric problem,
but the introduction of a research tool for the implementation of genetic
algorithms to a wide range of econometric problems. We have programmed
a highly flexible genetic algorithm with the environment of the econometric
software package STATA. Our program code is available as an “ado” file
that can be freely downloaded from the internet. Scholars can dynamically
link any desired criterion function to be optimized to our algorithm so
that the estimation of highly complex models only requires little more
programming than a standard regression command (the criterion function
has to be specified by the researcher).

The next section explains the concept of GAs and describes the design
of a genetic algorithm which we have developed for the estimation of
econometric models. In section 3, we apply this GA to censored least
absolute deviation models for illustrative purpose. The performance of
the GA is compared to the iterative linear programming algorithm that
is frequently used for the computation of this estimator. In section 4, we
apply the GA to compute a maximum rank correlation estimator for which
currently no ready-to-use software exists to the best of our knowledge.
Section 5 concludes. Appendix A describes a step–by–step guide for using
our algorithm in STATA. Appendix B includes a classic textbook example of
a non–linear regression, where the conventional Newton–Raphson algorithm
fails to find the global optimum. We provide an example program where we
show that the genetic algorithm always converges to the global optimum.
This example may be useful for interested researchers who would like to
explore the trade–off between convergence and computation time with
different sets of tuning parameters.

2

2 A genetic algorithm

The concept of genetic algorithm is very appealingly described by Cooper
(2000). He calls it a concept of partial imitation and refers to an approach
which is familiar to every economist: “[...] an effective method for creating
innovative new models is to combine the successful features of two or more
existing models” (Cooper, 2000: 403). A process similar to this is known as
evolution in nature. Learning from nature and finding improved elements
of a complex space is incorporated into a formal method of optimization
called genetic algorithm.

This section describes the concept of GAs and explains our particular
implementation of the method. It should be noted that there is no golden
rule to implement a GA. The biological and evolutionary concepts of GA
leave much room for interpretation. Many additional concepts can be
introduced to optimize the GA for a specific problem. We choose a very
straightforward approach using real valued encoding and elitism. The
target of this implementation was to devise a reliable and versatile tool
for many statistical optimization problems. The GA has been developed
in STATA, a statistical software package with a flexible programming
language.4 A major advantage of our software over existing applications
of genetic algorithms is that any criterion function to be optimized can
be dynamically linked to the GA. In contrast to other studies using GAs
for optimization, there is no need to re–program the GA for a specific
problem. The integration of the GA into other STATA programs can easily
be achieved. The implementation is described below.

The starting point is a criterion function to optimized with respect to some
unknown parameter values. A well known example is the linear regression
model,

yi = β′xi + εi, with i = 1, . . . , N, (1)

where y is the vector of the dependent variable, x is a set of covariates, β

the corresponding parameters to be estimated and ε is an i.i.d. error term.
The ordinary least estimator is a convenient method to estimate β. In this
case, the criterion function to be optimized with regard to β is

β = argmin
β

N∑
i=1

(yi − β′xi)2 (2)

4The software is compatible with STATA version 9.0 and above.

3

In the language of GAs, this is called the fitness function. A sketch of the
procedure performed by a genetic algorithm can be described as follows:5

The algorithm starts with a fixed number of different random candidate so-
lutions for β (the population) and evaluates the fitness function with respect
to each candidate solution. Depending on the “fitness” (the fit) of the dif-
ferent solutions, pairs of vectors are chosen to generate a new population.
An example of such a “crossover” would be taking the mean value of each
pair of elements in the two selected vectors and use the mean vector as one
new candidate solution in a new set of “offsprings”. Once again the fitness
function is evaluated for the initial population and its offsprings. According
to the fitness of each solution, the group of “survivors” is determined, and
the crossover and offspring creation is repeated. The GA converges either
when a certain number of iterations have been computed (generations) or
no offsprings enter the survivors for a number of trials set by the researcher
(stagnation). Let us now consider each step in more detail:

– Creation of the initial population

The “population” denotes a set of candidate solutions for a particular opti-
mization problem, e.g. a set of vectors of different parameter values. The
initial population consists of s “survivor” vectors representing the candidate
solutions. A vector β has k elements corresponding to the parameters of the
fitness function

fi = f(βi1, . . . , βik) with i = 1, . . . , s. (3)

The elements βij (j = 1, . . . , k) are initialized by a random value in a
particular interval [aj , bj] which has to be chosen by the user. A first
evaluation of the fitness f of each vector is then performed.

– Main loop

The main loop runs the artificial evolution. It repeats steps 3 to 5 until a
maximum number of generations T is reached or the GA stagnates. Stag-
nation occurs when the current generation equals the previous generation
over a given number of subsequent generations τ (with τ ≤ T) .

