PERFORMANCE MEASURE PROPERTIES AND INCENTIVE SYSTEM DESIGN^{*} Michael Gibbs,^a Kenneth A. Merchant,^b Wim A. Van der Stede,^c and Mark E. Vargus^d

^a Graduate School of Business, University of Chicago, Chicago, IL 60637; Institute for the Study of Labor (IZA)

^b Marshall School of Business, University of Southern California, Los Angeles, CA 90089

^c London School of Economics & Political Science, London WC2A 2AE

^d School of Management, University of Texas-Dallas, Dallas, TX 75083

July 31, 2007

^{*} We are grateful to an unnamed consulting firm for giving us access to their data and clients, and for numerous discussions that helped us understand the auto dealership business and clarify the data. For comments on the various drafts of this project, we thank Trond Petersen (the editor), three anonymous referees, Jan Bouwens, Mark Bradshaw, Jim Brickley, Jed DeVaro, Leslie Eldenburg, Eva Labro, Joan Luft, Margaret Meyer, Kevin J. Murphy, Walter Oi, Lorenzo Patelli, Canice Prendergast, Michael Raith, Edward Reidl, Bernard Salanié, Marcel van Rinsum, and Sally Widener; seminar participants at the Harvard Business School, London School of Economics, RSM Erasmus University, Tilburg University, Universidad de Navarra, Universitat Pompeu Fabra, University of Aarhus, University of Arizona, University of Rochester, University of Southern California, ; and conference participants of AAA, BMAS, CAED, CEPR, and Society of Labor Economists. Liu Zheng provided helpful research assistance.

PERFORMANCE MEASURE PROPERTIES AND INCENTIVE SYSTEM DESIGN

We analyze effects of performance measure properties (controllable and uncontrollable risk, distortion, and manipulation) on incentive plan design, using data from auto dealership manager incentive systems. Dealerships put the most weight on measures that are "better" with respect to these properties. Additional measures are more likely to be used for a second or third bonus if they can mitigate distortion or manipulation in the first performance measure. Implicit incentives are used to provide ex post evaluation, to motivate the employee to use controllable risk on behalf of the firm, and to deter manipulation of performance measures. Overall, our results indicate that firms use incentive *systems* of multiple performance measures, incentive instruments, and implicit evaluation and rewards, as a response to flaws in available performance measures.

1. INTRODUCTION

Performance measurement is perhaps the most difficult challenge in the design and implementation of incentive systems. Since explicit measures are affected by factors outside the employee's control, they impose risk on the employee. The firm may narrow the focus of evaluation to reduce risk (e.g., use accounting numbers instead of stock price to evaluate a CEO), but that often results in distorted incentives. In addition, the employee may be able to use private knowledge to manipulate the measure to increase pay without improving firm value. In response to these problems, the firm may add subjectivity to the incentive system, by using explicit measures as inputs into implicit incentives (such as promotion decisions), or by using subjective evaluations as a substitute for explicit measures. However, discretion raises its own concerns, such as the potential for favoritism and bias.

Consistent with their importance in practice, performance measure problems have received increasing attention in agency theory. The original models (e.g., Holmstrom 1979; Banker & Datar 1989) emphasized uncontrollable risk (noise). Later models incorporated multitask-incentives (Holmstrom & Milgrom 1991), which motivated formal consideration of distortions and manipulation (Baker 1992; Feltham & Xie 1994; Demski, Frimor & Sappington 2004). Recent work has emphasized controllable risk (Prendergast 2002; Baker 2002; Raith 2005). In accounting, the empirical literature analyzing performance measure properties focuses largely on risk or distortion (Bushman, Indjejikian & Smith 1996; Ittner, Larcker & Rajan 1997; Van Praag & Cools 2001; Ittner & Larcker 2002). There is also a large literature on manipulation at the level of corporate earnings, and a smaller literature on manipulation at lower levels of the organization (e.g., Holthausen, Larcker & Sloan 1995). Finally, a smaller literature studies subjectivity in evaluation and rewards (MacLeod & Parent 1999; Hayes & Schaefer 2000; Murphy & Oyer 2003; Gibbs, Merchant, Van der Stede & Vargus 2004; Campbell 2007). Despite the importance of performance measurement, the empirical literature on performance evaluation is surprisingly small.

This paper contributes to this literature on performance measurement by providing analysis of several parts of the puzzle together. We constructed a unique dataset on the entire incentive system for a

set of managers in auto dealerships. This allows study of three major performance measure properties: risk (both uncontrollable and controllable), distortions, and manipulation. We show how these properties affect both explicit and implicit incentives. We then study how different incentive instruments are related to each other, a question that has received little attention. Finally, the data provide evidence on how incentive system design takes into account firm strategic variables (degree of competition and emphasis on customer satisfaction). Putting all of this together provides a more comprehensive view of incentive system design than has previously been possible.

Our findings are briefly summarized as follows. First, dealerships put the most weight on measures that have the "best" properties in terms of risk, distortion, and manipulation among those available. This reinforces the existing empirical literature on performance measure properties.

Second, firms use additional bonuses in part to adjust for weaknesses in the performance measure given the most weight. Many dealerships offer a second or third bonus based on different measures. We find that the magnitude of additional bonuses is a function of its performance measure properties (such as distortion) relative to those of the performance measure used for the largest bonus. Thus, multiple bonuses appear to be used to rebalance multitask incentives.

Third, we provide some of the first empirical evidence on the distinction between controllable and uncontrollable risk. Performance measures with more uncontrollable risk are given less weight for incentives, a finding that has been elusive in prior research. In addition, our evidence suggests that incentive system design accounts for the employee's private information or controllable risk in two ways. One is to encourage employees to respond productively to changes in their environment. The other is to reduce incentives to use such information to manipulate performance measures. These are both done in part through implicit rewards granted based on ex post judgments of performance.

Put together, these results suggest two conclusions: performance measure properties are important to both the strength and balancing of incentives, and incentive plans are a system of interrelated instruments, explicit and implicit, that are designed to work together.

2

2. PREDICTIONS

In this section we develop our predictions. We begin with standard predictions from the theoretical literature on performance measure properties in economics and accounting. Almost all of the literature focuses on a single performance measure, and how it is used for a single bonus tied by formula to the measure. We then present several other predictions that are either new or little studied in the existing literature. Those predictions arise from our core idea: when a performance measure is flawed in some way, and no better single measure is available, the firm may move to a *system* of multiple instruments to provide better overall incentives. We consider two ways in which a system of incentives can improve on a flawed performance measure. The firm might use additional bonuses on other performance measures, or ex post settling up through implicit incentives or discretionary bonuses.