5The terminology of GAs is mainly borrowed from biology and evolution theory to
underline the analogies. Each term represents the artificial implementation of biological
or evolutionary concepts, though on a much simpler level. Because there are always
different views on the same item, a multitude of more biological or more evolutionary
inspired realizations exists.

4

– Determination of the mutation probability and radiation level

Mutation is a very important evolutionary aspect for GAs. While crossover
can produce many new variants of existing solutions, mutation has the
power to produce completely new solutions. It is randomly applied after
crossover to mutate one or more elements in an offspring. The mutation of
randomly selected real value encoded traits is resolved by the multiplication
with a random factor within a specific interval — termed for further
reference “radiation level”.

The values of the mutation probability γ and the radiation level δ both
shrink according to the general half–life formula:

γt = γ0 exp

(
− ln(2)

λγ
t

)
with t = 1, . . . , T, (4)

δt = δ0 exp
(− ln(2)

λδ
t

)
with t = 1, . . . , T, (5)

where γ0 and δ0 are the initial values and λγ and λδ are the half–life
durations. Since mutation is a probability, the initial value must be in the
interval [0, 1]. The absolute value of the radiation level and its negative
counterpart define the interval limits for the random mutation factor.

Changing the mutation and radiation levels within the iteration process is
based on following idea: initially it is desirable to search a broad space for
candidate solutions even outside the interval of parameter starting values.
During the optimization, however, potential candidates are found quickly,
and then is is desirable to achieve convergence fast. Reducing the mutation
and radiation level over time facilitates these two goals. Thus after an
initial broad search the algorithm focuses on fine tuning the best parameter
solutions. Note, however, that our software does also allow to fix mutation
and radiation levels throughout the optimization process at any desired level
if requested by the researcher.

– Determination of the selection probability

Selection is the evolutionary term for “survival of the fittest”, referring
to the probability for an organism to survive and reproduce. Most GAs
described in the literature have been “generational” — at each generation
the new population consists entirely of offsprings formed by parents in the
previous generation (Mitchell 1996). The parent generation is completely
discarded. These GAs rely only on selection for reproduction. Other GAs

5

additionally implement the struggle for survival. The environment can
only support a given number of entities. An evolutionary step of a GA
consists of reproduction to create an intermediate population of parents
and offspring, and of evaluation and selection of the fittest entities to re–
establish the original population size. This and similar selection methods
are based on a concept called “elitism”, first introduced by De Jong (1975).
Many researchers have found that elitism significantly improves the GAs’
performance (cf. Mitchell 1996), and this is followed here, too.

A reproduction probability ωi has to be associated with each vector βi. The
first step is the determination of the minimum and the maximum of the
fitness values to calculate an offset for the following normalization scheme:

offset =
max(f1, . . . , fs)−min(f1, . . . , fs)

s
(6)

The offset is required to give the lowest fitness a reasonable probability
greater than zero. Therefore, we compute a rescaled fitness

hi = fi −min(f1, . . . , fs) + offset. (7)

The selection probability is defined as

ωi =
hi

s∑
i=1

hi

. (8)

In rare occasions, it may be possible that users want to decrease the impor-
tance of the current fitness for selection, for example, as an additional tool
to minimize the danger of getting trapped in local extrema. Therefore, we
include an optional weight W for the reproduction probability. By default,
W = 1 which means that the reproduction probability for crossovers is fully
determined by the fitness of the candidate solutions. If W is set to values
smaller than 1, the importance of the individual fitness decreases. If W = 0,
the selection probability is independent of the fitness, so that the chance of
being chosen for crossover would be equal for every candidate solution. If
W is specified, the reproduction probability is calculated as a the convex
combination

ω∗
i = (1−W)

1
s

+ Wωi. (9)

– Evolution

1. Two different candidate solutions are drawn out of the population
according to the selection probabilities ωi (optionally weighted by W).

6

2. Crossover is applied by a randomly weighted mean for each element
pair of the drawn candidates. The weight is uniformly distributed on
the interval [0; 1].6

3. Each element of the resulting offspring vector is mutated according to
the mutation probability γ.

4. For every element selected for mutation, the radiation level determines
the interval [−δ; δ] of the random uniformly distributed mutation fac-
tor. Thus, the parameters are adjusted as follows:

β̃ik = βik + βik(δ − 2δU),

where U ∼ U(0, 1).

5. The offspring is evaluated by the fitness function.

6. This process is repeated until the number of offsprings reaches a given
number o. This intermediate population is sorted by the fitness of its
members to determine the s survivors for the next generation.

7. The criterion of stagnation (see “main loop” above) is fulfilled when
the new generation contains no offspring.

3 An application using the CLAD estimator

This section presents a small Monte–Carlo study of the estimation of a
semiparametric econometric model: the censored least absolute deviation
(CLAD) model proposed by Powell (1984). We compare the genetic algo-
rithm with an estimation technique called iterative linear programming al-
gorithm (ILPA) suggested by Buchinsky (1994).7 Consider the econometric
model

y∗i = β′xi + εi, (10)
6A simpler version would be to attach a weight of 0.5 to all cases. This would slightly

improve computation time. The trade–off is, however, that the risk of getting stuck in
a local optimum would be larger. Suppose two “parent vectors” are close to two local
optima that are of similar fit. If we would always take a mean, the offspring vectors would
always be further away from the best solution and be discarded immediately. In addition,
the parent vectors would not be fine–tuned around the local optima which may result in
non–convergence.