We use the following terminology. *Performance measure* refers to a quantitative indicator such as accounting profits or number of cars sold. *Formula bonus* refers to a bonus that is calculated using a mathematical formula based on a performance measure. In our setting, we distinguish up to three formula bonuses, each using only a single performance measure. Both the measure and the formula are set ex ante. Formula bonuses are distinguished from *discretionary bonuses*, which are determined by supervisor judgment. *Implicit incentives* refer to rewards other than discretionary bonuses that are awarded using judgment. Discretionary bonuses and implicit incentives may use numeric performance measures as inputs, but the supervisor may also use qualitative performance information, and may also use judgment in the weights applied to measures. Implicit incentives include the manager's autonomy, raises, promotions, and possible termination. In contrast to formula bonuses, discretion in incentive systems requires ex post judgment.

Predictions Based on Properties of a Single Performance Measure

The literature on key properties of a single performance measure is well known. Performance measures may have uncontrollable risk (noise), which raises costs since agents are risk averse (Holmstrom 1979; Banker & Datar 1989). Measures may also be distorted because their weight misallo-

cates the agent's efforts on different tasks (Holmstrom & Milgrom 1991; Feltham & Xie 1994; Baker 1992, 2002; Van Praag & Cools 2001). The standard predictions are that incentives should be weaker, the greater the noise or more distorted the measure. Several studies analyze the effects of noise on incentives (e.g., Ittner & Larcker 2002; Ittner, Larcker & Rajan 1997; see the survey by Prendergast 1999), but this literature has mixed findings. A much smaller literature has examined the effects of distortion on incentives (e.g., Bouwens & van Lent 2006).

Prendergast (2002) suggests that the mixed findings about the effect of noise on incentive intensity stem from failure to consider an additional performance measure property: controllable risk, or the employee's specific knowledge that arises while performing the job. To the extent that the employee has such knowledge, incentives should be stronger to motivate the employee to use that knowledge to increase firm value (Jensen & Meckling 1992; Raith 2003). For example, if gasoline prices rise unexpectedly, the new car sales department might change its emphasis toward selling more fuel efficient cars. Recent empirical evidence using data that distinguish between controllable and uncontrollable risk, which most prior work has been unable to, is consistent with Prendergast's prediction (DeVaro & Kurtulus 2006).

A final performance measure property that has received less attention is manipulability (Healy 1985; Demski, Frimor & Sappington 2004; Courty & Marschke 2004, forthcoming). Manipulation occurs if the agent "games" the incentive plan to increase the reward without increasing (or at the expense of) firm value. The effects of manipulation are similar to the effects of distortion, except that with manipulation the employee uses his or her specific knowledge to increase measured performance in ways that are not consistent with firm value. This distinction is useful because a firm may use different methods to address distortion and manipulation. We return to this point below.

Summing up the discussion above, standard agency theory leads to the following predictions:

1. The incentive intensity on a bonus will be decreasing in the performance measure's noise, distortion, and manipulability. It will be increasing in the measure's controllable risk.

Predictions about Systems of Incentives

As already noted, most of the literature develops and tests these ideas on a single incentive instrument based on a single performance measure. In practice, however, firms often use a system of multiple incentives. An agent may be offered more than one bonus on different measures. Sometimes firms offer bonuses based on discretionary performance evaluation. Firms also use implicit incentives, such as promotion or threat of termination. If a performance measure has no flaws, why use additional incentive instruments or performance measures? Therefore, we argue that additional incentives could be used to mitigate flaws in a single incentive based on a single performance measure.

Implicit Incentives

Implicit incentives differ from explicit incentives in an important way: they are based on the principal's ex post evaluation of performance (Gibbs, Merchant, Van der Stede & Vargus 2004). This allows the principal to revise incentives based on information that arose after the contract was set with the aim to improve overall incentives. Such ex post settling up is important, because if anticipated it affects the agent's ex ante incentives and perceived risk (Baker, Gibbons & Murphy 1994). For example, the principal might use ex post information to filter out some of the noise from the performance measure, such as by rewarding the agent more if there was bad luck.

Specifically, we examine two possible roles of ex post evaluation, focusing on implicit incentives. First, in addition to filtering out effects of uncontrollable risk, discretion might be used to encourage the employee to respond to controllable risk to improve firm value. For example, the supervisor might evaluate the extent to which the employee took initiative quickly and effectively reacting to events as they unfolded in performing the job. This would be impossible to foresee ex ante. Therefore, we predict that:

2. Implicit rewards will be more strongly related to a performance measure the more important is controllable risk in the measure.

Second, and similarly, the principal might also use ex post evaluation to mitigate manipulation. Manipulation is caused by the employee's knowledge arising while performing the job, and thus, arises from information ex post to setting the contract. Therefore, we predict that:

3. Implicit rewards will be more strongly related to a performance measure, the more manipulable is the measure.

Summarizing these two predictions and the distinction between them, implicit rewards are expected to be used to reward the employee for exploiting controllable risk to improve firm value, or to punish manipulation if it is detected ex post.

Multiple Bonuses

The second way in which a firm might improve incentives based on an imperfect performance measure is to add additional bonuses based on other measures with different properties (Hemmer 1996; Feltham & Xie 1994). Additional measures can reduce risk to the extent that they are not perfectly correlated with the first measure. They can reduce distortion if one measure gives relatively strong emphasis to one dimension of performance and another gives relatively less. Baker (2002) shows that when a second measure is used in an incentive system, the weight is a decreasing function of uncontrollable risk and distortion *relative to* the other measure. For example, if one performance measure does not give enough emphasis to cooperation, the firm might give a second bonus based on a different performance measure that is relatively better at rewarding cooperation. More generally, the idea is that the added measures reduce noise, distortion, or manipulation. The incentive systems that we study often use more than one bonus. We predict that:

4. If the firm uses multiple bonuses, the additional measures will be given greater weight if their properties are *relatively* better.

To our knowledge, our second, third and fourth predictions have never been tested. We now describe the data used in this study. The dataset is new, uses survey data, and is unusually comprehensive. For these reasons, we provide more description than is typical. The descriptive part is designed to provide information on the entire incentive system, something about which little has been previously published.

3. DATA

Survey, Features and Limitations

A boutique auto dealership consulting firm allowed us to design and implement a survey on incentive practices of their clients. We thus had the opportunity to collect data on variables that are usually not available to academics. Our survey methodology has positive and negative features. To our knowledge, it provides the most detailed information ever collected on the system of incentives, explicit and implicit, used within firms. However, survey data have downsides (Bertrand & Mullainathan 2001). They tend to be noisy; by nature, much of the information is perceptual and difficult to quantify. This may lead to attenuation bias in coefficient estimates. Such data can, however, shed light on questions that are otherwise difficult or impossible to study with more traditional, publicly-disclosed datasets.

Before developing the survey, we spent a day at a large dealership interviewing the owner and department managers. This acquainted us with the business, job designs, incentive issues, and language they use. In addition, the consulting firm surveyed its clients on incentive practices several years before the project.¹ We used these sources to develop our survey. The initial version was discussed with the firm's professionals. A revised version was pilot-tested at 24 dealerships before the survey was finalized.

We developed surveys for the owner, general manager, and managers of the service, new car sales, and used car sales departments. The owner survey asked about ownership, bonus payments, and demographics. The general manager survey asked about the dealership's competitive environment, strategy, and management practices. The department surveys were largely identical except for relevant word substitutions. The most important section of those surveys asked detailed questions about salary, bonuses, performance measures, bonus formulas, and subjective evaluations. Outside the compensation section, the

¹ The older surveys were not used to consult with dealerships on incentive plan design. The company does not recommend organizational practices to clients. It provides benchmarking studies that assess a dealership against others.

surveys principally contained 5-point Likert scales. Of these, we use two multi-item scales to assess the degree of competition and emphasis on customer service (see Appendix).

We mailed the final set of five surveys to 1,203 dealerships, along with our cover letter and one from the consulting firm stating their support for the study. We sent a reminder letter to non-participants after four weeks. Six weeks after that, we did a telephone follow-up to dealerships from which we had received at least one survey.² We received 1,057 surveys, or 18% of those mailed. A few were not useful, most commonly because they had substantial missing data. Of the 185 new car department respondents, 39 combined new and used car sales in the same department. We have at least one survey from 326 different dealerships, or 27%.³ We found no evidence of sample selection bias on the basis of performance, size, geography, or manufacturer.

Our study follows the recent trend towards industry studies (e.g., Ichniowski, Shaw & Prennushi 1997). Industry studies have several virtues. Because we had good knowledge of the jobs respondents worked in, we were able to write questions that fit the context. Furthermore, by holding industry constant, much variation is controlled for. In this industry, all firms have essentially the same organizational structures (except that some combine new and used car sales into one department), with essentially the same job designs for general and department managers across dealerships. Our main focus, performance measurement, is similar for all firms sampled. These features of the sample should reduce measurement error, which is particularly important with survey data. Of course, a weakness of industry studies, including this one, is that it is difficult to gauge how generalizable the findings are.

A potential weakness of this study is that we use cross-sectional rather than panel data. It is possible that some of our findings are driven by unobservable heterogeneity across firms. As noted above, a

² The response rate is probably lower for department managers for two reasons. First, we sent the package of surveys to the general manager. In some cases a survey may not have been passed to a department manager. Second, a few managers may have worried (incorrectly) that their responses would be seen by the GM or owner.

³ As some surveys were partially incomplete, sample sizes vary slightly across various tables.

virtue of an industry study is that many variables that might drive such heterogeneity simply do not vary much here because the firms are so similar. Nevertheless, because of this concern we analyzed whether any of our results might be driven by variables other than those included in the tables below, including the region, nameplate of car, and whether the dealer sold luxury or economy cars. We found no evidence that these factors had any effect. In addition, we analyzed whether survey variables might be correlated with personal characteristics of managers, but found no evidence of this. These validity checks give us reasonable assurance that our findings are not primarily driven by unobserved heterogeneity.

An interesting question is what kinds of unobservable heterogeneity might drive differences in performance measures, and performance measure properties, across dealerships? The literature on performance measurement provides little guidance. Presumably the job design for the manager is one factor, including the type and size of the department. Controls for those were included in all regressions. The quality of the manager's staff could matter as well. Unfortunately we have no information on this. The competitive environment could be a factor as well: whether the dealership is in a city, suburb, or rural area; number of other dealerships nearby (especially those that sell similar cars); demographics of potential customers, etc. We controlled for several of these, where we had data, including a measure of local competition for the dealership. For implicit incentives, the experience of the supervisor (general manager) and department manager might be relevant. We included controls for the experience of the department manager, but did not have information beyond that.

Descriptive Statistics

Compensation plans for managers are set by dealership owners, not auto manufacturers, generally once per year. Table 1 provides summary statistics. Since these are all privately-held firms, managers in our sample are not compensated through the use of stock or options. Pay systems in this industry have three major components: salary, formula bonuses, and discretionary bonuses. Salary averages a bit less than half of total pay. In the two types of sales departments, roughly 10% of managers are paid zero base

salary. Compared to most industries, pay for performance is a very large part of compensation for managers in this industry.

The most important component of pay for performance is formula bonuses. In our sample, managers were eligible for up to three bonuses calculated as explicit functions of specific performance measures. We defined these as Formula Bonuses 1, 2, and 3, in the order in which they were listed by the respondent. In all cases, respondents listed their largest bonus first, their next largest second, and their smallest last. Thus, this ranking corresponds to the economic importance of the formula bonuses.

Most managers were eligible for at least one formula bonus, though if performance was too low, some managers received no formula bonus even if eligible. If awarded, the typical first formula bonus was larger than the manager's salary, suggesting that incentives from this bonus are quite strong. By contrast, the incidence and magnitudes of the second and third formula bonuses were much smaller, with roughly 10% eligible for up to three such bonuses.

The third major component of pay is discretionary bonuses. Because they are discretionary, all managers were eligible to receive such an award at the end of the fiscal year. In practice, roughly one in four managers received such a bonus. When awarded, these bonuses were similar in magnitude to the second formula bonus, or roughly a half to a third of Formula Bonus 1. Thus, they are also likely to be an important source of incentives, but not as important as the formula bonuses as a whole.

The fourth source of pay for managers is "spiffs," idiosyncratic reward programs sponsored by auto manufacturers. For example, Ford might offer a free trip to Hawaii based on meeting certain sales targets. These incentive plans are essentially out of the control of auto dealerships (except that they might have some control over who is eligible to participate). They are a relatively small part of pay in both incidence and magnitude, and they are hard to standardize. For these reasons, we ignore spiffs.

One immediate question about the various components of pay is whether they are substitutes or complements for each other. For example, some dealerships might pay low base salaries but high expected bonuses so that overall pay is similar to that of other dealerships. Similarly, some dealerships might provide discretionary rewards that are de facto tied closely to specific performance measures, so

that they act very much like explicit formula bonuses. Table 2 provides correlations of pay components to investigate this question. The correlations are almost all very close to zero, with no apparent pattern in positive and negative signs. This suggests that the pay instruments are *not* simply substitutes for each other, and that they may play different roles in the compensation system. The one large correlation is between the second and third formula bonuses: 0.56. This may be an anomaly, or it may suggest that the second and third formula bonuses play similar roles. We provide evidence for this below.

Table 3 describes the formulas used to calculate the formula bonuses. All are piecewise linear contracts. All are convex (or straight linear) in performance, consistent with declining marginal utility of income, and increasing marginal disutility of effort. Less than a handful of formulas involve penalties (these are for inventory performance measures such as the number of cars in stock over 30 days).

Consider first the formula for the first bonus, FB1. Only 6% have an explicit floor (minimum performance level needed to earn any bonus) above zero. Almost none (2%) have a cap, or limit on the magnitude of the bonus that can be earned. Only 2% involve any lump sum payout, while 98% are simple linear commissions on a performance measure.