7Note that there is no particular reason for choosing this model for demonstration
of the GA. The GA can be applied to every numerical criterion function. However, as
we encountered problems using the CLAD estimator in empirical studies, we thought it
might be useful to think about the GA as another option for practical use or at least as
a supplementary method.

7

where xi is a set of regressors, β the corresponding coefficient vector to be
estimated and εi a stochastic error term. y∗i is an unobserved variable and
we only observe a left censored variable

yi =

{
y∗i if y∗i > 0,
0 if y∗i ≤ 0.

(11)

A special case is the Tobit model which is a fully parametric model and
can be estimated with the common maximum likelihood (ML) techniques.
It is derived from the additional assumption that y∗i ∼ N(µ, σ2). If the as-
sumptions of homoscedasticity or normality are violated, the ML estimates
may be inconsistent. In case of heteroscedasticity, researchers can attempt
to model heteroscedasticity as a function of some observable variables.
However, the true functional form is usually unknown and the choice
of variables determining the heteroscedasticity function is arbitrary. To-
bit estimates are sensitive to different choices of the heteroscedasticity term.

Powell has developed different semiparametric models to relax the strict
assumptions which were needed to estimate censored regression models.
Among others, he proposed the CLAD model, where he suggests to esti-
mate MED(yi|xi) instead of its expectation. This quantile regression can
be expressed by the minimization problem

βCLAD = argmin
β

N∑
i=1

∣∣yi −max(0, β′xi)
∣∣ . (12)

This estimator is consistent and asymptotically normally distributed even
in case of heteroscedastic and/or non–normally distributed error terms (see
Powell 1984, 1994). However, as this criterion function is not continuously
differentiable, estimation is not easy. Buchinsky (1994) has proposed an
iterative technique (ILPA) which uses the idea of sample trimming to es-
timate CLAD models. His procedure can be summarized by the following
steps:

1. Estimate a median regression (least absolute deviation: LAD) with
the entire sample and generate the estimated ŷi for this initial step.

2. Subsequently, the sample is trimmed, i.e. the observations for which
ŷi < 0 are dropped. It is noteworthy that we keep observations for
which ŷi ≥ 0. In Buchinsky’s original procedure, he suggested to
keep only those observations for which ŷi > 0. However, Fitzenberger
(1994) has shown that the modified version (using the subset of obser-
vations if ŷi ≥ 0) is more likely to converge than Buchinsky’s original

8

proposal. Fitzenberger calls it modified iterative linear programming
algorithm (MILPA).

3. Repeat the estimation of a median regression for the trimmed sample
and predict ŷi again (for the entire sample).

4. Return to step 2 and keep iterating until the estimated coefficients do
not change during the iterations.

Buchinsky’s algorithm has the advantage that it is quite easy to imple-
ment using standard econometric software packages (which provide median
regressions as implemented command).8. The practical problem of non–
convergence of the MILPA which occurs in applications is that the iteration
procedure may jump between two (or more) trimmed states of the sample.
If it is running in circles it is unclear, what the researcher can do to either
achieve convergence or how to decide whether one of these circling states
represents a global minimum.9 Of course, one could record the value of the
criterion function and choose the minimum but there is no reason which en-
sures that this value is a global optimum. It is noteworthy that this circling
of the algorithm is not unlikely to happen. Due to this phenomenon, we
compare the performance of the MILPA with the GA in CLAD regression
models. We choose a simple case of a model and carry out Monte–Carlo
simulations. Consider the true model

y∗i = β0 + β1x1i + β2x2i, i = 1, . . . , N, (13)

The explanatory variable x1 is standard normally distributed and x2 is uni-
formly distributed on the interval [0,1]. For simplicity, we set β0 = β1 =
β2 = 1. The observed dependent variable is

yi =

{
y∗i + εi if y∗i + εi > 0
0 if y∗i + εi ≤ 0

(14)

8Fitzenberger (1994) shows that ILPA is less likely to converge than his modification
“MILPA”. Moreover, he finds that both ILPA and MILPA are outperformed by another
algorithm called BRCENS: Fitzenberger adapts an algorithm (Barrodale–Roberts) for
standard LAD regressions and extends it to the CLAD model. It outperforms the others
with respect to the frequencies that the global optimum is reached. However, conditional
on convergence of ILPA and BRCENS there is no clear ranking between the algorithms
(see also Fitzenberger 1997 and Fitzenberger and Winker 1999)

9Fitzenberger (1997: 180) states: ” When ILPA does not converge, it typically oscil-
lates between two or three coefficient vectors. If ILPA does not converge, it must oscillate,
since a finite sample allows only for a finite number of subsamples which a standard quan-
tile regression can be based upon. Oscillation arises, since an observation, for which the
current standard quantile regression implies a censored fitted value, still contributes to
the distance function. In the next iteration, this observation is excluded from the sam-
ple, which can result in a new estimate for which the fitted value at the aforementioned
observation is now uncensored.”