Now consider the formulas for the second and third bonuses, FB2 and FB3. These are strikingly different in form from FB1, but similar to each other. Both are much more likely to have floors and caps. 27% of FB2 and 38% of FB3 have a floor, while 19% and 12%, respectively, have caps. Even more interesting is that roughly one fourth of FB2 and FB3 involve lump sum payouts, which are almost never used for FB1. It is not clear why the second and third formula bonuses have different structures than the first bonus. For now, we note that this similarity in structure may explain the correlation between FB2 and FB3 in Table 2. This is consistent with the idea that the second and third formula bonuses play similar roles in the incentive system, and that they are not simply substitutes for FB1.

Other Variables

We now describe the variables. These fall into three categories: performance measures (and most importantly, their properties); explicit and implicit incentives; and controls.

Performance Measures. Most of the measures observed are variants on gross profit (revenue less the cost of goods sold) or net profit (gross profit less other costs). Because the cost of goods sold is the manufacturer's invoice price, it is beyond the manager's control. Thus, gross profit is similar to revenue, though it motivates consideration of profit margin. A very small number of contracts used units of sales or cars in inventory as the measure. Virtually none of the contracts in our sample used non-financial performance measures, such as indicators of customer satisfaction.

Table 4 shows the organizational unit at which these variables were measured (first panel), and the type of performance measure (second panel). "At Unit" means that performance is measured at the level of the manager's department (the entire dealership for general managers). "Above Unit" means that performance is measured at a broader level than the manager's own department. For general managers, this is of course impossible. For department managers, this usually means performance measured at the level of the dealership. The very small number of exceptions are cases where performance is measured for combined new and used car departments, but the manager runs only the new or used car department. "Within Unit" means that performance is measured for a subset of the manager's unit. A typical example is the performance measure "Gross Profit, Body Parts" for a service department manager. This is only one part of the service department's business, which includes repairs and other activities. Another example is use of a performance measure for either new or used sales only, for a manager of a combined new-used car department. Finally, for general managers this would include any measure below the level of the overall dealership. "Different Unit" is the small number of cases where the manager of the new (used) car department is given a bonus based on a statistic from the used (new) car department.

Not surprisingly, almost 3 out of 4 measures for FB1 are at the level of the manager's department. This corresponds closely to the job design, since most of what they can control is at their department. It also should not distort much, compared to "Within Unit" measures, which may be too narrowly focused. At the same time, measures that are "At" or "Within" the manager's unit provide little or no incentive to cooperate with other departments. If cooperation is important, then an option would be to use a measure that is broader ("Above Unit") or even of a "Different" unit. Almost all performance measures for FB1 (PM1) are based on gross or net profit or revenue. Net measures are "broader," since they include both revenue and cost. Over half use Net Profit.

We saw above that the structures of FB2 and FB3 are similar to each other, but different from that of FB1. The same observation applies to performance measure choice, in both organizational unit and type of measure. PM2 and PM3 are less likely to be measured at the level of the manager's organizational unit. Instead, they are more likely to be narrower, measured "Within" the unit. This is especially true for service department managers, where financial measures for components of revenue or costs (service, body parts, or labor) are sometimes used. The second and third performance measures also are more likely to be measured at a level above the manager's department, or in a "Different" department altogether. These are likely attempts to improve cooperation between the manager's department and another department. In such cases, FB2 and FB3 are used to complement (fix weaknesses in) FB1.

Along the same lines, the second and third bonuses are where "non-standard" performance measures are used – number of cars sold or in inventory, or measures of customer financing (car loans). These measures are almost never used for FB1. Note that the effects of inventory and customer financing on firm value are probably not adequately measured in short-term department revenue or profit. For example, a high inventory level implies a high opportunity cost to the dealership from tying up capital, but this would not usually be included in a department's accounting costs. Customer financing also is typically not included in the sales department's revenue, which is based solely on car sales. In both cases we see again that the second and third formula bonuses are apparently used as complements to, or to address weaknesses in, the first formula bonus.

Properties of Performance Measures. The survey included questions to assess five properties of each performance measure, recorded on a scale from 1 (Not at All) to 5 (Very High):

"To what extent does this measure:

- 1. reflect factors outside your control;
- 2. reflect your overall performance;
- 3. cause you to focus on short-term goals;
- 4. encourage cooperation with other departments;
- 5. motivate manipulating the measure to meet the performance target?"

The first of these properties (factors outside your control) is a good proxy for uncontrollable risk, whereas the second property (reflects overall performance) is a less ideal proxy for controllable risk. The recent literature on controllable risk was not circulating when we wrote the survey, so we will be careful to not over-interpret the evidence on the importance of controllable risk, due to the potential weakness of our measure to capture this concept.

The third and fourth properties (causes focus on short-term goals; encourages cooperation with other departments) measure two common distortions caused by accounting measures. In auto dealerships, some cooperation is needed between all three departments. New car sales frequently go to customers who also wish to sell their old car. Therefore, the departments may have new business leads for each other. In addition, developing a good relationship with a customer may improve the other department's ability to sell to that customer. Similar interdependencies arise between the service department and the sales departments. Both new and used cars require service, so both sales departments can encourage customers to use the dealership for service and repairs. Similarly, a satisfied customer of the service department is more likely to come to the dealership when they wish to buy or sell a car.

The final property is the extent to which the performance measure is manipulable. It might be expected that managers would be reluctant to admit that they manipulate their performance measures. However, in this sample there is roughly the same variation in responses to this question as for the other four questions about performance measure properties. The surveys were filled out by managers privately, handled with complete confidentiality, and sent directly to us (not the consulting firm), which may explain the willingness of managers to answer this question. Furthermore, industry experts indicated to us that manipulation is simply an accepted cost of imperfect performance measurement in such a sales-oriented industry. In any case, reluctance to report manipulation would bias down coefficients on this variable (Bertrand & Mullainathan 2001), giving us some additional confidence in any significant results on manipulation that we are able to uncover.

The first, third, and fifth properties (uncontrollable risk, short-term focus, and manipulability) take larger values if the measure is "worse," while the second and fourth properties (controllable risk and

cooperation) take larger values if the measure is "better." To make the presentation of results easier to interpret, the first, third and fifth properties are reverse coded in all analyses. In other words, all performance measure properties are scaled so that a larger value indicates a better performance measure.

While not reported, we analyzed whether the five performance measure properties, and the four measures of their use for implicit incentives, varied with manager demographics. This is important for interpreting these variables, especially in Table 7, because they are based on perceptions. We found no evidence for differences in these variables across any manager characteristics, including age, education, and experience. This provides reasonable confidence that Bertrand and Mullainathan's (2001) concern about using survey data as dependent variables is not a significant threat to our analyses.

Table 5 presents summary statistics on these properties as a function of the organizational unit at which performance is measured. The patterns generally accord well with what would be expected. For example, the second property is the extent to which the manager reports that the performance measure reflects his overall performance. This is reported to be highest at the department level, and lower for measures that are either "Within" and "Above" the unit. It is lower still for measures based on a "Different" department. A performance measure is most likely to encourage cooperation if it is for a different department or the dealership as a whole. It is least likely to motivate cooperation if the measure is "Within" the department. Similarly, manipulation is more difficult if the measure represents performance of a different department, and easier at the department level than at the level of the dealership as a whole. The one performance measure property that does not always have expected patterns across organizational units is the extent to which the measure reflects factors outside the manager's control. This is reported to be highest (least reflecting factors outside the manager's control) when it measures another department. One interpretation, however, is that a performance measure for a different department is chosen precisely in those cases where there are the greatest opportunities for cooperation between those two departments.

Explicit Incentives. A potential measure of incentive strength is the commission rate on the bonus plan. However, there are practical difficulties. Contracts use different measures that are not comparable across departments or dealerships. These measures may be on different scales (especially when considering the marginal effect of extra effort on the measure). Even when dealerships use the same nominal measure, there is variation in accounting methods across dealerships. Contracts may have multiple piecewise-linear segments with different commission rates, and it is not clear which segment is relevant for incentives in a particular situation. Finally, contracts may use lump-sum bonuses, which are not in the same form as linear commissions and for which the correct measure of incentive intensity is not clear. Effort, and thus expected performance, should be positively related to the intensity of incentives. Thus, total received bonus is a proxy for the strength of the incentive that has the virtue of being comparable across different dealerships, departments, bonus formulas, and performance measures. The bonus regressions are tobits because some managers were eligible for a bonus but did not receive one if performance was too low. Proxying incentive intensity with realized bonus is, of course, imperfect. The bonus will be larger or smaller because of variation in the performance measure that is not due to the employee's effort. This imparts some error-in-variables to our measure of incentives.

Implicit Incentives. A feature of the survey is that it provides information on implicit incentives that have been rarely studied in economics or accounting. For each measure the survey asked:

"If you fail to achieve target performance for this measure, to what extent do you believe that the following will be adversely affected:

- 1. operating autonomy;
- 2. pay raise;
- 3. promotion prospects;
- 4. continued employment."

Responses were recorded on a scale from 1 (Not at All) to 5 (Very High). Respondents also reported the size of their discretionary bonus when applicable. While dealership managers have substantial pay for performance through their bonus plans, implicit incentives also are important. Salary is a large component of total pay. These jobs are highly paid, so threat of termination may drive incentives as well. Even promotion incentives may matter for these managers. Department managers might be promoted to general manager, and GMs earn approximately 2.5 times higher average pay than department managers in this sample. Furthermore, many dealerships are part of a network of shops, so department managers and GMs also may have the potential to be promoted to a better location or larger dealership.

Controls. The regressions include a variety of controls:

Service Department Dummy; Emphasis on Customer Service. When the job is more complex and intangible it may be harder to measure performance on some tasks accurately, leading to muted overall explicit incentives (Holmstrom & Milgrom 1991; Slade 1996). For this reason, we predict that indicators that the job is more complex will have negative effects on incentive intensity. We use two such measures. Most regressions include dummy variables for whether a department manager is a service department manager. service department jobs are more complex and involve more tasks for which performance is difficult to quantify. Our second indicator for a job with more intangible components is the emphasis placed on customer service (this variable was derived using factor analysis; see Appendix). Customer service has many dimensions compared to number of cars sold, and most are intangible.

Perceived Degree of Competition. We include a measure of the degree of competition (see Appendix). If the competitive environment is stochastic, the firm may want to provide incentives for the manager to respond to competition (Raith 2003). Therefore, we expect that employees will be given stronger incentives in more competitive environments. Evidence for this effect would favor the idea that greater controllable risk implies stronger incentives.

Number of Employees; Experience; General Manager Dummy. Finally, agency theory usually predicts that incentives should be stronger, the larger is the marginal product of effort. We include the number of employees reporting to the manager (a measure of resources under the manager's control), the manager's experience in the position (a measure of human capital), and a dummy variable for general managers. We predict that these will be positively related to the strength of incentives.

4. FINDINGS

Table 6 presents analysis of the first prediction, that the incentive intensity for explicit incentives should be decreasing in noise, distortion, and manipulation of the measure; and increasing in controllable risk. The tobits assess the magnitude of formula-based bonuses for the full sample, and for general man-

agers and department managers separately. They include the five performance measure properties as well as the controls described above.⁴

Since the performance measure properties are scaled so that a higher value means a "better" performance measure along that dimension, these variables are predicted to have positive coefficients. In most cases, the estimated coefficients are positive, and they are often statistically significant. The economic significance of the coefficients is straightforward to interpret (and similarly in Table 8 below). The standard deviation of the five performance measure properties is typically about 1.0. This means that the coefficient on the tobits in Tables 6 and 8 represents approximately the marginal effect of increasing or decreasing a performance measure property by one standard deviation. For example, a one standard deviation improvement in the extent to which a performance measure encourages cooperation increases the average bonus by \$11,257 overall, \$27,357 for GMs, and \$4,480 for department managers. Similar magnitudes are found for the other properties. Those estimates constitute increases of 10% in the first formula bonus, and even more for the second and third bonuses. These numbers are large economically. Thus, Table 6 provides strong evidence that performance measure properties have important economic effects on the magnitude of incentives.

The first two properties are our attempts to proxy for controllable and uncontrollable risk. The first is a relatively good proxy for uncontrollable risk. With the inclusion of the first factor, the second is a less perfect proxy for controllable risk. Despite this caveat, the coefficients for both are always positive and usually significant. Thus the evidence is consistent with Prendergast's (2002) analysis of risk and incentives. This is one of the few empirical studies to find a positive relationship between strength of incen-

⁴ Because the data include multiple observations from the same dealership, we ran all relevant analyses with Huber-White standard errors as a check. There were no important differences in significance. In fact, there is variety in incentive contracts (performance measures and formulas) for managers in the same dealership, perhaps because they run different types of departments.

tives and degree of performance measure precision, after controlling for a measure of controllable risk (see DeVaro and Kurtulus (2006) for an earlier and more thorough empirical analysis of this question).

The next two properties measure whether the metric distorts incentives in two common ways, toward short term results, and toward lack of cooperation. The results show that a performance measure that does not cause a short term emphasis is *not* given stronger incentives in auto dealerships. In fact, in two of three regressions the coefficient is the opposite of predicted. One explanation is that auto dealerships desire their managers to emphasis short term financial results, perhaps because of the terms of their contracts with manufacturers. However, that is speculation. Our prediction about the short term focus of the performance measure is rejected. On the other hand, measures that encourage cooperation are indeed given greater weight for incentives, in all three specifications.

The final performance measure property is the extent to which it is unlikely to be manipulated to improve measured performance. Once again, in all three regressions this property has a significant effect on the strength of incentives, in the predicted direction. This provides evidence that managers do manipulate their performance measures, and that this affects the incentive plan's design. For this to be possible, managers must have some specific knowledge in performing their jobs that they can use to manipulate the measure. Thus, our evidence that manipulation occurs and is factored into incentives is additional evidence for Prendergast's view that agents have asymmetric information about how they perform their jobs, and that this has important effects on incentive system design.