9

where εi is the error term.

Table 1 displays the required tuning parameters for running the GA to esti-
mate β. The tuning parameters have to be set by the user. The right column
shows their values for the following Monte Carlo study. The initialization
interval for all three β–parameters was set to [−2; 2].

Table 1:
Set of GA tuning parameters for the CLAD estimation

Parameter Description Parameter value
s Population size 30
o Number of offsprings 60
γ0 Mutation probability 1
δ0 Radiation level 1
λγ Half–life duration of mutation 40
λδ Half–life duration of radiation 40
T Maximum number of generations 500
τ Number of subsequent stagnations 20
W Weight for the selection probability 1.0

We carry out Monte–Carlo simulations for four different types of error terms
εi,

1. a standard normally distributed error term: εi ∼ N(0, 1);

2. a heteroscedastic error term, where the standard error is modeled as

σi = exp(0.2x4), with x4 ∼ N(0, 1); (15)

3. a skewed error term, εi = exp(z) where z ∼ N(0, 1);

4. and a uniformly distributed error term, such that εi ∼ U [−0.5; 0.5]

where we always impose the restriction that MED(εi) = 0 to satisfy the
CLAD model’s assumptions.

We run the four set–ups with samples of N = 50, 100, 1000, 10000 and
carry out 200 replications for each simulation using the MILPA and the
GA to estimate the model. Instead of reporting the coefficient estimates,
we just report wether the algorithm converged to the global minimum and
the average computation time in seconds. We declare convergence to be
achieved if the found minimum is in tolerance of 10−7 of the true minimum.

10

Table 2 shows the simulation results. The GA results in less failures with
respect to achieving convergence than the MILPA in all simulations. For
instance, in the simulation with a skewed error term and N = 50, the
GA fails to converge once out of 200 trials, whereas the MILPA fails 48
times, i.e. it does not converge in 24% of the simulations. However, 43
out of the 48 failures are due to the aforementioned problem of oscillating.
Conditional on the not oscillating the performance of the GA and the ILPA
becomes comparable, but the GA fails still less, on average. Therefore, we
can conclude that the GA performs very well with respect to finding the
global minimum when compared to a more conventional algorithm. That
does not come without cost, however.

As can be seen in Table 2, the computation time of the GA is always larger
then that of the MILPA. In the simulation with the skewed error term, the
average computation time of the GA increases from 2.4 seconds for N = 50
to 94 seconds for N = 10, 000, whereas the corresponding numbers of the
MILPA are only 0.35 seconds to 14 seconds.

Table 2:
Simulation results for the CLAD estimator

11

N = 50 N = 100 N = 1, 000 N = 10, 000
Normally distributed, homoscedastic error term

GA: # of failures 0 1 0 0
GA: computation time 2.295 2.715 8.605 97.080
MILPA: # of failures (loop) 38(30) 17(17) 22(21) 25(25)
MILPA: computation time 0.340 0.265 0.895 12.950

Normally distributed, heteroscedastic error term
GA: # of failures 1 1 0 1
GA: computation time 2.430 2.605 8.880 94.410
MILPA: # of failures (loop) 30(29) 27(27) 30(30) 29(29)
MILPA: computation time 0.350 0.370 1.225 14.425

Skewed error term
GA: # of failures 1 2 0 1
GA: computation time 2.355 2.595 9.100 93.720
MILPA: # of failures (loop) 48(43) 36(33) 36(35) 29(29)
MILPA: computation time 0.500 0.475 1.515 19.765

Univariately distributed error term
GA: # of failures 3 1 3 2
GA: computation time 2.330 2.580 9.695 95.900
MILPA: # of failures (loop) 20(18) 6(6) 17(17) 17(17)
MILPA: computation time 0.225 0.070 0.720 8.360
Notes: Each result is based on 200 replications. Computation time is reported as
average of the 200 replications in seconds. The MILPA number of failures in brackets
report the number of failures out of total failures that are due to oscillating around
a minimum. The simulations were performed using STATA 10 on a machine with a
Pentium D 3.20GHz processor.