The second half of the table includes controls for job design and the manager's human capital. Number of employees supervised (span of control) is a measure of the manager's marginal product of effort. This appears to have little effect on incentives once other controls are included. However, a dummy for general manager does have a positive sign. Experience is a proxy for the manager's human capital. Greater human capital may imply a larger marginal product of effort. The positive coefficients on experience suggest that this is the case in auto dealerships.

Degree of competition is another proxy for controllable risk (Raith 2003). Competitive actions by other dealerships are a kind of risk that managers can respond to with their own actions. We find a posi-

tive coefficient on our measure of competition in all three regressions. The effect is largest for general managers. This can be expected because they set overall policy and strategy for the dealership, and thus should control the dealership's response to competition.

Our proxies for job complexity and importance of intangibles show mixed results. The dummy variable for service departments is insignificant. However, the measures of emphasis on customer service are significant and positive in all three models as predicted. In summary, Table 6 provides good evidence that performance measure properties – controllable and uncontrollable risk, distortions, manipulation, and inability to capture intangibles – do matter for their use in incentive systems.

Table 7 examines the second and third predictions about the effects of performance measure properties on implicit incentives. These predictions involve the idea that implicit incentives allow the principal to use ex post evaluation to improve incentives. Specifically, implicit incentives can be used to punish the employee for failure to exploit controllable risk to improve firm value, or to punish manipulation if it is detected ex post. These two hypotheses are reflected in the predicted signs for the coefficients on the second and fifth performance measure properties in Table 7.

The dependent variables in this table are survey responses to questions that asked, "If you fail to achieve target performance for this measure, to what extent do you believe that [an implicit reward] will be adversely affected?" In other words, the questions asked whether a low value for a performance measure might be *punished* implicitly through promotions, raises, etc. Since these answers are on a 0-5 scale, ordered probits were estimated.

A concern in Table 7 is that the dependent variables are subjective answers to survey questions. Bertrand and Mullainathan (2001) conclude that, while survey data can be useful independent variables (as in Tables 5 and 8), they are more problematic as dependent variables. Specifically, suppose that GMs and department managers have different attitudes about how their evaluation affects their promotion prospects. Then coefficients on the GM dummy variable in Table 7 would reflect the difference in attitudes, as well as any difference in actual evaluation practices for GMs compared to department managers. As stated above, we found no significant differences in perceived performance measure properties across manager demographic groups. Nevertheless, interpretation of coefficients should be handled carefully when the dependent variable is subjective. We present Table 7 with this qualification in mind, and in the spirit of trying to see whether survey data provide useful insights into incentive practices. The main conclusions that we draw from the table are consistent with the predictions as well as with the inferences in the rest of the paper, however, and so we interpret them as reinforcing those conclusions and providing useful suggestions for future research.

The results in Table 7 are consistent with the predictions. Roughly speaking, a 1-unit change in either the second or fifth performance measure property increases the mean value of the dependent variable by about one quarter unit – increasing the likelihood that the manager's implicit incentive will be adversely affected. The more that a measure reflects overall performance, the more likely is it that a low value of that measure will be punished implicitly. We have interpreted this property as a potential proxy for controllable risk, but with qualification, so we will not put much weight on this finding. The most interesting result in the table is that if a measure is less likely to motivate manipulation, it is less likely that poor performance will be punished implicitly. Put in reverse, if performance is low even though the measure might be manipulated, it must be quite poor performance indeed, and it is punished. This finding is interesting, because it is evidence for our notion that manipulation makes use of the employee's specific knowledge in performing the job, and so must be deterred through ex post punishment. Distorted incentives, on the other hand, are predictable in advance, since the performance measure's balance (or lack) across different tasks is known in advance. Thus, distortions are less likely to require ex post punishment for deterrence.

Table 8 tests the fourth prediction, that bonuses on additional performance measures can be used to rebalance incentives from the first performance measure. We measured the five performance measure properties of the second or third measure relative to the value of that property for the first measure, by subtracting the value for the first measure. A larger value means that the second or third measure is reported to be relatively better along that dimension than is the first measure. To the extent that this is true, we predict that the new measure will be given greater weight in the evaluation – especially for the measure

ures of distortion (short term focus or cooperation) and manipulation, since those are most easily "reversed" by use of a second performance measure. Risk is less likely to be "reversible" with a second measure, since the measure would have to have risk properties that are negatively correlated with those of the first measure. The regressions in Table 8 are tobits predicting the magnitude of the second or third bonus.

The results in Table 8 suggest that an additional performance measure is given greater weight for incentives if it improves the manager's incentives for cooperation, or if it is less subject to manipulation. These effects are both statistically and economically significant. As in Table 6, the standard deviation of the key independent variables – in this case, differences in performance measure properties – is approximately equal to 1.0. Therefore, coefficients can be interpreted as approximately the marginal effect of raising or lowering the difference in performance measure property by 1 standard deviation. For example, a 1 standard deviation compared to the primary performance measure results in an average increase in bonus 2 or 3 of about \$4,046. That is a large effect compared to the average size of bonuses 2 or 3. The effect of such an improvement in the relative extent to which an additional measure does not motivate manipulation is about \$2,527, also a large effect. Recalling that we found no evidence that short-term focus was an important performance measure property in our sample, these findings do suggest that additional measures are chosen, at least in part, to improve the overall evaluation of the manager's performance compared to the first performance measure.

7. CONCLUSIONS

In this paper we use data from a survey that we designed and collected to study the effects of performance measure properties on incentive system design. Prior empirical work has tended to focus on a single performance measure property or incentive instrument at a time. This paper explores the premise that a firm uses a *system* of interrelated measures and incentives – explicit and implicit – because of flaws in available performance measures. The performance measure properties that we analyze are the measure's noise, controllable risk, distortion, and manipulability. We find that all of these properties are important to incentive plan design. The more that a measure is flawed along any of these dimensions, the less weight is given to that measure for explicit incentives. We find some evidence that a second measure can mitigate distortions or manipulation arising from the first performance measure. This indicates that the firm may pick a set of performance measures based on how their properties are related to each other.

Prior empirical research on the tradeoff between risk and incentives has often failed to find the predicted relationship. We do find such a relationship, and present evidence supporting the more recent distinction between controllable and uncontrollable risk. We also present evidence on the importance of distortions and manipulation, two topics that have received relatively less attention in economics. Our results on the existence and deterrence of manipulation, and on the effects of competition, are additional evidence for the relevance of controllable risk to incentive plan design.

Finally, we explore a relatively under-studied issue, implicit rewards. One of the most important reasons for implicit incentives is to, in effect, turn a numeric performance measure into a subjective evaluation (or similarly, to make the weight on the measure subjective). This flexibility allows the supervisor to use ex post information to "fix" problems in the numeric measure, improving the overall incentive. Our results indicate that this is particularly useful for deterring manipulation, and may also be used to motivate the employee to exploit controllable risk on behalf of the firm.

Several important caveats apply to this research. Our data are cross-sectional. We have made every attempt to control for possible unobserved heterogeneity, and the sample is from a single industry, but panel data would be preferred. Our data are also survey-based, and survey data are more noisy. However, it is worth noting that they can be less noisy than proxying for hard to measure concepts using traditional archival data. Once again the industry study design mitigates but does not eliminate this concern. The fact that we have some statistically significant findings despite the potential for attenuation bias is encouraging. An additional concern of survey data is unobserved heterogeneity driving correlations between dependent and independent variables. We find no evidence that manager demographic characteristics drive our findings. However, we cannot be certain, and this concern may be higher with survey data. One purpose of our study is to explore the potential for survey data to provide new insights into incentive plan design. Survey data has advantages in addition to weaknesses, notably in that it allows for the study of important questions that cannot be easily addressed with more typical datasets. Therefore we view our findings as suggesting interesting directions for future research with other data sources – and perhaps for future new theoretical insights.

REFERENCES

- Baker, George (1992). "Incentive Contracts and Performance Measurement." Journal of Political Economy 100(3): 598-614.
- (2002). "Distortion and Risk in Optimal Incentive Contracts." *Journal of Human Resources* 37(4): 728-752.
 - _____, Robert Gibbons & Kevin J. Murphy (1994). "Subjective Performance Measures in Optimal Incentive Contracts." *Quarterly Journal of Economics* 109 (4): 1125-1156.
- Banker, Rajiv D. & Srikant M. Datar (1989). "Sensitivity, Precision, and Linear Aggregation of Signals for Performance Evaluation." *Journal of Accounting Research* 27 (Spring): 21-39.
- Bertrand, Marianne & Sendhil Mullainathan (2001). "Do People Mean What They Say? Implications for Subjective Survey Data." *American Economic Review Papers & Proceedings*: 67-72.
- Bouwens, Jan & Laurence van Lent (2006). "Performance Measure Properties and the Effect of Incentive Contracts." *Journal of Management Accounting Research* 18(1): 55-75.
- Bushman, Robert, Raffi Indjejikian & Abbie Smith (1996). "CEO Compensation: The Role of Individual Performance Evaluation." *Journal of Accounting and Economics* 21 (April): 161-193.
- Campbell, Dennis (2007). "Nonfinancial Performance Measures and Promotion-Based Incentives." Working paper, Harvard Business School.
- Courty, Pascal & Gerald Marschke (2004). "An Empirical Investigation of Gaming Responses to Explicit Performance Incentives." *Journal of Labor Economics* 22(1): 23-56.
- (forthcoming). "A General Test of Gaming." Review of Economics & Statistics.
- Demski, Joel S., Hans Frimor & David E. M. Sappington (2004). "Efficient Manipulation in a Repeated Setting." *Journal of Accounting Research* 42 (1): 31-49.
- DeVaro, Jed & Fidan Ana Kurtulus (2006). "An Empirical Analysis of Risk, Incentives, and the Delegation of Worker Authority." Working paper, Cornell University.
- Dillman, Don A. (1978). Mail and Telephone Surveys: The Total Design Method. NY: Wiley.
- Feltham, Gerald A. & Jim Xie (1994). "Performance Measure Congruity and Diversity in Multi-task Principal/ Agent Relations." *The Accounting Review* 69(3): 429-453.
- Gibbs, Michael, Kenneth A. Merchant, Wim A. Van der Stede & Mark E. Vargus (2004). "Determinants and Effects of Subjectivity in Incentives." *The Accounting Review* 79(2): 409-436.
- Hayes, Rachel M. & Scott Schaefer (2000). "Implicit Contracts and the Explanatory Power of Top Executive Compensation for Future Performance." *RAND Journal of Economics* 31(2): 273-293.
- Healy, Paul M. (1985). "The Effect of Bonus Schemes on Accounting Decisions." *Journal of Accounting and Economics* 7: 85-107.

Hemmer, Thomas 1996. "On the Design and Choice of 'Modern' Management Accounting Measures." Journal of Management Accounting Research (8): 87-116.

Holmstrom, Bengt (1979). "Moral Hazard and Observability." Bell Journal of Economics 10: 74-91.

- & Paul Milgrom (1991). "Multitask Principal-Agent Analyses: Incentive Contracts, Asset Ownership, and Job Design." *Journal of Law, Economics, and Organization* 7: 24-52.
- Holthausen, Robert, David Larcker & Richard Sloan (1995). "Annual Bonus Schemes and the Manipulation of Earnings." *Journal of Accounting and Economics*, 19: 29-74.
- Ichniowski, Casey, Kathryn Shaw & Giovanni Prennushi. (1997). "The Effects of Human Resource Management Practices on Productivity: A Study of Steel Finishing Lines." American Economic Review 87(3): 291-313.
- Ittner, Christopher D. & David F. Larcker (2002). "Determinants of Performance Measure Choices in Worker Incentive Plans." *Journal of Labor Economics* 20(2): S58-S91.
 - ____, ____ & Madhav V. Rajan (1997). "The Choice of Performance Measures in Annual Bonus Contracts." *The Accounting Review* 72(2): 231-255.
- Jensen, Michael & William Meckling. 1992. "Specific and General Knowledge and Organizational Structure." In *Contract Economics*, eds. Lars Werin and Hans Wijkander. Oxford: Blackwell.
- MacLeod, Bentley & Daniel Parent (1999). "Job Characteristics and the Form of Compensation." *Research in Labor Economics* 18: 177-242.
- Murphy, Kevin J. & Paul Oyer (2003). "Discretion in Executive Incentive Contracts." Working paper, USC.
- Prendergast, Canice (1999). "The Provision of Incentives Within Firms." *Journal of Economic Literature* 37(1): 7-63.
 - (2002). "The Tenuous Tradeoff between Incentives and Risk." *Journal of Political Economy* 110(5): 1071-1102.
- Raith, Michael (2003). "Competition, Risk, and Managerial Incentives." American Economic Review 93:1425-1436.
- Slade, Margaret (1996). "Multitask Agency and Contract Choice." *International Economic Review* 37(2): 465-486.
- Van Praag, Mirjam & Kees Cools (2001). "Performance Measure Selection: Aligning the Principal's Objective and the Agent's Effort." Working Paper, University of Amsterdam.