For an explanation of the longer computation time, Figure 1 shows a typical
convergence behavior of the GA during the simulation with N = 1000 and
a normally distributed homoscedastic error term. The health of the popula-
tion, measured as the average fitness, follows a growing group of dominating
solutions towards the global maximum. Even if there is no distinguishable
difference between the health of the population and the highest fitness, an
exchange happens between the population and the offspring, considerable
delaying the stagnation of the GA. Even so we defend the usage of the
stagnation as a stopping criterion for the GA because of its problem inde-
pendency. Furthermore, the stagnation tendency can always be increased by
reducing the precision of the fitness. A solution space with a lower precision
is less prone to time-consuming fine tuning of the population.

Figure 1: Typical pattern of GA convergence

12

4 The maximum rank correlation estimator

In addition to the CLAD example, this section presents a small simulation
study on a binary choice model for which no readily available optimization
algorithm exists so far. Han (1987) proposed the maximum rank correlation
(MRC) estimator and shows a variety of possible applications. We choose
the binary choice model in this case, because the criterion function is highly
non–smooth and there is so far no standard software package which offers
MRC estimation in this context, to the best of our knowledge. Let

y∗i = x′iβ + εi, (16)

where we observe

yi =

{
1 if x′iβ + εi > 0
0 otherwise

(17)

The MRC estimator chooses β to maximize

QH(β) =
1

N(N − 1)

n∑
j=1

∑
i6=j

I(yi > yj)I(x′iβ > x′jβ)

+I(yi < yj)I(x′iβ < x′jβ), (18)

13

where the summation is taken over all combinations of two distinct elements
(i, j) from i = 1, . . . , N ; j = 1, . . . , N . The idea of the estimator is the
following: P (yi ≥ yj |xi, xj) ≥ P (yi ≤ yj |xi, xj) if x′iβ0 ≥ x′jβ0, making it
likely that yi ≥ yj whenever x′iβ0 ≥ x′jβ0, so that a high correlation between
the rank of yi and the rank of x′iβ should be observed when β = β0, whereas
a lower value would be exhibited when β departs from β0 (see Pagan and
Ullah, 1999). It has been shown that this estimator is

√
N–consistent and

asymptotically normal (Sherman, 1993).

We choose the same setup for our simulation as given in eq. (13), and also
use the same four scenarios regarding the error term (see Section 3). Note,
however, that the constant term is not identified in the MRC estimator,
as it is scale invariant. The intercept is thus simply dropped here. Table
3 displays the GA’s tuning parameters used to produce the simulation re-
sults shown in Table 4. Convergence is achieved when the GA predicts an
equal number (or more) correct ranks than the number of correct predictions
obtained with the true coefficient values.

Table 3:
Set of GA tuning parameters for the maximum rank correlation estimation

Parameter Description Parameter value
s Population size 30
o Number of offsprings 60
γ0 Mutation probability 1
δ0 Radiation level 2
λγ Half–life duration of mutation 20
λδ Half–life duration of radiation 25
T Maximum number of generations 500
τ Number of subsequent stagnations 20
W Weight for the selection probability 1.0

Interval of starting values [-2,2]

As can be seen in Table 4, the GA converges to the global minimum in
all simulation runs except in three cases. The computation time becomes
substantial in the simulations with 10,000 observation, though. A single es-
timation roughly amounts to three minutes then. Nevertheless, it becomes
obvious that the GA offers an opportunity to successfully estimate param-
eter values for models with non–differentiable, highly non–smooth criterion
functions where no other readily available optimization algorithm exists. As
the MRC estimator has not been applied frequently yet, we also report the
mean squared errors of the coefficient estimates which are in line with the
theoretically expected rate of convergence.

14

Table 4:
Simulation results for the maximum rank correlation estimator

N = 50 N = 100 N = 1, 000 N = 10, 000
Normally distributed, homoscedastic error term

of failures 0 0 0 0
computation time 1.380 2.110 16.405 190.185
MSE(β1) 1.1389 0.4237 0.0471 0.0042
MSE(β2) 0.9726 0.1491 0.0102 0.0010

Normally distributed, heteroscedastic error term
of failures 0 0 1 0
computation time 1.445 2.190 16.205 190.225
MSE(β1) 1.1328 0.4612 0.0427 0.0039
MSE(β2) 0.9990 0.1878 0.0080 0.0007

Skewed error term
of failures 0 1 0 0
computation time 1.455 2.160 15.740 182.600
MSE(β1) 0.8889 0.4889 0.0403 0.0036
MSE(β2) 0.3324 0.0959 0.0106 0.0012

Univariately distributed error term
of failures 0 0 0 1
computation time 1.335 1.945 14.975 171.505
MSE(β1) 0.2846 0.1384 0.0093 0.0007
MSE(β2) 0.0781 0.0307 0.0022 0.0002
Notes: Each result is based on 200 (=R) replications. Computation time is
reported as average of the 200 replications in seconds. The simulations were
performed using STATA 10 on a machine with a Pentium D 3.20GHz processor.
The Mean Squared Error was calculated as MSE = 1/R

∑R

r=1
(βr − β)2.

5 Conclusions

This paper describes a genetic algorithm implemented in STATA (compati-
ble with Version 9.0 and above) that can be downloaded from the Internet
or be obtained from the authors directly. On the background of the growing
development and applications of semiparametric and non–parametric
estimators in econometrics, heuristic methods such as genetic algorithms
become increasingly more important in empirical research. Our paper tries
to bridge the gap between available (theoretical) knowledge on genetic
algorithms and its advantages and its actual availability in common software
packages. We provide an implementation of a fairly general concept of
genetic algorithms that can be linked easily to any criterion function
to be optimized by a researcher. A set of various tuning parameters
allows researchers to adjust the optimization procedure to a wide range of
specific combinations of data structure and a particular estimation problem.

15

Our small Monte–Carlo simulation examples mainly meant for illustrative
purpose of the power and flexible use of the GA demonstrate the perfor-
mance of the algorithm. The following appendix describes a step–by–step
guide for using our research tool in STATA along with some anecdotal
recommendations based on our own experience with the algorithm that has
not entered the simulations presented above.

For further research on the performance of our research tool it would be
desirable to collect evidence on the algorithm’s performance on a broad set
of econometric problems, and more detailed simulations on the importance
and implications of choosing particular values for the tuning parameters.

16

References

Arifovic, J. (1994), Genetic Algorithm learning and the cobweb model,
Journal of Economic Dynamics and Control 18, 3–28.

Bethke, A.D. (1980), Genetic algorithms as function optimizers, Ph.D. the-
sis, University of Michigan, Ann Arbor.

Buchinsky, M. (1994), Changes in the U.S. wage structure 1963–1987: Ap-
plication of quantile regression, Econometrica 62(2), 405–458.

Cameron, A.C. and P.K. Trivedi (2005), Microeconometrics: methods and
applications, Cambridge University Press.

Corana, A., M. Marchesi, C. Martini and S. Ridella (1987), Minimizing
multimodal functions of continuous variables with the ‘simulated an-
nealing algorithm’, ACM Transactions on Mathematical Software 13,
262–280.

Caruana R.A. and J.D. Schaffer (1988), Representation and hidden bias:
gray versus binary coding for genetic algorithms, Proceedings of the
fourth international conference on machine learning.

Cooper, B. (2000), Modelling research and development: How do firms
solve design problems?, Journal of Evolutionary Economics 10, 395–
413.

De Jong, K.A. (1975), An analysis of the behavior of a class of genetic
adaptive systems, Ph.D. thesis, University of Michigan, Ann Arbor.

Dorsey, R.E. and W.J. Mayer (1995), Genetic algorithms for estimations
problems with multiple optima, nondifferentiability, and other irregu-
lar features, Journal of Business & Economic Statistics 13(1), 53–66.

Fitzenberger, B. (1994), A note on estimating censored quantile regressions,
Discussion Paper 14, University of Konstanz.

Fitzenberger, B. (1997), A guide to censored quantile regressions, in: G.
Maddala and C. Rao (eds.), Handbook of statistics, Vol. 15: robust
inference, Amsterdam, 405–437.

Fitzenberger, B. and P. Winker (1999), Improving the computation of
censored quantile regressions, Discussion Paper 568–99, University of
Mannheim.

17

Goffe, W.L., G.D. Ferrier and J. Rogers (1994), Global optimization of sta-
tistical functions with simulated annealing, Journal of Econometrics
60, 65–99.

Goldberg, D.E. (1989), Genetic algorithms in search, optimization and ma-
chine learning, Reading, MA: Addison–Wesley.

Han, A.K. (1987), Non–parametric analysis of a generalized regression
model: the maximum rank correlation estimator, Journal of Econo-
metrics 35, 303–316.

Judge, G.G., W.E. Griffiths, R.C. Hill, H. Ltkepohl and T.C. Lee (1985),
The theory and practice of econometrics, 2nd ed., New York: John
Wiley.

Maddala, G.S. and F.D. Nelson (1974), Maximum likelihood methods for
models for markets in disequilibrium, Econometrica 42, 1013–1030.

Manski, C.F. (1975), Maximum score estimation of the stochastic utility
model of choice Journal of Econometrics 3, 205–228.

Manski, C.F. (1985), Semiparametric analysis of discrete response: Asymp-
totic properties of the maximum score estimator, Journal of Econo-
metrics 27, 313–333.

Manski, C.F. and T.S. Thompson (1986), Operational characteristics of
maximum score estimation, Journal of Econometrics 32, 85–108.

Mayer, W.J. (1989), Estimating disequilibrium models with limited a priori
price–adjustment information, Journal of Econometrics 41, 303–317.

McManus, W.S. (1985), Estimates of the deterrent effect of capital punish-
ment: the importance of researcher’s prior beliefs, Journal of Political
Economy 93, 417–425.

Mitchell, M. (1996), An introduction to genetic algorithms, Cambridge.