		General Department Managers						
			Manager	New	Used	Service		
	a. Department Characteristics							
GMs who a			26%	_				
New / Usec	l combined		_	24%	_	_		
# direct rep	orts		22.5	17.0	11.0	29.2		
Years of ind	dustry experience		20.9	15.6	17.1	23.2		
Ν			250	194	127	205		
	b. Ma	anao	er's Compei	nsation				
Total Comp			\$191,749	\$81,892	\$81,149	\$65,755		
	Salary		98%	88%	89%	94%		
	-	1	65%	58%	59%	64%		
%	Formula Bonus	2	10%	25%	25%	24%		
Receiving		3	4%	11%	10%	10%		
	Discretionary Bo	nus	20%	24%	24%	20%		
	Spiffs		8%	16%	10%	32%		
%		1	72%	85%	81%	85%		
Eligible	Formula Bonus	2	14%	36%	33%	39%		
Liigioio		3	4%	19%	16%	19%		
	Salary		\$80,672	\$33,555	\$34,050	\$33,247		
		1	130,893	53,635	47,715	37,462		
\$ if	Formula Bonus	2	31,629	20,070	21,050	9,866		
Received		3	48,633	9,197	12,099	6,579		
	Discretionary Bo	nus	36,449	20,135	13,295	10,728		
	Spiffs		9,174	4,239	2,190	3,427		

Table 1.				
Summary Statistics				

Notes: Means for components of compensation calculated only for managers receiving a positive amount. % Receiving is less than % eligible because managers did not receive a bonus when performance was too low. "New" statistics include departments that combine New and Used car sales.

		Salary -	Formula Bonus			Discretionary		
		Salary -	1	2	3	Bonus		
	1	0.15						
Formula Bonus	2	-0.07	0.07					
	3	-0.03	0.02	0.56				
Discretionary Bonus		0.02	0.02	0.02	0.05			
Spiffs		0.04	0.03	0.03	-0.02	0.06		

Table 2.Correlations of Pay Instruments

Notes: Correlations of dollar values of pay instruments, calculated in each case across all available observation pairs with non-missing values.

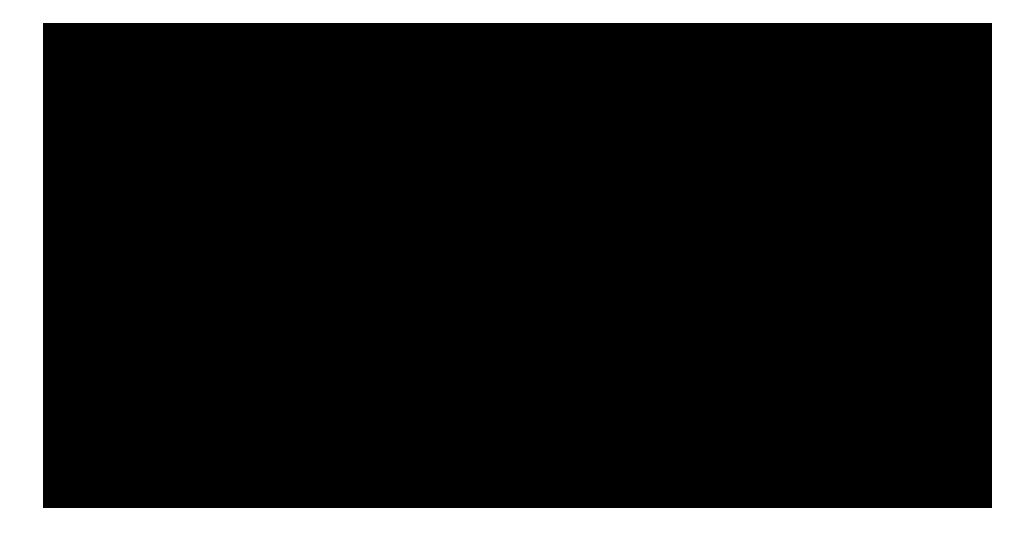
		Formula Bonus		
		1	2	3
	Floor	6	27	38
% with	Сар	2	19	12
	Neither	94	72	60
Maximum	# of segments	5	6	4
% with lun	np sums	2	23	24
N		633	186	42

Table 3.
Structure of Formula Bonuses

Notes: Bonuses have a floor if the performance measure must exceed a positive threshhold before any bonus is paid; and a cap if no bonus is paid for performance above some threshhold.

	Performance Meas				
			2	3	
	Above Unit	18.2	19.4	26.2	
Organizational	At Unit	73.8	48.4	38.1	
Unit (%)	Within Unit	7.9	25.8	26.2	
	Different Unit	0.2	6.5	9.5	
	Total	100	100	100	
	Net profit	54.3	40.3	42.9	
	Gross profit or Revenue	44.7	29.6	23.8	
Type (%)	Units sold or in inventory	1.0	25.3	23.8	
	Customer financing	0.0	4.8	9.5	
	Total	100	100	100	

Table 4.Performance Measure Scope


Notes: For performance measures for formula bonuses 1-3, shows % measured at each level of organizational unit (top panel), and % of each type (bottom panel). Thus, percentages sum to 100 for each performance measure, in each panel. A measure is "At Unit" if it is measured at the level of the manager's department (or the dealership for a GM). A measure is "Above Unit" if it is measured at the dealership level, for a department manager (not a GM). A measure is "Within Unit" if the measure covers a proper subset of the manager's department (e.g., Parts Sales for a Service Department Manager; New Car Gross Profit for a GM). A measure is "Different Unit" if it measures performance of a different department; these are always either a measure of the Used Car department, for a New Car Department manager, or vice versa.

		Scope of PM 1-3			
		Organizational Unit			nit
		Above Unit	At Unit	Within Unit	Different Unit
Properties of PM 1-3	Reflects factors outside mgr.'s control (reverse coded)	3.11	3.27	3.06	3.33
	Reflects overall performance	3.53	3.67	3.28	3.00
	Causes short term focus (reverse coded)	2.50	2.83	2.84	3.08
	Encourages cooperation	3.75	3.74	3.40	4.08
	Motivates manipulating the measure (reverse coded)	3.08	3.35	3.02	1.73

Table 5.Performance Measure Properties as a Function of Scope

Notes: Mean values of responses to questions about performance properties, scaled as: 1=Not at all, 2=Low, 3=Medium, 4=High, 5=Very High. 3 of the 5 properties were then reverse coded; see the text.

		Pred.		a Bonus	
		sign	2 or 3		
Intercept			4,027	2,094 **	
Property of PM2 or PM3 Minus Property of PM1	Reflects factors outside mgr.'s control (reverse coded)	+	201	1,522	
	Reflects overall performance	+	1,633	1,632	
	Causes short term focus (reverse coded)	+	86	1,436	
	Encourages cooperation	+	4,046	1,401 ***	
	Motivates manipulation (reverse coded)	+	2,527	1,628 **	
General Manag	er		2,844	4,225	
Service Departi	ment manager		-6,979	3,120 ***	
Ν			315		
% Bonus (#2 or 3) > 0			60%		

 Table 8.

 Effects of Performance Measure Properties on Other Formula Bonuses

Notes: Tobit predicting magnitude of Formula Bonuses 2-3. SE = standard error. *** = significant at 1%; ** = 5%; * = 10%. Predicted signs are shown after variable names; 1-tailed tests in those cases.