Östermark, R. (1999), Solving irregular econometric and mathematical op-
timization problems with a genetic hybrid algorithm Computational
Economics 13, 103–115.

Pagan, A. and A. Ullah (1999), Nonparametric econometrics, Cambridge:
Cambridge University Press.

Powell, J.L. (1984), Least absolute deviations for the censored regression
model, Journal of Econometrics 25, 303–325.

18

Powell, J.L. (1994), Estimation of semiparametric models, in: R.F. Engle
and D.L. McFadden, Handbook of econometrics IV, New York.

Price, T.C. (1997), Using co–evolutionary programming to simulate strate-
gic behaviour in markets, Journal of Evolutionary Economics 7, 219–
254.

Sherman, R.C. (1993), The limiting distribution of the maximum rank
correlation estimator, Econometrica 61, 123–137.

Varetto, F. (1998), Genetic algorithms applications in the analysis of in-
solvency risk, Journal of Banking and Finance 22, 1421–1439.

19

A A step–by–step guide for the GA’s STATA syn-
tax

When using our GA for the first time, download the GA at

ftp://ftp.zew.de/pub/zew-docs/div/genetic.zip

.
The zip file contains dna.ado and dna.hlp which have to be copied into
c:\ado.

Furthermore, the file contains three sample progams that run

1. an example of the Censored Least Absolute Deviation estimation as
shown in Section 3 of this paper;

2. an example of the Maximum Rank Correlation estimation as shown in
Section 4 of this paper;

3. and a classical example taken from Judge et al. (1985). It demon-
strates a simple nonlinear optimization problem where a standard al-
gorithm like Newton–Raphson fails to find the global optimum but
gets stuck in a local minimum. This example is described in some
more detail in Appendix B of this paper.

If you encounter problems with the download, please do not hesitate
to contact us by e-mail, either dirk.czarnitzki@econ.kuleuven.be or
doherr@zew.de.

The STATA GA ado–file allows for an easy integration of self written
commands into its syntax. In the case of the GA this command is called
dna. The parametrization of the GA is achieved over multiple calls of this
command followed by a sub command and its parameters separated by
blanks. All settings are saved in global macros starting with the letters
“DNA”. If a macro does not exist it will be generated with a default setting.
The complete syntax and additional information on the macros and default
settings is provided in the obligatory help file that can be evoked by typing
help dna at the STATA command line.

This step by step guide uses our actual parametrization of the GA for
the CLAD estimation example. We start with the definition of the fitness
function:

20

cap program drop cladfit

program define cladfit

tempvar score xb

qui gen double ‘xb’ = x1*dna[1,1] + x2*dna[1,2] + dna[1,3]

qui replace ‘xb’ = max(‘xb’,0)

qui egen double ‘score’ = sum(abs(y-‘xb’))

scalar hit = _N/‘score’

qui matrix dna[1,$DNAFIT] = hit

end

This is the fitness function for the CLAD estimation. A potential solution
is copied into the row vector dna to be evaluated by the function. The last
element off this vector is always reserved for the fitness value of the solution.
The global macro DNAFIT contains this row number for your convenience.

dna clear

This command deletes all DNA macros, resulting in the usage of the default
settings.

dna function cladfit

The function command associates the fitness function to the GA.

dna length 3

It is required to define the size of a candidate vector. The function cladfit

defines the regression model with 3 coefficients.

dna population 30

The population defines the number of candidate vectors in the base popu-
lation.

dna offspring 60

60 offspring vectors will be created during each evolutionary step. In this
example the intermediate population will consist of 90 candidates. Only
the best 30 candidates as evaluated by the fitness function remain in the
base population.

From our own experience, we recommend to choose a relatively small size
of the population. If one uses a large population, e.g. of 100 candidate

21

solutions and chooses a smaller number of offsprings, e.g. 50, the process of
evolution becomes sluggish as only a few crossovers take place, which means
that it may take several generations until the fitness of the best candidate
solution improves significantly. We recommend using a small population
size, e.g. 30, and to create a larger number of crossovers, e.g. 60, as done
in the presented simulation. This may require more generations until the
evolution stagnates, but it is rapidly computed and the best fitness is found
quickly due to a large number of trials (offsprings) to find improvements.

dna mutation 1 40

The command mutation specifies the probability of a mutation. The first
parameter sets the starting value of this probability to 1. Every element of
an offspring will be mutated. The second parameter defines the half–life.
After 40 generations the mutation probability is reduced to 0.5. If the second
parameter is omitted or zero the mutation probability stays constant.

dna radiation 1 40

The effect of a mutation is determined by the radiation level (the first
parameter). A level of 1.0 results in a positive or negative shift by up to
100% of the original value. Like the mutation command the radiation

command has an additional parameter to specify the half–life.

The mutation probability is an important feature to avoid local extrema.
So it should not be set to zero or close to zero. Although we do not provide
simulations on the effect of changing the radiation level and the half–life time
of radiation and mutation, we have experimented with these parameters.
The half–life time had no perceptible influence on the performance of the
GA. Higher values for each parameter reduce the danger of getting stuck
in local extrema. However, a higher level of radiation yields many trials
that can be relatively far away from “good” solutions and thus increases the
number of necessary generations until stagnation.

dna define 1 -2 2

dna define 2 -2 2

dna define 3 -2 2

With the define command it is possible to specify a separate initilization
range for every element of the candidate vectors in the base population.
The first parameter is the column index of the element. The other two

22

parameters define the low and high range for the starting value.

The initial parameter intervals are needed to create the first population.
Although we found that the mutation feature is a powerful option to get
out of wrong starting intervals, we recommend to set the initial intervals
to meaningful positions and widths. If the true solutions are outside the
initial interval the GA will still find the global optimum due to the mutation
feature, but the convergence is slower.

dna generations 500

One way to stop the iterations of the algorithm is to define a maximum
number of generations. In this example the GA stops at a maximum of 500
generations.

dna stagnation 20

This is another way the stop the algorithm. After 20 generations without
any offsprings that are fit enough to claim a place in the base population
the artificial evolution is stagnated and stops.

dna selection 1

The weight of the selection probability W should be a rarely used feature.
By default, W is set to 1. In our case, there was no need to scale down the
importance of the current fitness for the selection probability. We did not
encounter problems of ending up in local extrema. Usually, the evolutionary
process finds the global solution. However, there may be some special cases,
where the selection is desired to be completely random. For example, if
multiple solutions are expected.

dna info

Description | Macro | Value

----------------------+----------+-----------------------------------

parameter | DNALEN | 3

population | DNAPOP | 30

offspring | DNAOFF | 60

selection | DNASEL | 1

23

mutation | DNAMUT | 1

half-life: mutation | DNAMHL | 40

radiation | DNARAD | 1

half-life: radiation | DNARHL | 40

mutation mode | DNAMOD | auto

max. generations | DNAGEN | 500

stagnation | DNASTA | 20

display mode | DNADIS | display

----------------------+----------+-----------------------------------

Parameter 1 low | DNAL1 | -2

high | DNAH1 | 2

group | DNAG1 | 0

----------------------+----------+-----------------------------------

Parameter 2 low | DNAL2 | -2

high | DNAH2 | 2

group | DNAG2 | 0

----------------------+----------+-----------------------------------

Parameter 3 low | DNAL3 | -2

high | DNAH3 | 2

group | DNAG3 | 0

This command displays all settings, the corresponding macros and their val-
ues. As stated above, additional information about the syntax and macros
can be retrieved by consulting the provided help file.

dna go

Up to this point the GA only consists of global macros for the settings.
This command starts the actual iteration process using these settings. The
population resides in the matrix pop consisting of DNAPOP rows and
DNALEN+1 columns. The last column contains the fitness of the corre-
sponding row. After completition pop is sorted in descending order by the
fitness. The interface vector to the fitness function dna contains a copy of
the top solution. Both matrices can easily be accessed by using the STATA
matrix command, i.e. matrix list dna.

24

B The Judge et al. (1985) example

Judge et al. (1985) illustrate the potential pitfalls of the Newton Algorithm
with a simple nonlinear statistical model. Let

yi = θ∗1 + θ∗2xi2 + θ∗
2

2 xi3 + ei, i = 1, . . . , 20. (19)

y = f(θ∗) + e, (20)

where y = (y1, y2, . . . , y20)′, θ∗ = (θ∗1, θ
∗
2)

′ is the true parameter vector,
e = (e1, e2, . . . , e20)′ and

f(θ) =


θ1 + θ2x12 + θ2

2x13 + ei

θ1 + θ2x22 + θ2
2x23 + ei

...
θ1 + θ2x20,2 + θ2

2x20,3 + ei

 (21)

The data used for this example are given in Judge et al. (1985: 956) and is
also included in the file newton.txt (tab–delimited). The true parameters
are θ∗1 = θ∗2 = 1.

To determine the least squares estimate of θ∗, we have to minimize

H(θ) = [y − f(θ)]′[y − f(θ)]. (22)

If the Newton–Raphson algorithm is used, it terminates at two different
points in the parameter space, which is not surprising as H(θ) has two
different local minima. The estimates found by the Newton–Raphson may
either be

1. θ1 = 0.864787, θ2 = 1.235748 with H(θ) = 16.0817,

2. θ1 = 2.354471, θ2 = −0.319186 with H(θ) = 20.9805.

Judge et al. (1985) also show that this problem cannot be circumvented
with different starting values for the optimization process when the Newton
algorithm is used.

The file newton.do runs the estimation using he GA, and the interested
user will find that the GA does not terminate at the local optimum H(θ) =
20.9805, but always converges to the global optimum at H(θ) = 16.0817.

25

